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ABSTRACT
Background: Numerous studies have noted the effect of chorda tympani (CT) nerve
transection on taste sensitivity yet very few have directly observed its effects on taste
receptor and taste signaling protein expressions in the tongue tissue.
Methods: In this study, bilateral CT nerve transection was performed in adult
Sprague Dawley rats after establishing behavioral taste preference for sweet, bitter,
and salty taste via short term two-bottle preference testing using a lickometer setup.
Taste preference for all animals were subsequently monitored. The behavioral testing
was paired with tissue sampling and protein expression analysis. Paired groups of CT
nerve transected animals (CTX) and sham operated animals (SHAM) were sacrificed
7, 14, and 28 days post operation.
Results: Immunofluorescence staining of extracted tongue tissues shows that
CT nerve transection resulted in micro-anatomical changes akin to previous
investigations. Among the three taste qualities tested, only the preference for sweet
taste was drastically affected. Subsequent results of the short-term two-bottle
preference test indicated recovery of sweet taste preference over the course of 28 days.
This recovery could possibly be due to maintenance of T1R3, GNAT3, and
TRPM5 proteins allowing adaptable recovery of sweet taste preference despite down-
regulation of both T1R2 and Sonic hedgehog proteins in CTX animals. This study
is the first known attempt to correlate the disruption in taste preference with the
altered expression of taste receptors and taste signaling proteins in the tongue
brought about by CT nerve transection.
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INTRODUCTION
Ingestion of materials as food is regulated through orosensory stimulation such as the
olfactory and gustatory systems. These afferent systems are composed of sensory organs,
innervation, and associated brain processes. The binding of exogenous chemicals to
specific taste-signaling proteins in the tongue results in the detection of taste—a
chemosensory event. This is made possible via the activation of certain ion channels and
resulting action potential for signal transduction, particularly through chorda tympani, a
nerve that has been long identified for this purpose. Upon reaching the brain, these signals
are processed primarily for identification of the taste quality, whether it’s salty, sweet, sour,
or bitter. In addition to the identification of the specific taste (or combination of which),
the relative concentration is also simultaneously determined. The combined analysis leads
to either ingestion of nourishment based on associating preferable taste qualities on certain
items or rejection of potentially toxic chemicals via association of aversive taste qualities.

The chorda tympani (CT) is the main peripheral nerve relaying taste signals from the
anterior two-thirds of the tongue towards the nucleus of the solitary tract (NST). It is
considered a branch of the facial nerve and shares NST terminal field innervation with the
greater superficial petrosal and glossopharyngeal nerve. Taste disturbance and changes in
taste sensitivities have been attributed mainly to CT nerve injury (Guinand et al., 2010;
Mueller et al., 2008; Cain, Frank & Barry, 1996; Bonardi et al., 2016; Pittman et al., 2007;
Stratford, Curtis & Contreras, 2006). Some studies have been conducted regarding
elucidating the effect of chorda tympani manipulation on anatomical composition and
taste detection. Among the notable findings on the effect of CT transection is its effect on
taste bud volume and papillae morphology. Unilateral CT transection has been found to
induce size reduction of the taste buds on the ipsilateral side and hyperplasia of taste buds
on the contralateral side, implying anatomical change counteracting the effect of
denervation (Li et al., 2015; Sollars, 2005; Reddaway et al., 2012). Further investigation by
Sollars & Bernstein (2000) elucidated that the chorda tympani displays age-related
plasticity, making it markedly vulnerable when damaged during early development in
young rats compared to adults. In addition to anatomical changes resulting from
denervation, transection of the chorda tympani has also been effective in inducing changes
in taste perception in animals. A follow-up study concerning neonatal CT transection
showed that the peripheral taste system in adult rodents is capable of functional recovery
for salt taste detection compared to neonatal rats that underwent the same procedure
(Martin & Sollars, 2015; Kopka, Geran & Spector, 2000). Other studies have also noted that
CT transection prompted modified taste sensitivity to free fatty acids such as linoleic and
oleic acids (Pittman et al., 2007; Stratford, Curtis & Contreras, 2006).

The effect of denervation on the terminal field volume of the different nerves connecting
to the NST has also been investigated concerning CT regeneration and plasticity.
Transection of greater superficial petrosal and glossopharyngeal nerves resulted to increase
field terminal volume by CT possibly for compensatory effect from the loss of afferent
input from severed nerves (Corson & Hill, 2011). Conversely, regenerative failure following
CT transection results in terminal field plasticity of the remaining intact glossopharyngeal
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and greater superficial petrosal nerve (Martin et al., 2019), and that brain-derived
neurotrophic factor (BDNF) is crucial in regenerating damaged CT nerves (Meng et al.,
2017). In one study, the pattern of CT nerve innervation in the NST has also been found to
be influenced by the dietary salt content in rats and indicating its possible effect on
behavioral study outcomes when testing animals with altered salt intake during the early
developmental stage (Pittman & Contreras, 2002). So far the majority of the studies
involved in establishing how CT nerve transection centered on observing some behavioral
changes in taste sensitivity, terminal field innervation of the NST, and morphological
transformation of the taste buds and papillae.

Though it has been stated that innervation is a crucial factor in the proper development
of taste buds and tongue papillae (Reddaway et al., 2012), limited information has been
provided concerning its effect on the maintenance and functionality of taste receptor
proteins in the taste cells. There is currently limited publication relating the consequence of
CT nerve transection on the expression of certain taste receptors and the observable
change in behavioral taste preference. This study focuses on validating the behavioral
change following CT nerve transection via observing relative changes in taste protein
receptors present in remaining taste buds up to 4 weeks after the procedure. Observing
changes in taste receptor protein expression in the remaining taste buds could provide
information on how taste preference is modified through CT denervation.

MATERIALS AND METHODS
Behavioral testing for taste preference
In this study, Sprague Dawley rats were used to determine the effect of chorda tympani
transection on the taste preference behavior and with respect to protein expression of some
taste receptors and transduction proteins considering it is a well-known animal model for
not only biomedical studies but also for behavioral studies. (Sollars, 2005; Golden et al.,
2011; Spector & Grill, 1992; Tordoff, Alarcon & Lawler, 2008) The in vivo experiments were
performed in accordance with the guidelines set by the Institutional Animal Care and Use
Committee at Dankook University (DKU-20-036). All experimenters were aware of the
group allocation during the different stages of the study conducted with non-registered
protocols. The animal number was determined based on the capacity of the lickometer
setup that will accommodate the simultaneous testing of several animals per day. For this
study 36 male Sprague-Dawley rats, 7 weeks of age and approximately 250 grams in weight
purchased from Orientbio Co., Seongnam, South Korea. Upon arrival in the research
facility, the animals were initially divided into 12 cages, housing three rats per cage.
The rats were allowed to acclimatize for 3 days in a temperature-controlled animal room
with a 12-h timed light-dark cycle and provided with food and water ad libitum. The caged
rats were then divided into two categories and three observation groups. Half of the
animals underwent bilateral chorda tympani transection and were categorized as the CTX
group while the remaining half underwent a sham operation and were categorized as the
SHAM (control) group for comparison with the CTX group. Sampling and observation
periods were set 7, 14, and 28 days post-chorda tympani transection with allotted six CTX
rats and six SHAM rats per observation period. Figure 1 shows the schematic diagram of
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how the study was carried out. Detailed chorda tympani transection procedure will be
discussed in the succeeding section. The taste preferences of the animals were determined
using a triple lickometer setup (Model 80380, Lafayette Instrument, Sagamore, IND, USA).
Three tastant solutions were formulated based on the lowest concentrations stated in a
previously published reference detailing the preference of certain rat strains to different
tastant (Tordoff, Alarcon & Lawler, 2008). As per reference, the sweet taste was prepared at
its lowest preferred concentration by dissolving sucrose (Cat#.S9378, Sigma-Aldrich,
St. Louis, MO, USA) in distilled water to create a 10 mM solution. The salty taste was
formulated at its lowest aversive concentration of 562 mM by dissolving NaCl (Cat#.7548-
4400, Daejung, Korea) in distilled water. Lastly, a tastant solution for bitter taste was made
by dissolving denatonium benzoate (Cat#.30914, Sigma-Aldrich, St. Louis, MO, USA) in
distilled water at its lowest aversive concentration of 0.0316 mM. To establish a baseline
reading of the taste preferences, all animals were subjected to a modified two-bottle
preference test with a tastant at a specified concentration and a known response with triple
distilled water as a control. The detailed preference test schedule is listed in Table 1.
Testing preference for both salty and bitter taste was conducted under food and
water-deprived conditions to motivate the animals to drink from the bottles while the test
for sweet taste was carried out under normal conditions to establish partiality of the
animals to said taste quality over simple distilled water. Scheduled food and water
depravation were devised in reference to previous studies dealing with the interaction of
hunger and thirst (Oatley & Tonge, 1969; Bolles, 1961; Finger & Reid, 1952), the effect of
aging to taste sensitivity (Inui-Yamamoto et al., 2017), and to maximize our ability to
measure animals’ response within the capacity of the available equipment. Hunger
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WATER

WATER
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Figure 1 Schematic diagram for taste behavior testing before and after chorda tympani transection. Schematic diagram for taste behavior
testing. Prior to the bilateral transection of the chorda tympani nerve, all animals are acclimatized and trained using a two-bottle setup for 1 week.
Baseline taste preference and aversion is established using three taste qualities: sweet (sucrose solution-preferred), salty (NaCl solution-avoided), and
bitter (denatonium solution-avoided). Upon completing the baseline reading, animals undergo either sham or bilateral chorda tympani transection.
After recovery, the taste preference and aversion is measured again after 7, 14, and 24 days post-transection using the same randomized two-bottle
testing method. Full-size DOI: 10.7717/peerj.14455/fig-1
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Table 1 Schedule of two bottle training and testing for determining taste preference and aversion in rats.

DAYS Training/Test condition Animal condition during
testing

3 Acclimatization � Food and water provided ad libitum Non–deprived

1 Two Bottle Training
(condition animals to drink from two bottles)

� Rats are transferred into the Lickometer setup

� Test is run for 1 h per group.

� An empty bottle and one water filled bottle is provided,
position is switched every 15 min

� Food and water is removed overnight

Non–deprived

1 Two Bottle Training
(condition animals to drink from two bottles)

� Rats are transferred into the Lickometer setup

� Test is run for 1 h per group.

� An empty bottle and one water filled bottle is provided,
position is switched every 15 min

� Food and water is removed overnight

Deprived

1 Two Bottle Training
(condition animals to drink from two bottles)

� Rats are transferred into the Lickometer setup

� Test is run for 1 h per group

� An empty bottle and one water filled bottle is provided,
position is switched every 15 min

� Food and water is provided after testing

Deprived

1 Two Bottle Training
(condition animals to drink from two bottles)

� Rats are transferred into the Lickometer setup

� Test is run for 1 h per group

� An empty bottle and one water filled bottle is provided,
position is switched every 15 min

� Food and water is provided after testing

Deprived

2 Rest � Food and water provided ad libitum Non–deprived

1 Two Bottle preference test
(Preferred taste quality)

� Sweet taste preference testing

� Test is run for 1 h per group

� Sucrose solution is provided as tastant

� One bottle with tastant and one bottle with water is
provided, position is switched every 15 min

� Food and water is removed overnight

Non–deprived

1 Two Bottle preference test
(Aversive taste quality)

� Bitter taste preference testing

� Denatonium solution is provided as tastant

� One bottle with tastant and 1 bottle with water is
provided, position is switched every 15 min

� Food and water is removed overnight

Deprived

1 Two Bottle preference test
(Aversive taste quality)

� Salty taste preference testing

� NaCl solution is provided as tastant

� One bottle with tastant and one bottle with water is
provided, position is switched every 15 min

� Food and water is provided after testing

Deprived

1 Rest � Food and water provided ad libitum Non–deprived
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potentiated thirst motivating the animal to drink more than the usual amount to replenish
the water deficit (Oatley & Tonge, 1969). However prolonged hunger eventually induces
self-imposed restrictions to both food and water intake (Bolles, 1961; Finger & Reid, 1952),
thus brief access to food was provided during the testing period to mitigate this effect
during subsequent testing of aversive tastants. All animals underwent one trial of taste
preference testing per taste quality on separate days. Each trial consisted of four rounds
with an allotted time of 15 min each. Bottles containing either the tastant or distilled water
were placed in the first and last lickometer slot and for each test round, the position of each
bottle was switched. Food pellets were provided at the third round of each trial to further
motivate the animal in drinking from the test bottles. To eliminate the possible effect of
conditioned response due to routine lickometer testing, animals were not tested in the
same cage during each behavioral test. Bottles of the tastant and water were also switched
in each setup. After the test, the animals were returned to their housing cage and had an
additional 1 h to drink before subsequent food and water deprivation in preparation for
next-day testing (for aversive tastants). The total number of licks on both the tastant bottle
and the water bottle was recorded using the Scurry Activity Monitoring Software (Model
86165 Lafayette Instrument, Sagamore, IN, USA). Taste preference was calculated based
on the following formula:

Preference % ¼ Nt

Nt þNw

� �
100%

where: Nt = number of lick on tastant bottle
Nw = number of licks on water bottle.

Bilateral chorda tympani transection
Upon completion of the preliminary test establishing behavioral taste preference, each cage
was randomly selected for either chorda tympani transection or sham operation (control
group). As previously stated, the animal subjects were categorized into either the CTX or
the SHAM group and divided based on tissue sampling periods. Eighteen rats underwent
bilateral chorda tympani transection (CTX) while the remaining eighteen were
sham-operated (SHAM). For this procedure, the animals were weighed and anesthetized
via intramuscular injection of Zoletil (15 mg/kg, VIRBAC) and Rompun (5 mg/kg,
BAYER) at a ratio of 3:2. Upon complete anesthetic induction, fur was removed by shaving
and subsequent application of hair removal cream on the ventral region of the neck.
The bare skin was then cleaned with 70% ethanol and disinfected with a povidone-iodine
solution. A 1.5 cm full-thickness skin incision was made along the midline of the neck to
expose the underlying tissues. The ventromedial portion of both masseter muscles,
flanking the centrally located anterior digastric muscle, are identified and used as
landmarks for approaching the space between the inner side of the jaw and the tongue.
Fig. 2 shows the procedure conducted on the left side of the animal. Blunt dissection was
performed between the digastric muscle and the left masseter muscle to reveal a tight space
within the inner side of the jaw where the inferior alveolar nerve (IAN) can be located
(Fig. 2C). Hook retractors were used to maintain surgical access. Using the IAN as a
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landmark, a deeper anterolateral dissection was done until the lingual nerve was seen.
The lingual nerve was then traced dorsally (deeper into the tissue space) until the
anterolateral branch of the chorda tympani was identified (Fig. 2D) The chorda tympani
was transected using micro-iris scissors by creating a very short segmental cut proximal to
the branching from the lingual nerve. The same procedure was then conducted on the
opposite side of the animal after which the retractors were removed, surrounding tissues
were repositioned, and any excessive bleeding was suppressed using sterile surgical gauze
until hemostasis was achieved. The incision was then sutured using a 5-0 monofilament
suture followed by disinfection using a povidone-iodine solution. A similar procedure was
performed for sham-operated animals just up to the extent of blunt dissection after which
the incision was promptly closed. The animals were allowed to recover with food and water
before taste preference testing. For clear discussion, the sham-operated group will now be
referred to as SHAM and the chorda tympani transected group will be referred to as CTX.

Microscopy of taste buds
To determine the effect of chorda tympani transection on the innervation, morphology,
and expression of taste receptors on the taste buds, a total of 12 animals (CTX = 6 and
HAM = 6) were sacrificed using carbon dioxide inhalation overdose at 7, 14, and 28 days
post transection. The anterior two-thirds of the tongue was cut from each animal and
frozen in preparation for either cryosectioning or protein and gene expression analysis.
Cryosections were prepared by embedding frozen tongue tissue samples (n = 3 per
category per time point) in optimal cutting temperature compound and cutting 10 um
thick sections using a cryostat (Leica CM 1860, Leica Biosystems, Wetzlar, Germany).
Prior to fluorescent staining, tissue sections were immersed in 4% paraformaldehyde for

Figure 2 Procedure for chorda tympani transection. An incision is made along the midline of the ventral region of the animal’s jaw (A).
Underlying tissues such as the masseter muscle, digastric muscle, and submandibular glands are located (B). The inferior alveolar nerve (IAN) is then
carefully exposed by blunt dissection of the space between the masseter and digastric muscle (C). The lingual nerve is then located deeper within the
mediolateral mandibular space used as a tangent landmark (D). Chorda tympani is then traced as an immediate bifurcation of the lingual nerve
within the deeper mediolateral mandibular space. The chorda tympani nerve is transected without damaging the lingual nerve (E).

Full-size DOI: 10.7717/peerj.14455/fig-2
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fixation, permeabilized using 0.1% Triton-X100 in PBS, and blocked using 3% bovine
serum albumin. The sections were then incubated with rabbit anti-cytokeratin 8 (CK8)
antibody (AB59400; Abcam, Cambridge, UK) diluted at 1:1000 and chicken anti-
neurofilament H (NF) antibody (AB5539; Millipore, Burlington, MA, USA) diluted at
1:500 in preparation for secondary fluorescent antibody tagging using Alexa Fluor 555
donkey anti-rabbit IgG (A31572; Invitrogen, Waltham, MA, USA) and Alexa Fluor 488
goat-anti chicken IgY (A11039; Life Technologies, Carlsbad, CA, USA), respectively, and
was followed by nuclear counterstaining using DAPI. Fluorescently stained sections were
then viewed, and micrographs were taken at relevant magnification using Fluoview FV
3000 (Olympus, Tokyo, Japan).

Protein expression analyses of taste receptors
Three samples of extracted tongue tissues from each categorical group at the
aforementioned endpoints were homogenized in preparation for protein and RNA
isolation for western blotting and RT-PCR analysis. Using TRIzol� Reagent
(ThermoFisher Scientific Co., Waltham, MA, USA), protein and RNA were extracted
from tongue tissue samples based on performing sequential precipitation. The protein
concentration from extracted tissues was quantified using a protein assay kit. Equal
amounts of protein extract were separated using SDS PAGE which was then transferred to
a polyvinylidene difluoride membrane. The transfer membrane was then blocked using 5%
nonfat milk and was successively incubated with primary antibodies for taste receptor type
1 member 2 and 3 (T1R2 and T1R3), Sonic hedgehog (SHH), gustducin alpha-3 chain
(GNAT3), and transient receptor potential melastatin 5 (TRPM5) at 4 �C overnight
followed by incubation with respective secondary antibodies at room temperature.
The blots were then washed with tris-buffered saline with 0.1% Tween and visualized using
electrochemiluminescence reagent. Quantification of the intensities of the visualized blots
using ChemiDoc MP System (Bio-Rad Laboratories, Hercules, CA, USA). All readings
were normalized using β-actin as a reference.

Statistical analysis
All data and values are reported as mean with respective standard deviation. Data values
were compiled in GraphPad Prism version 8.4.3 for Windows (GraphPad Software, San
Diego, CA, USA). There were no criteria for the inclusion/exclusion of animals during the
experiment aside from maintaining the aforementioned grouping. Analyses were carried
out using the Brown-Forsythe test to determine homogeneity of variance and Welch
ANOVA tests followed by a Dunnet T3 post hoc test for multiple comparisons of the taste
preference gathered from six rats from each categorized group (SHAM/CTX) paired per
observation period (7 days/14 days/28 days). Relative protein expression from the western
blot was gathered from three gel plots for each categorized group per observation point
and was analyzed using unpaired t-tests with or without Welch’s correction for unequal
variance. The p-value ≤ 0.05 were considered significant for all statistical analyses. Data are
available within the article and the Supplemental Materials. Effect size between paired
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SHAM and CTX groups based on respective observation periods were also calculated was
on Cohen’s d formula.

RESULTS
Alteration of taste behavior post Chorda tympani transection
For this study, an animal model was used to determine the effect of chorda tympani
transection on the perception of sweet, salty, and bitter taste quality. A total of 36 rats were
used, half of which underwent bilateral chorda tympani transection while the remaining
half was designated as the sham/control group. All animals underwent behavioral taste
testing to establish a baseline reference for taste preference for sweet, salty, and bitter tastes
before the surgical procedures. It should be noted that formulations of the tastant solutions
are based on minimum concentrations for preference or aversion. Figure 3 shows the
violin plot for each taste quality before and after the sham operation or chorda tympani
transection. Results indicate that among the three taste qualities, preference for sucrose has
been drastically modified when tested 7 days in the CTX group compared to SHAM
(Fig. 3A, p-value < 0.0001). This change in preference in the CTX groups was further
expressed when testing taste preference at 14 days (p-value < 0.0001) but has somehow
recovered by 28 days after the operation (Fig. 3A, p-value = 0.0754). While the mean values
of sweet taste preference of the CTX group showed a recovering trend, the data indicated a
significantly wider distribution compared to the sham group. Effect size between the
SHAM and CTX groups at 7 and 14, and 28 days were calculated to be a 1.217 and 1.0315,

Figure 3 Behavior preference for sweet, salty, and bitter tastes of CTX and SHAM group at 7, 14, and 28 days after chorda tympani
transection. Results of the behavioral test based on the two-bottle preference tests. Based on the data obtained from the lickometer tests, among
the three taste qualities, the preference of the CTX group for sweet taste (A) was significantly altered 7 days after the procedure (Fig. 3A, p
value = 0.1409) after the procedure. Preference for bitter taste (B) and salty taste (C) remained unaltered after chorda tympani transection (��� = p
value < 0.001, ns = non-significant, M = mean, SEM = standard error of mean). Full-size DOI: 10.7717/peerj.14455/fig-3
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respectively. As for the bitter (Fig. 3B) and salty (Fig. 3C) taste preferences, pair wise
comparison conducted through the post-hoc test resulted to no significant difference
between SHAM and CTX groups in all specified observation periods.

Immunostaining for mature taste cells and innervation
To validate the effect of chorda tympani transection on the taste buds, cryosections of the
tongue tissue extracted after 7, 14, and 28 days post-transection were immunofluorescent
stained for cytokeratin 8 and neurofilament (Fig. 4). Cytokeratin 8 was used to identify
mature taste cells within taste buds while neurofilament tagged the innervation for each
tastebud. Examination of the micrographs taken from confocal microscopy indicates
a significant reduction of CK8 and NF in the CTX group at 7 days evidenced by the
reduced fluorescent signature and total morphology relative to the SHAM samples. The
fluorescence signature of both CK8 and NF gradually improved after 14 and 28 days post-
transection. Both the CTX and the SHAM group showed gradual changes in taste bud
morphology when comparing the taste bud shape and size across three observation points.
Taste buds in the SHAM group appear smaller and more circular at 7 days when compared
to 28 days which appear larger and more elongated. Taste buds in CTX samples at 7 days
post transection show a similar circular shape but with a marked reduction of CK8
expression and slight disruption of NF when compared to taste buds from the SHAM

Figure 4 Immunofluorescent staining of taste buds from SHAM and CTX rat tounge. Representative
confocal micrographs of fungiform papilla lining the anterior portion of the rat tongue stained for
neurofilament (NF), cytokeratin 8 (CK8), and nucleus (DAPI).

Full-size DOI: 10.7717/peerj.14455/fig-4
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group at the same time point. Elongation and loose cellular arrangement of the taste bud
appears to be more evident at 14 days in CTX group compared to the SHAM group. Taste
buds in the SHAM group appear to be more compact and larger than CTX group 28 days
after the surgery.

Expression of taste receptor and transduction proteins
A survey of taste receptor proteins was also conducted to compare the CTX and SHAM
groups up to 28 days after chorda tympani transection. Fig. 5A shows the western blot
bands generated from protein extracts from SHAM and CTX animals at 7, 14, and 28 days
after chorda tympani transection (n = 3). Analysis of the quantified band intensities shows
that only SHH (p-value = 0.0222) was significantly reduced a week after chorda tympani
transection. GNAT3 (p-value = 0.3646) expression appeared to be also lowered in the CTX
group compared to the SHAM group but did not yield as statistically significant. Analysis
of the protein expression 2 weeks after chorda tympani transection revealed that T1R2 (p-
value = 0.0218) have also been lowered together with SHH (p-value = 0.0373) while all

Figure 5 Western blot images and the relative protein expression normalized to β-actin of taste
receptor and transduction proteins. Representative western blot images (A) and the relative protein
expression normalized to β-actin (B). Analysis shows that only SHH (p-value = 0.0222) had a reduced
expression 7 days after chorda tympani transection. Expression of T1R2 (p-value = 0.0218) has also been
significantly lowered together with SHH (p-value = 0.0373). Twenty-eight days after transection only
T1R1 (p-value = 0.0179) showed significant reduction while all other proteins appear to match in
expression between SHAM and CTX groups (� = p value < 0.05).

Full-size DOI: 10.7717/peerj.14455/fig-5
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other proteins such as T1R3 (p-value = 0.5335), GNAT3 (p-value = 0.7325), and TRPM5
(p-value = 0.2200) showed no significant difference between the SHAM group and the
CTX group. This trend was continued towards examination of protein expression
twenty-eight days after transection in which both T1R2 and SHH (p-value = 0.1498)
showed lowered relative expression but only T1R2 (p-value = 0.0179) was significantly
reduced while all other proteins appear to match in expression between SHAM and CTX
groups. Expression of TRPM5 was relatively inconsistent in the CTX group at 7 and 14
days but was not significantly different from the sham group across all observation periods.
Among all the proteins surveyed, only T1R2 and SHH showed persistent lowered
expression starting from 14 days up to 28 days post transection.

DISCUSSION
Several studies have been done to determine the effect of CT transection to taste
perception. These studies have aided in establishing key points such as age-related
plasticity of the CT nerve and its collaterals (Reddaway et al., 2012; Corson & Hill, 2011);
the effect of denervation on the anatomical landscape of the tongue (Li et al., 2015; Sollars,
2005; Sollars & Bernstein, 2000; Sollars, Smith & Hill, 2002); and corroborated the
importance of CT nerve in instituting taste discrimination (Pittman et al., 2007; Stratford,
Curtis & Contreras, 2006; Martin & Sollars, 2015; Kopka, Geran & Spector, 2000; Golden
et al., 2011; Spector & Grill, 1992). However, the majority of the observations have been
focused on the effect of anatomical changes but have a minimal biomolecular basis for
altered taste preference.

This study focuses on the effect of CT nerve transection on the gene and protein
expression of taste receptors in the tongue. In this study, three taste qualities were selected
tested based on previously surveyed species-specific preferences (Tordoff, Alarcon &
Lawler, 2008). The sweet taste was selected as a preferred taste quality with no known
maximum aversive concentration. The bitter was selected mainly as an aversive taste
quality with no known minimal preferred concentration. The salty taste was selected as a
middle ground taste quality with known concentrations for aversion and preference.
Previous studies on different types of taste cells have shown that both sweet and bitter taste
qualities are detected by type 2 taste cells via G protein-coupled receptors (GPCR) (Hoon
et al., 1999; Adler et al., 2000; Zhang et al., 2003; Chandrashekar et al., 2000; Zhao et al.,
2003). Carbohydrates and sweet-tasting proteins have been found to interact with several
binding sites of GPCR T1R2/T1R3 for the perception of the sweet taste quality (DuBois,
2016; Banik & Medler, 2021). However, bitter taste is primarily associated with GPCR T2R
for detection (Zhang et al., 2003; Wong, Gannon & Margolskee, 1996). Salt taste detection
for sodium chloride is based on the presence of ions that could interact with epithelial
sodium channels ENac and amiloride-sensitive cells (for preferred low concentrations)
(Vandenbeuch, Clapp & Kinnamon, 2008; Menon & Chen, 2019; Roitman & Bernstein,
1999; Chandrashekar et al., 2010) or amiloride-insensitive cells (for aversive high
concentrations) (Lu, Breza & Contreras, 2016; Roebber, Roper & Chaudhari, 2019; Gannon
& Contreras, 1995).
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The current study has been designed to determine a biomolecular basis for a shift in
taste preference through the analysis of the expression of relevant taste receptor proteins as
an effect of CT transection. This was carried out by pairing the protein receptor analysis
with a time-matched behavioral taste preference test. Interpretation of change in taste
perception is based on the shift of behavioral preference since all taste solutions were
formulated at minimum concentrations for detection relevant to taste preference.

The short-term two-bottle test was designed to establish the preference of the test
animal whilst minimizing the potential post-oral effect of ingesting large amounts of taste
solutions (Sclafani, 1988) or possible conditioned preference due to prolonged exposure.
(Kimbrough & Houpt, 2019) Thus, any change in preference in the CTX group compared
to the sham group could indicate an alteration of perception to a specific tastant brought
about by the change in expression of taste receptors after denervation.

Both the salty and bitter taste preference showed no change over the 28 days post-
transection. Even though several studies have noted the effect of CT transection on salt
taste perception (Kopka, Geran & Spector, 2000; Golden et al., 2011; Spector & Grill, 1992),
the current results do not corroborate previous findings (Krimm et al., 1987) in which
sucrose reception was not affected. The method of measuring the behavioral response to
taste can be a possible source of discrepancy between the previous (Krimm et al., 1987;
Geran & Travers, 2011) and the current study. Other studies conducted a brief-access test
(Krimm et al., 1987) while another conducted a lickometer test with multiple
concentrations. The current study is based on a combined brief-access test and two-bottle
test operated within the context of minimal concentration of preferred or avoided taste
quality. The responsiveness of the animals to the minimal aversive concentrations of NaCl
and denatonium could be explained by the remaining innervations. Previous research
found that the glossopharyngeal nerve (Geran & Travers, 2011), which innervates the
posterior tongue is sensitive to bitter taste. In addition, both the superficial petrosal nerve
(Sollars & Hill, 1998) and glossopharyngeal nerve (Danilova & Hellekant, 2003) were also
found to be responsive to high concentrations of salt. Since NaCl was designated at a
minimal concentration for aversion, which is well above the appetitive range, the animal
was still responsive to this concentration. While the results of the behavioral preference
test for satly and bitter taste quality may be perceived as a “floor effect”, this is only because
these taste qualities were tested at a single concentration with a known response-aversion.
And although the results of the behavioral tests may also indicate that the NaCl
concentration tested in this study was more aversive than that of the denatonium, it should
be noted that these taste qualities were not tested against each other. Thus a direct
comparison between these taste quality would not be suitable under the current
circumstances.

Among the three taste qualities tested, only the sweet taste preference is significantly
affected by the CT nerve transection. The current results indicated that the CTX group had
difficulty discerning between pure water and the lowest preferred concentration of sucrose.
Further examination of the behavioral data shows that the sweet taste preference shows
gradual renewal (Fig. 3) possibly due to the recovery of enough taste buds to enable the
detection of sweet taste at its known lowest preference concentration for the animal strain.
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These findings are further supported by the results of the taste bud immunofluorescent
staining and protein expression analysis in which expression of T1R3 is relatively
unchanged and the morphology of the taste buds observed in the CTX group have been
shown to correspond to similar developmental changes, albeit trailing behind, with that of
sampled taste buds from the SHAM group. The drastic loss of taste bud volume, visibly
confirmed by CK8 positive staining taste cells (Fig. 4), in the CTX group up to 2 weeks after
the procedure showed gradual improvement over the course of 28 days. These
observations correspond to previous observations on microanatomical changes wherein
both papilla density and volume changed after CT transection (Li et al., 2015; Sollars, 2005;
Sollars & Bernstein, 2000). It should be noted that although previous research showed that
interruption of the chorda tympani nerve results in severely degenerated taste buds over
time (Guagliardo & Hill, 2007; Oakley et al., 1993), approximately 70% of residual taste
buds (categorized as atrophic or remnant) in rats can still be present up to three weeks post
denervation (Oakley et al., 1993). In addition, combined transection of chorda tympani
and lingual nerve results to a more severe papilla and taste bud degeneration while
interruption of the chorda tympani alone actually allowed for recovery of taste buds after
some time (St John, Markison & Spector, 1995; Segerstad, Hellekant & Farbman, 1989).
This suggests that non-gustatory collateral such as the lingual nerve could maintain and
support remaining taste buds and fungiform papilla albeit to a limited extent (Segerstad,
Hellekant & Farbman, 1989). Thus, changes in papillary structure and microanatomy
could directly affect the taste detection sensitivity which would consequently alter the level
of preference when presented with tastant concentrations at preference thresholds.

Considering that the behavioral tests only yielded significant results upon testing the
sweet taste, it was determined that receptor proteins for this taste quality became the focus
of observing the protein expression. The survey of the sweet taste receptors (T1R2 and
T1R3) and some transduction proteins (GNAT3 and TRMP5) support the change in sweet
taste perception brought about by the CT nerve transection. Expression of T1R2 showed
consistently lowered protein expression in the CTX group compared to the SHAM group
until the 28th day of observation. On the other hand, the T1R3 taste receptor, GNAT3, and
TRPM5 taste transduction proteins were relatively unchanged in the CTX group compared
to the SHAM group across all observation periods. Considering that T1R2 and T1R3 are
coupled G-protein receptors for sweet taste detection while GNAT3 and TRPM5 are the
downstream components for basic taste signaling. It follows that disruptions in expression
levels in any of these proteins could result in altered sweet taste perception potentially
altering preference. Accordingly, any recovery of protein expression related to either
receptors or downstream signal components would positively affect re-sensitization for the
potentially recover established preference for the given taste quality. The fact that T1R3 is
primarily receptive to binding with sucrose while T1R2 effectively binds to several
sweeteners (DuBois, 2016; Zukerman et al., 2009; Tinti & Nofre, 1991), thus maintenance
of T1R3 expression could aid in adaptive re-sensitization to sucrose solution which would
show on the taste preference testing. Sonic hedgehog, a protein that has been found to a
play key role in the maintenance of taste buds and taste sensation (Mistretta & Kumari,
2019; Castillo-Azofeifa et al., 2017; Ermilov et al., 2016;Mistretta & Kumari, 2017), was also
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observed about the possible effect of chorda tympani transection to taste bud development
and maintenance. Lowered expression of SHH was evident in the CTX group throughout
the observation periods. This noticeable change in SHH protein expression likewise
coincides with the findings in the confocal micrographs in which the taste bud in the CTX
has a prominent size reduction compared to the SHAM group across all observed time
points. However, despite consistently observing lowered levels of SHH and T1R2 protein,
the CTX group was still capable of recovering taste buds and sweet taste preference.
Reduced SSH expression could result in further microanatomical and biomolecular
changes but are unfortunately beyond the scope of the current investigation.

The current study reveals that the changes elicited by the chorda tympani transection
are not limited to the micro-anatomical changes in the tongue papilla and terminal field
volume of the NST as evidenced by the analyses of taste receptor and taste transduction
protein expression. This is the first account of establishing a possible biomolecular basis for
the altered taste preference brought about by CT transection in relation to the expression
of taste receptor proteins. The analyses of the protein expression for both the receptors
(T1R2/T1R3) and the signaling molecules (GNAT3 and TRPM5) parallel the observable
recovery for sweet taste preference indicative of functional regeneration or possible
compensatory mechanism by the remaining collateral glossopharyngeal nerve. The current
results somewhat follow the observations of diminished preference for sweet-tasting
compounds in mice that underwent bilateral CT transection (Danilova & Hellekant, 2003).
Previous studies regarding T1R2/T1R3 have revealed that these receptors can also be
found in the gut which enables responsiveness to sweeteners leading to secretion of gut
hormones (Margolskee et al., 2007; Sclafani, 2007). Although it cannot be fully supported
by the current findings, it is also possible that the rebound in sweet taste behavior observed
in this study might be due to post-ingestive effects as reported by other papers (Sclafani,
2001; Spector, 2015). Chorda tympani has also been suggested to potentially operate as a
discriminator of nutritional information effectively modulating preference while the
glossopharyngeal nerve would be responsible for the remaining taste information related
to osmotic regulation and aversive tastes (Tabuchi et al., 1996). Hence, these findings
support the current observations in which bilateral transection primarily affected sweet
taste preference (as a preferred taste) with no apparent effect on avoided tastes such as
bitter and salty. Although considered a key component for taste signaling, earlier studies
have noted the age-related plasticity of the chorda-tympani and its co-laterals. Severance of
the CT nerve in rats at P5 resulted did not permit regeneration resulting in altered
anatomical development while a similar procedure conducted on adult rats eventually
resulted in functional regeneration (Sollars, 2005; Sollars & Bernstein, 2000; Martin et al.,
2019).

Nevertheless, it should be noted that the current investigation was limited by the
following: it was performed at the animal age at which neural plasticity and functional
regeneration can already be achieved, the number of animals was quite limited, and the
taste qualities tested at threshold concentration for preference were limited to three.
Several factors might also affect the results when testing the behavioral aspect of taste
preference and sensitivity in animal test subjects. Aside from the difference in strain,
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housing conditions, sex, age, and testing method, the initial introduction of taste
components during the development phase of the animal has been found to affect neural
development (Pittman & Contreras, 2002). Thus the authors would like to interpret these
observations with care and consideration. Further detailed investigations regarding umami
taste and T1R3 (as a shared taste receptor protein) sucrose re-sensitization would also be
needed to verify and elucidate the process of taste preference recovery following CT
transection.

CONCLUSIONS
In conclusion, this study demonstrates the possible correlation between the altered
expression of taste receptor/taste signaling proteins and the change in sweet taste
preference following chorda tympani transection. The change in sweet taste preference
post-denervation can be associated with the disruption in the expression of sweet taste
receptors aside from mere micro-anatomical changes in the tongue tissue. Despite the
sustained downregulation of T1R2 expression, gradual recovery of sweet taste preference
was observed most likely via the improved protein expression of T1R3 and GNAT3.
Preference recovery, as observed in the behavioral test, is possible in denervated animals
although the exact bio-molecular mechanism for the process is yet to be fully elucidated.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the grants of the Dankook Institute of Medicine & Optics
(DIMO) in 2022. This work was supported by the Korea Medical Device Development
Fund grant funded by the Korean government (the Ministry of Science and ICT, the
Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of
Food and Drug Safety) [KMDF_PR_20200901_0027-1711137949], the Korea Health
Technology R&D Project through the Korea Health Industry Development Institute
(KHIDI) funded by the Ministry of Health & Welfare-Republic of Korea [HI20C2088],
the Basic Science Research Program backed by National Research Foundation of
Korea (NRF) funded by the Ministry of Education [NRF-2020R1I1A3072797, NRF-
2020R1A6A1A03043283], and the Leading Foreign Research Institute Recruitment
Program through the National Research Foundation of Korea (NRF) funded by the
Ministry of Science and ICT [NRF-2018K1A4A3A02060572]. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Dankook Institute of Medicine & Optics (DIMO).
Korea Medical Device Development Fund: KMDF_PR_20200901_0027-1711137949.
Korea Health Industry Development Institute (KHIDI): HI20C2088.

Padalhin et al. (2022), PeerJ, DOI 10.7717/peerj.14455 16/21

http://dx.doi.org/10.7717/peerj.14455
https://peerj.com/


National Research Foundation of Korea (NRF): NRF-2020R1I1A3072797,
NRF-2020R1A6A1A03043283 and NRF-2018K1A4A3A02060572.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Andrew Padalhin conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.

� Celine Abueva conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, and approved the final draft.

� So Young Park performed the experiments, prepared figures and/or tables, and approved
the final draft.

� Hyun Seok Ryu performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

� Hayoung Lee performed the experiments, prepared figures and/or tables, and approved
the final draft.

� Jae Il Kim conceived and designed the experiments, authored or reviewed drafts of the
article, and approved the final draft.

� Phil-Sang Chung conceived and designed the experiments, authored or reviewed drafts
of the article, and approved the final draft.

� Seung Hoon Woo conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

Institutional Animal Care and Use Committee at Dankook University.

Data Availability
The following information was supplied regarding data availability:

The raw data contains the gel plots used for the western blot analyses.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14455#supplemental-information.

REFERENCES
Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJP, Zuker CS. 2000. A novel family of

mammalian taste receptors. Cell 100(6):693–702 DOI 10.1016/S0092-8674(00)80705-9.

Banik DD, Medler KF. 2021. Bitter, sweet, and umami signaling in taste cells: it’s not as simple as
we thought. Current Opinion in Physiology 20(Suppl. 1):159–164
DOI 10.1016/j.cophys.2021.01.010.

Bolles RC. 1961. The interaction of hunger and thirst in the rat. Journal of Comparative and
Physiological Psychology 54:580–584 DOI 10.1037/h0044595.

Padalhin et al. (2022), PeerJ, DOI 10.7717/peerj.14455 17/21

http://dx.doi.org/10.7717/peerj.14455#supplemental-information
http://dx.doi.org/10.7717/peerj.14455#supplemental-information
http://dx.doi.org/10.1016/S0092-8674(00)80705-9
http://dx.doi.org/10.1016/j.cophys.2021.01.010
http://dx.doi.org/10.1037/h0044595
http://dx.doi.org/10.7717/peerj.14455
https://peerj.com/


Bonardi JP, da Costa FH, Stabile GAV, Pereira-Stabile CL. 2016. Traumatic dysgeusia, an
unusual complication of facial trauma: a case report. Journal of Oral and Maxillofacial Surgery
74(7):1416–1419 DOI 10.1016/j.joms.2016.01.037.

Cain P, Frank ME, Barry MA. 1996. Recovery of chorda tympani nerve function following injury.
Experimental Neurology 141(2):337–346 DOI 10.1006/exnr.1996.0169.

Castillo-Azofeifa D, Losacco JT, Salcedo E, Golden EJ, Finger TE, Barlow LA. 2017. Sonic
hedgehog from both nerves and epithelium is a key trophic factor for taste bud maintenance.
Development (Cambridge, England) 144(17):3054–3065 DOI 10.1242/dev.150342.

Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJP, Zuker CS. 2010.
The cells and peripheral representation of sodium taste in mice. Nature 464(7286):297–301
DOI 10.1038/nature08783.

Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, Zuker CS, Ryba NJP. 2000.
T2Rs function as bitter taste receptors. Cell 100(6):703–711
DOI 10.1016/S0092-8674(00)80706-0.

Corson SL, Hill DL. 2011. Chorda tympani nerve terminal field maturation and maintenance is
severely altered following changes to gustatory nerve input to the nucleus of the solitary tract.
The Journal of Neuroscience 31(21):7591–7603 DOI 10.1523/JNEUROSCI.0151-11.2011.

Danilova V, Hellekant G. 2003. Comparison of the responses of the chorda tympani and
glossopharyngeal nerves to taste stimuli in C57BL/6J mice. BMC Neuroscience 4(1):5
DOI 10.1186/1471-2202-4-5.

DuBois GE. 2016. Molecular mechanism of sweetness sensation. Physiology & Behavior
164(3):453–463 DOI 10.1016/j.physbeh.2016.03.015.

Ermilov AN, Kumari A, Li L, Joiner AM, Grachtchouk MA, Allen BL, Dlugosz AA,
Mistretta CM, Barsh GS. 2016. Maintenance of taste organs is strictly dependent on epithelial
hedgehog/GLI signaling. PLOS Genetics 12(11):e1006442 DOI 10.1371/journal.pgen.1006442.

Finger FW, Reid LS. 1952. The effect of water deprivation and subsequent satiation upon general
activity in the rat. Journal of Comparative and Physiological Psychology 45(4):368–372
DOI 10.1037/h0058219.

Gannon KS, Contreras RJ. 1995. Sodium intake linked to amiloride-sensitive gustatory
transduction in C57BL/6J and 129/J mice. Physiology & Behavior 57(2):231–239
DOI 10.1016/0031-9384(94)00279-E.

Geran LC, Travers SP. 2011. Glossopharyngeal nerve transection impairs unconditioned
avoidance of diverse bitter stimuli in rats. Behavioral Neuroscience 125(4):519–528
DOI 10.1037/a0023934.

Golden GJ, Ishiwatari Y, Theodorides ML, Bachmanov AA. 2011. Effect of chorda tympani nerve
transection on salt taste perception in mice. Chemical Senses 36(9):811–819
DOI 10.1093/chemse/bjr056.

Guagliardo NA, Hill DL. 2007. Fungiform taste bud degeneration in C57BL/6J mice following
chorda-lingual nerve transection. Journal of Comparative Neurology 504(2):206–216
DOI 10.1002/(ISSN)1096-9861.

Guinand N, Just T, Stow NW, Van HC, Landis BN. 2010. Cutting the chorda tympani: not just a
matter of taste. The Journal of Laryngology & Otology 124(9):999–1002
DOI 10.1017/S0022215110000733.

HoonMA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS. 1999. Putative mammalian taste
receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell
96(4):541–551 DOI 10.1016/s0092-8674(00)80658-3.

Padalhin et al. (2022), PeerJ, DOI 10.7717/peerj.14455 18/21

http://dx.doi.org/10.1016/j.joms.2016.01.037
http://dx.doi.org/10.1006/exnr.1996.0169
http://dx.doi.org/10.1242/dev.150342
http://dx.doi.org/10.1038/nature08783
http://dx.doi.org/10.1016/S0092-8674(00)80706-0
http://dx.doi.org/10.1523/JNEUROSCI.0151-11.2011
http://dx.doi.org/10.1186/1471-2202-4-5
http://dx.doi.org/10.1016/j.physbeh.2016.03.015
http://dx.doi.org/10.1371/journal.pgen.1006442
http://dx.doi.org/10.1037/h0058219
http://dx.doi.org/10.1016/0031-9384(94)00279-E
http://dx.doi.org/10.1037/a0023934
http://dx.doi.org/10.1093/chemse/bjr056
http://dx.doi.org/10.1002/(ISSN)1096-9861
http://dx.doi.org/10.1017/S0022215110000733
http://dx.doi.org/10.1016/s0092-8674(00)80658-3
http://dx.doi.org/10.7717/peerj.14455
https://peerj.com/


Inui-Yamamoto C, Yamamoto T, Ueda K, Nakatsuka M, Kumabe S, Inui T, Iwai Y. 2017. Taste
preference changes throughout different life stages in male rats. PLOS ONE 12(7):e0181650
DOI 10.1371/journal.pone.0181650.

Kimbrough A, Houpt TA. 2019. Forty-eight hour conditioning produces a robust long lasting
flavor preference in rats. Appetite 139(Suppl 1):159–163 DOI 10.1016/j.appet.2019.04.023.

Kopka SL, Geran LC, Spector AC. 2000. Functional status of the regenerated chorda tympani
nerve as assessed in a salt taste discrimination task. American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology 278(3):R720–R731
DOI 10.1152/ajpregu.2000.278.3.R720.

Krimm RF, Nejad MS, Smith JC, Miller IJ Jr, Beidler LM. 1987. The effect of bilateral sectioning
of the chorda tympani and the greater superficial petrosal nerves on the sweet taste in the rat.
Physiology & Behavior 41(5):495–501 DOI 10.1016/0031-9384(87)90086-2.

Li Y-K, Yang J-M, Huang Y-B, Ren D-D, Chi F-L. 2015. Shrinkage of ipsilateral taste buds and
hyperplasia of contralateral taste buds following chorda tympani nerve transection. Neural
Regeneration Research 10(6):989–995 DOI 10.4103/1673-5374.158366.

Lu B, Breza JM, Contreras RJ. 2016. Temperature influences chorda tympani nerve responses to
sweet, salty, sour, umami, and bitter stimuli in mice. Chemical Senses 41(9):727–736
DOI 10.1093/chemse/bjw082.

Margolskee RF, Dyer J, Kokrashvili Z, Salmon KSH, Ilegems E, Daly K, Maillet EL, Ninomiya Y,
Mosinger B, Shirazi-Beechey SP. 2007. T1R3 and gustducin in gut sense sugars to regulate
expression of Na+-glucose cotransporter 1. Proceedings of the National Academy of Sciences
104(38):15075–15080 DOI 10.1073/pnas.0706678104.

Martin LJ, Lane AH, Samson KK, Sollars SI. 2019. Regenerative failure following rat neonatal
chorda tympani transection is associated with geniculate ganglion cell loss and terminal field
plasticity in the nucleus of the solitary tract. Neuroscience 402:66–77
DOI 10.1016/j.neuroscience.2019.01.011.

Martin LJ, Sollars SI. 2015. Long-term alterations in peripheral taste responses to NaCl in adult
rats following neonatal chorda tympani transection. Chemical Senses 40(2):97–108
DOI 10.1093/chemse/bju063.

Meng L, Huang T, Sun C, Hill DL, Krimm R. 2017. BDNF is required for taste axon regeneration
following unilateral chorda tympani nerve section. Experimental Neurology 293(Suppl. 1):27–42
DOI 10.1016/j.expneurol.2017.03.016.

Menon V, Chen Y-CD. 2019. Commentary: the role of the anion in salt (NaCl) detection by mouse
taste buds. Frontiers in Cellular Neuroscience 13:987 DOI 10.3389/fncel.2019.00502.

Mistretta CM, Kumari A. 2017. Tongue and taste organ biology and function: homeostasis
maintained by hedgehog signaling. Annual Review of Physiology 79(1):335–356
DOI 10.1146/annurev-physiol-022516-034202.

Mistretta CM, Kumari A. 2019. Hedgehog signaling regulates taste organs and oral sensation:
distinctive roles in the epithelium, stroma, and innervation. International Journal of Molecular
Sciences 20(6):1341 DOI 10.3390/ijms20061341.

Mueller CA, Khatib S, Naka A, Temmel AFP, Hummel T. 2008. Clinical assessment of gustatory
function before and after middle ear surgery: a prospective study with a two-year follow-up
period. Annals of Otology, Rhinology & Laryngology 117(10):769–773
DOI 10.1177/000348940811701012.

Oakley B, Lawton A, Riddle DR, Wu LH. 1993. Morphometric and immunocytochemical
assessment of fungiform taste buds after interruption of the chorda-lingual nerve. Microscopy
Research and Technique 26(3):187–195 DOI 10.1002/(ISSN)1097-0029.

Padalhin et al. (2022), PeerJ, DOI 10.7717/peerj.14455 19/21

http://dx.doi.org/10.1371/journal.pone.0181650
http://dx.doi.org/10.1016/j.appet.2019.04.023
http://dx.doi.org/10.1152/ajpregu.2000.278.3.R720
http://dx.doi.org/10.1016/0031-9384(87)90086-2
http://dx.doi.org/10.4103/1673-5374.158366
http://dx.doi.org/10.1093/chemse/bjw082
http://dx.doi.org/10.1073/pnas.0706678104
http://dx.doi.org/10.1016/j.neuroscience.2019.01.011
http://dx.doi.org/10.1093/chemse/bju063
http://dx.doi.org/10.1016/j.expneurol.2017.03.016
http://dx.doi.org/10.3389/fncel.2019.00502
http://dx.doi.org/10.1146/annurev-physiol-022516-034202
http://dx.doi.org/10.3390/ijms20061341
http://dx.doi.org/10.1177/000348940811701012
http://dx.doi.org/10.1002/(ISSN)1097-0029
http://dx.doi.org/10.7717/peerj.14455
https://peerj.com/


Oatley K, Tonge DA. 1969. The effect of hunger on water intake in rats. Quarterly Journal of
Experimental Psychology 21(2):162–171 DOI 10.1080/14640746908400209.

Pittman DW, Contreras RJ. 2002. Dietary NaCl influences the organization of chorda tympani
neurons projecting to the nucleus of the solitary tract in rats. Chemical Senses 27(4):333–341
DOI 10.1093/chemse/27.4.333.

Pittman D, Crawley ME, Corbin CH, Smith KR. 2007. Chorda tympani nerve transection impairs
the gustatory detection of free fatty acids in male and female rats. Brain Research 1151:74–83
DOI 10.1016/j.brainres.2007.03.027.

Reddaway RB, Davidow AW, Deal SL, Hill DL. 2012. Impact of chorda tympani nerve injury on
cell survival, axon maintenance, and morphology of the chorda tympani nerve terminal field in
the nucleus of the solitary tract. Journal of Comparative Neurology 520(11):2395–2413
DOI 10.1002/cne.23044.

Roebber JK, Roper SD, Chaudhari N. 2019. The role of the anion in salt (NaCl) detection by
mouse taste buds. The Journal of Neuroscience 39(32):6224–6232
DOI 10.1523/JNEUROSCI.2367-18.2019.

Roitman MF, Bernstein IL. 1999. Amiloride-sensitive sodium signals and salt appetite: multiple
gustatory pathways. American Journal of Physiology 276(6):R1732–R1738
DOI 10.1152/ajpregu.1999.276.6.R1732.

Sclafani A. 1988. Carbohydrate appetite in rats: taste and postingestive factors. Appetite
11(11S):20–25 DOI 10.1016/S0195-6663(88)80042-4.

Sclafani A. 2001. Post-ingestive positive controls of ingestive behavior. Appetite 36(1):79–83
DOI 10.1006/appe.2000.0370.

Sclafani A. 2007. Sweet taste signaling in the gut. Proceedings of the National Academy of Sciences of
the United States of America 104(38):14887–14888 DOI 10.1073/pnas.0707410104.

Segerstad CH, Hellekant G, Farbman AI. 1989. Changes in number and morphology of
fungiform taste buds in rat after transection of the chorda tympani or chordalingual nerve.
Chemical Senses 14(3):335–348 DOI 10.1093/chemse/14.3.335.

Sollars SI. 2005. Chorda tympani nerve transection at different developmental ages produces
differential effects on taste bud volume and papillae morphology in the rat. Journal of
Neurobiology 64(3):310–320 DOI 10.1002/(ISSN)1097-4695.

Sollars SI, Bernstein IL. 2000. Neonatal chorda tympani transection permanently disrupts
fungiform taste bud and papilla structure in the rat. Physiology & Behavior 69(4–5):439–444
DOI 10.1016/S0031-9384(99)00259-0.

Sollars SI, Hill DL. 1998. Taste responses in the greater superficial petrosal nerve: substantial
sodium salt and amiloride sensitivities demonstrated in two rat strains. Behavioral Neuroscience
112(4):991–1000 DOI 10.1037/0735-7044.112.4.991.

Sollars SI, Smith PC, Hill DL. 2002. Time course of morphological alterations of fungiform
papillae and taste buds following chorda tympani transection in neonatal rats. Journal of
Neurobiology 51(3):223–236 DOI 10.1002/neu.10055.

Spector AC. 2015. Behavioral analyses of taste function and ingestion in rodent models. Physiology
& Behavior 152(Pt B):516–526 DOI 10.1016/j.physbeh.2015.04.026.

Spector AC, Grill HJ. 1992. Salt taste discrimination after bilateral section of the chorda tympani
or glossopharyngeal nerves. American Journal of Physiology 263(1):R169–R176
DOI 10.1152/ajpregu.1992.263.1.R169.

St John SJ, Markison S, Spector AC. 1995. Salt discriminability is related to number of regenerated
taste buds after chorda tympani nerve section in rats. American Journal of Physiology
269(1):R141–R153 DOI 10.1152/ajpregu.1995.269.1.R141.

Padalhin et al. (2022), PeerJ, DOI 10.7717/peerj.14455 20/21

http://dx.doi.org/10.1080/14640746908400209
http://dx.doi.org/10.1093/chemse/27.4.333
http://dx.doi.org/10.1016/j.brainres.2007.03.027
http://dx.doi.org/10.1002/cne.23044
http://dx.doi.org/10.1523/JNEUROSCI.2367-18.2019
http://dx.doi.org/10.1152/ajpregu.1999.276.6.R1732
http://dx.doi.org/10.1016/S0195-6663(88)80042-4
http://dx.doi.org/10.1006/appe.2000.0370
http://dx.doi.org/10.1073/pnas.0707410104
http://dx.doi.org/10.1093/chemse/14.3.335
http://dx.doi.org/10.1002/(ISSN)1097-4695
http://dx.doi.org/10.1016/S0031-9384(99)00259-0
http://dx.doi.org/10.1037/0735-7044.112.4.991
http://dx.doi.org/10.1002/neu.10055
http://dx.doi.org/10.1016/j.physbeh.2015.04.026
http://dx.doi.org/10.1152/ajpregu.1992.263.1.R169
http://dx.doi.org/10.1152/ajpregu.1995.269.1.R141
http://dx.doi.org/10.7717/peerj.14455
https://peerj.com/


Stratford JM, Curtis KS, Contreras RJ. 2006. Chorda tympani nerve transection alters linoleic
acid taste discrimination by male and female rats. Physiology & Behavior 89(3):311–319
DOI 10.1016/j.physbeh.2006.06.009.

Tabuchi E, Uwano T, Kondoh T, Ono T, Torii K. 1996. Contribution of chorda tympani and
glossopharyngeal nerves to taste preferences of rat for amino acids and NaCl. Brain Research
739(1–2):139–155 DOI 10.1016/S0006-8993(96)00807-4.

Tinti J-M, Nofre C. 1991. Design of sweeteners: A rational approach. Washington: ACS
Publications.

Tordoff MG, Alarcon LK, Lawler MP. 2008. Preferences of 14 rat strains for 17 taste compounds.
Physiology & Behavior 95(3):308–332 DOI 10.1016/j.physbeh.2008.06.010.

Vandenbeuch A, Clapp TR, Kinnamon SC. 2008. Amiloride-sensitive channels in type I
fungiform taste cells in mouse. BMC Neuroscience 9(1):1 DOI 10.1186/1471-2202-9-1.

Wong GT, Gannon KS, Margolskee RF. 1996. Transduction of bitter and sweet taste by gustducin.
Nature 381(6585):796–800 DOI 10.1038/381796a0.

Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJP. 2003.
Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling
pathways. Cell 112(3):293–301 DOI 10.1016/S0092-8674(03)00071-0.

Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJP, Zuker CS. 2003. The
receptors for mammalian sweet and umami taste. Cell 115(3):255–266
DOI 10.1016/S0092-8674(03)00844-4.

Zukerman S, Glendinning JI, Margolskee RF, Sclafani A. 2009. T1R3 taste receptor is critical for
sucrose but not Polycose taste. American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology 296(4):R866–R876 DOI 10.1152/ajpregu.90870.2008.

Padalhin et al. (2022), PeerJ, DOI 10.7717/peerj.14455 21/21

http://dx.doi.org/10.1016/j.physbeh.2006.06.009
http://dx.doi.org/10.1016/S0006-8993(96)00807-4
http://dx.doi.org/10.1016/j.physbeh.2008.06.010
http://dx.doi.org/10.1186/1471-2202-9-1
http://dx.doi.org/10.1038/381796a0
http://dx.doi.org/10.1016/S0092-8674(03)00071-0
http://dx.doi.org/10.1016/S0092-8674(03)00844-4
http://dx.doi.org/10.1152/ajpregu.90870.2008
http://dx.doi.org/10.7717/peerj.14455
https://peerj.com/

	Recovery of sweet taste preference in adult rats following bilateral chorda tympani nerve transection
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


