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ABSTRACT
Background: Suitable climate and availability of habitats for roosting, foraging, and
dispersing are critical for the long-term persistence of bat species. The giant noctule
(Nyctalus lasiopterus) represents one of the lesser-known European bats, especially
regarding the environmental factors which shape its distribution.
Methodology:We integrated climate-based ecological niche models with information
about topography and rivers’ network to model weighted suitability for N. lasiopterus
in the western Palearctic. The weighted suitability map was then used to estimate
connectivity among the distinct occurrence localities of N. lasiopterus, as well as from
these latter towards European old-growth forests, under current conditions and
different combinations of future timeframes (2030, 2050, 2070) and shared
socioeconomic pathways (SSPs 3.70 and 5.85).
Results: Current weighted suitability is highest in Andalusia, northern Iberia,
southwestern France, peninsular Italy, coastal Balkans and Anatolia, with dispersed
suitable patches elsewhere. A north-eastward shift of weighted suitability emerges in
the considered future scenarios, especially under SSP 5.85. The major current
ecological corridors for N. lasiopterus are predicted within a ‘belt’ connecting
northern Spain and southwestern France, as well as in the Italian Alps. However,
following changes in weighted suitability, connectivity would increase in
central-eastern Europe in the future. The bioclimatic niche of the western
N. lasiopterus populations does not overlap with those of the central and eastern
ones, and it only overlaps with climatic conditions characterizing old-growth forests
in western Europe.
Conclusions: The outcomes of our analyses would help in designing specific
conservation measures for the distinct groups of giant noctule populations, favoring
the possibility of range expansion and movement towards forested habitats.
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INTRODUCTION
Climate is a critical limiting factor for most species (Root, 1988; Buckley & Jetz, 2007;
Sexton et al., 2009; Wiens, 2011), determining the extent of suitable habitats as well as the
possibility of range expansion at both regional (Iannella, D’Alessandro & Biondi, 2018;
Iannella et al., 2019; Jamwal et al., 2021) and global (Albouy et al., 2020; Barreto et al.,
2021) scales. In the context of increasingly rapid global warming (IPCC, 2021), climate
influences on the broad-scale distribution of vertebrate species are predicted to possibly
exceed the effects of land-use changes in the next decades (Newbold, 2018).

Bats (Chiroptera) represent one of the most diversified and widespread mammal groups
(Simmons, 2005), and the possible impacts of climate change on their distribution,
phenology, and population viability has recently gained attention (Rebelo, Tarroso & Jones,
2010; Reusch et al., 2019; Di Gregorio, Iannella & Biondi, 2021; Haest et al., 2021; Smeraldo
et al., 2021). Indeed, their sensitivity to environmental stressors and the low reproductive
rate of most species make these long-lived mammals particularly exposed to population
declines as environmental conditions change (Jones et al., 2009; Reusch et al., 2019).
Moreover, since bats play key ecological roles such as populations control on insects,
dispersal of plant seeds and pollination (Galindo-González, Guevara & Sosa, 2000;
Medellín, Equihua & Amin, 2000; Russo & Jones, 2003; Cleveland et al., 2006), they are
being increasingly targeted in biodiversity conservation planning (Bellamy, Scott &
Altringham, 2013; Mendes et al., 2017; Ducci et al., 2019).

The giant noctule, Nyctalus lasiopterus (Schreber, 1780), is the largest European bat
species and one of the rarest (Popa-Lisseanu et al., 2008). Its currently fragmented
distribution in the western Palearctic includes circum-Mediterranean, Balkans, and
central/eastern European countries (Alcaldé, Juste & Paunović, 2016). Despite occurring in
several countries, the giant noctule is nowadays listed as ‘Vulnerable’ within the IUCN Red
List (Alcaldé, Juste & Paunović, 2016) under the A4c (i.e., populations reduction) and C2a
(i) (i.e., fragmentation among several sub-populations) criteria. Indeed, N. lasiopterus is
strongly dependent upon forest ecosystems as it uses hollows in broadleaved, and
occasionally coniferous, mature trees for roosting (Estok, Gombkötő & Cserkesz, 2007;
Popa-Lisseanu et al., 2008; Crucitti, 2011; Alcaldé, Juste & Paunović, 2016). Old-growth
forests are particularly likely to represent fundamental habitats for this species as they
usually host several cavities in standing dead trunks. The distribution of the known
European old-growth forest stretches, as well as of the areas potentially hosting unmapped
patches, is reported in Sabatini et al. (2018): old-growth forests seem to cover about 0.25%
of the European land territory, and they are mainly clustered in Fennoscandia, the
Carpathians and the Balkans. Despite their invaluable importance in terms of hosted
biodiversity and related ecosystem services, only about half of the known European
old-growth forests are strictly protected (Sabatini et al., 2018). As deforestation affects
most of the current range of N. lasiopterus, likely shrinking the size of its populations
(Alcaldé, Juste & Paunović, 2016), the preservation of the remaining old-growth forests
stretches may be critical for the long-term persistence of the giant noctule in Europe.
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In this context, the ongoing global warming may pose additional threats to
N. lasiopterus populations. On the one hand, increasing winter temperatures across the
range of the giant noctule could promote the premature end of the hibernation phase,
which in turn would determine higher energy demands during the activity period, possibly
leading to higher mortality rates in case individuals are not able to retrieve sufficient
trophic resources. On the other hand, changing climatic conditions could also indirectly
menace this bat species by producing mismatches between its phenology and that of its
prey. Indeed, N. lasiopterus feeds on insects during the warm season, but its diet shifts to
nocturnally migrating passerine birds in autumn, probably to favour fat accumulation to
sustain wintering (Popa-Lisseanu, Bontadina & Ibáñez, 2009); as climate change has been
proven to contribute both to decreasing insects abundance (Møller, 2020) and to shifts in
migration timings of passerine birds (Sokolov, 2006) in Europe, it represents a crucial
factor to be considered with respect to the conservation of N. lasiopterus.

Notwithstanding, several studies at the local scale have investigated the ecology, spatial
behaviour, and conservation status of N. lasiopterus populations (Estok, Gombkötő &
Cserkesz, 2007; Popa-Lisseanu et al., 2008; Fortuna et al., 2009; Estók, 2010; Naďo et al.,
2019) there is still a lack of comprehensive evidence about the possible effects of the
accelerating climate change on its broad-scale distribution and inter-populations
connectivity. In particular, the presence of ecological corridors allowing individuals to
move across vast land swathes would favor gene flow among populations, an aspect which
is poorly known so far except for a few populations in southern Spain which have been
monitored for long time (Santos et al., 2016).

Here, we gathered up-to-date occurrence records of N. lasiopterus across its full
European range and implemented Ecological Niche Models (ENMs) sensu Peterson &
Soberón (2012) to investigate climate influences on its potential distribution for the current
timeframe as well as for various future scenarios. Moreover, given the above-mentioned
importance of old-growth forests to the giant noctule, we processed the output from the
fitted ENMs using ecological corridors modelling techniques based on circuit theory
(McRae et al., 2008). In this manner, we assessed present and future connectivity (and the
corresponding variations) among N. lasiopterus current populations, as well as between
these latter and the remaining European old-growth forests. We then used evidence from
this set of analyses to provide novel insights about the actual conservation status of the
giant noctule, along with suggestions on how to manage, and possibly extend, the residual
ecological corridors between N. lasiopterus populations and European old-growth forests.

MATERIALS AND METHODS
Study area and spatial data
We selected the western part of the Palearctic region (longitude range: ~−10� ÷ 60� E) as
the study area. This choice was determined by combining information about Nyctalus
lasiopterus current range, as assessed within the IUCN Red List of Threatened Species
(Alcaldé, Juste & Paunović, 2016), with occurrence data from published literature and
online resources.
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In detail, the species’ range spans from Portugal, Spain, France, Italy, Greece, Cyprus,
and Turkey (with few scattered historical records also in northern Morocco and eastern
Libya), to various countries in the Balkans (Slovenia, Croatia, Albania), central and eastern
Europe (Slovakia, Poland, Belarus, Hungary, Bulgaria, Romania, Ukraine, European
Russia), also extending to the Caucasus (Georgia, Azerbaijan) and western Kazakhstan
(Alcaldé, Juste & Paunović, 2016).

The species’ occurrence localities were gathered through literature search and the
Global Biodiversity Information Facility (GBIF, 2022). As for the literature data, we
excluded old records (before the 1970s) and those lacking precise geographic information
about the occurrence locality (e.g., articles generally reporting the presence of the species
within a Region/Province or an entire Protected Area). Moreover, we excluded GBIF
records being duplicates or reporting geographic coordinates with a spatial resolution
coarser than 2.5 arc-min (i.e., ~5 km). These filters permitted to select N. lasyopterus
occurrence records with a spatial and temporal resolution matching that of the predictors
used to fit the ENMs (Sillero & Barbosa, 2020).

To assess the climate-occurrence relationships of N. lasiopterus, we downloaded a set of
19 raster layers representing bioclimatic variables from the Worldclim 2.1 (Fick &
Hijmans, 2017) archive (https://www.worldclim.org/data/index.html, accessed on 9 March
2022), at 2.5 arc-min resolution for the ‘current’ timeframe (i.e., 1970–2000 average
climatic conditions) as well as for three future time horizons (i.e., 2030, 2050, and 2070).
For each future horizon, we downloaded raster data representing predicted climatic
conditions under two Shared Socioeconomic Pathways (SSPs). Specifically, we selected the
SSPs 3.70 and 5.85: the latter predicts an increase in Earth’s radiative forcing of 8.5 W m−2

by 2100, due to lack of international effort in limiting greenhouse gas (GHG) emissions,
and is frequently named ‘business as usual’ scenario (Riahi et al., 2017); differently, SSP
3.70 is usually labelled as ‘middle of the road’ because it predicts an increase in radiative
forcing up to 7.0 W m−2 in the next decades, in a context of “regional rivalry” with limited
global cooperation to mitigate anthropogenic global warming (Riahi et al., 2017).

Predictions from the climate-based ENMs were then refined in a post-modelling phase
(see below) by including topographic and habitat-related predictors. As for topography, we
downloaded a Digital Elevation Model (DEM, 25 m resolution) from the European project
Copernicus repository (https://land.copernicus.eu/imagery-in-situ/eu-dem, accessed on
9 March 2022). The habitat-related variables were instead derived from two distinct
datasets: (i) vector spatial data about European rivers from Grill et al. (2019), from which
we selected the major riverine areas (i.e., RIV_ORD > 4 based on the Strahler stream order,
indicating the level of branching of watercourses in a top-down fashion) as these latter are
used by N. lasiopterus to roost, forage, and move across vast landscapes (Popa-Lisseanu,
Bontadina & Ibáñez, 2009); (ii) occurrence localities of European old-growth forests from
Sabatini et al. (2018). Occurrence localities of old-growth forests were converted from
point to polygon features through a three-step procedure: first, we derived the radius (in
meters) of the considered forest from the corresponding area, reported in hectares in
Sabatini et al. (2018), through the formula

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
old growth forest area � 10000ð Þ=pp

; then, we
used this radius to calculate a buffer around the occurrence point of the forest; finally, we
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refined the obtained polygon by discarding the areas which were encompassed by the
buffer but did not fall into forests’ features of the European Nature Information System
(EUNIS) spatial dataset (100 m resolution), which we downloaded from the European
Environment Agency website (https://www.eea.europa.eu/data-and-maps/data/, accessed
on 9 March 2022). Details about each of the considered old-growth forests, including the
extent of the corresponding refined polygonal feature, is reported in Table S1.

Ecological niche modelling
The ecological niche modelling step was performed in R version 4.1.1 (R Core Team, 2021).
Specifically, we took advantage of the ‘gbm’ R package ver. 2.1.8 (Greenwell, Boehmke &
Cunningham, 2019) to fit the ENMs for N. lasiopterus based on the gradient boosting
model (GBM) algorithm, known also as boosted regression trees (Elith & Graham, 2009).
The choice of this algorithm derived from both the possibility of easily tuning it in the R
environment and to the fact that it emerged as one of the best performing ENM algorithms
with presence-pseudo-absence data, once properly tuned (Elith & Graham, 2009; Hao
et al., 2020).

To feed the GBM algorithm, we selected a subset of the 19 Worldclim bioclimatic
variables by integrating the results of a Variance Inflation Factor analysis (VIF), performed
through the ‘usdm’ R package (Naimi, 2015), with relevant published information about
the species’ ecology (Cerasoli et al., 2021). We chose VIF ≥ 10 as exclusion criterium for the
single variables as it is deemed a suitable threshold to deal with multicollinearity in
Ecological Niche Modelling (Guisan, Thuiller & Zimmermann, 2017). Then, we generated
5,000 pseudo-absences through the ‘disk’ strategy of the ‘BIOMOD_FormatingData’
function of the ‘biomod2’ R package (Thuiller, Georges & Engler, 2016), setting 130 and
250 km as the minimum and maximum radius, respectively. The rationale of this choice
was threefold. First, selecting pseudo-absences within a geographically constrained buffer
permits to avoid them falling either too close to the presence points, which could hamper a
proper model calibration, or too far from them, which could artificially inflate model
performance estimates (VanDerWal et al., 2009). Secondly, GBM was shown to perform
well when pseudo-absences are located one or two degrees away (i.e., roughly 120-to-
240 km within the latitudinal range of our study area) from presence points (Barbet-
Massin et al., 2012). Lastly, including ecological knowledge about the dispersal capability of
the target species usually decreases the risk of pseudo-absences being instead false absences
(Phillips et al., 2009): as the maximum daily foraging transit recorded for N. lasiopterus is
about 130 km (Naďo et al., 2019), selecting pseudo-absences outside this minimum
distance from presence points reduces the risk of labelling as absences localities potentially
used by the giant noctule populations comprised in our occurrence dataset.

Then, we weighted presences and pseudo-absences so that the sum of the weights of the
former equals the one of the latter. Indeed, assigning a same overall weight to presences
and pseudo-absences usually increases ENMs’ predictive performance when the generated
pseudo-absences are far more numerous than the available presences (Cerasoli et al., 2017;
Gouvêa et al., 2020; Thiault et al., 2020).
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To detect the best parametrization for the GBM algorithm, we built three different
matrices containing several combinations of ‘gbm’ parameters and the respective set of
values (for brevity, here we list the ones for the first matrix only: shrinkage = 0.01, 0.1, 0.3;
interaction.depth = 1, 3, 5; n.minobsinnode = 5, 10, 15; bag.fraction = 0.65, 0.8, 1). Then, we
ran as many GBM models as the combinations, increasing the n.trees value from 10,000 to
20,000 but keeping the train.fraction = 0.8 and the cv.folds = 10 fixed. We finally chose the
set of parameters resulting in the lowest root mean square error (RMSE) (Friedman, 2001;
Greenwell, Boehmke & Cunningham, 2019; Cervellini et al., 2021). To investigate possible
spatial autocorrelation in predictions from the optimized GBM model, which could
have resulted for instance from sampling bias affecting N. lasiopterus occurrence data
(Roberts et al., 2017), we fitted an additional set of 10 GBM models, using the tuned set of
parameters. In each of the 10 iterations, the model was fitted on the occurrence data
coupled with a set of 5,000 pseudo-absences randomly selected within the
above-mentioned 130-to-250 km buffer. Then, we computed residuals on the calibration
data for each of these models. Subsequently, we draw a correlogram, through the ‘ncf’ R
package version 1.2-9 (Bjornstad, 2020), showing the variation of spatial autocorrelation,
as represented through the Moran’s index (I), at increasing average inter-point distances.
Finally, we computed the mean and median pairwise Euclidean distances across
N. lasiopterus occurrence data to check whether they fall within the inter-point distance
range not affected by spatial autocorrelation in model predictions, as emerging from the
correlogram.

Successively, we assessed the discrimination power of the optimized GBM model
through the Boyce index (Boyce et al., 2002), which is particularly suited for ENMs built on
presence and pseudo-absence data (Hirzel et al., 2006; Leroy et al., 2018). Moreover, we
measured the relative contribution of the selected variables through the randomization
algorithm implemented in the ‘summary.gbm’ function of the ‘gbm’ R package.

Then, we projected the optimized GBM model across the entire study area for both
current climatic conditions and various future scenarios represented by the combinations
of year (2030, 2050, and 2070) and SSP (SSP3.70 and SSP5.85). We buffered possible
differences in future predictions, which may be observed when comparing ENMs’
projections obtained using distinct General Circulation Models (Stralberg et al., 2015), by
considering three of them, namely the BCC-CSM2-MR (Wu et al., 2019), the IPSL-CM6A-
LR (Boucher et al., 2020) and the MIROC6 (Tatebe et al., 2019). Moreover, we first
assessed the prediction uncertainty due to extrapolation (i.e., the divergence between
environmental conditions at calibration points and those across the projection surface)
through the Multivariate Environmental Similarity Surface (MESS) (Elith & Leathwick,
2009) implemented in the ‘dismo’ R package (Hijmans & Elith, 2016). Then, we used the
resulting MESS maps to implement the Multivariate Environmental Dissimilarity Index
(MEDI). This index weighs ENMs’ projections under different GCMs based on the
corresponding MESS, finally returning a combined weighted projection (Iannella, Cerasoli
& Biondi, 2017). We iterated this process of ENMs’ refinement for each year × SSP
combination. ENMs’ predicted suitability, ranging from 0 to 1 (low-to-high suitability),
was then reclassified on a 1-to-10 scale for post-modelling purposes.
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Post-modelling analyses
To sharpen the ENMs-derived predicted suitability for N. lasiopterus, we applied the
“couple-and-weigh” framework from Iannella et al. (2021a) by integrating spatial
information about elevation and rivers’ network. All the post-modelling processes
subsequently described were performed in ArcGIS Pro 2.9 (ESRI Inc, 2022).

First, we extracted elevation values at occurrence localities from the DEM so as to draw
an elevation preference curve, normalizing the “raw” occurrence frequencies along the
elevation gradient (100-m-wide intervals) to a 1-to-10 scale. Then, we took advantage of
the information about “Connectivity Status Index (CSI)” and “Urbanization (URB)”
present in the rivers’ dataset of Grill et al. (2019) to calculate a connectivity-functionality
index (obtained as CSI�URB), in turn converted to a 1-to-10 scale. In this manner, spatial
data about elevation and rivers’ network had the same scale of values (i.e., 1-to-10) as the
reclassified predicted suitability from the climate-based ENM.

Finally, to obtain current and future weighted suitability maps, we combined the current
and future (MEDI-corrected) predictions from the climate-based ENMs with the
reclassified DEM and rivers layers through the ‘weighted overlay’. In this step, the cell
resolution of the elevation and rivers layers was automatically upscaled to that of the ENM
predictions (i.e., 2.5 arc-min) by the ‘weighted overlay’ tool itself.

Landscape connectivity
Starting from the obtained current and future weighted suitability maps, we calculated
connectivity across the study area through the Circuitscape v.5 (Anantharaman et al.,
2020) package in Julia programming language (Bezanson et al., 2017). Circuitscape, which
was shown to perform well in ecological connectivity studies (Dickson et al., 2019),
applies coupled random walk and circuit theory-based algorithms to model ecological
connectivity across landscapes using a suitability (or friction) map as a base, and
target/destination points (or areas) to be connected as nodes (McRae et al., 2008;
McRae, Shah & Edelman, 2016). Two main node categories were used, with subsequent
sub-algorithms applied, as we assessed both connectivity among N. lasiopterus occurrence
localities and connectivity from these latter towards European old-growth forests. For the
former aim, we applied the ‘pairwise’ approach so that, for each possible pair of occurrence
localities, each term is, iteratively, the source or the destination node (McRae, Shah &
Mohapatra, 2013). For the latter aim, we chose the ‘Advanced’mode to selectN. lasiopterus
current populations as sources and old-growth forests as destination areas (McRae, Shah &
Mohapatra, 2013). Then, we calculated, for both the pairwise and the directional (i.e.,
occurrences-to-forests) case, the Standardized Connectivity Change Index (SCCI) between
current and future scenarios, which ranges from −1 (connectivity loss) to +1 (gain), with 0
representing the connectivity stability (Iannella et al., 2021a, 2021b).

Considering the daily distances that the giant noctule may cover (Naďo et al., 2019), the
connectivity estimates were refined by applying a 130 km buffer around old-growth forests
to highlight those falling within this distance from N. lasiopterus occurrence localities (i.e.,
the forests being easily reachable by the species).
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Bioclimatic niche overlap and gap analysis
To assess possible climatic links between N. lasiopterus populations and old-growth
forests, we used the ‘hyperoverlap’ R package (Brown, Holland & Jordan, 2020).
Specifically, we segregated occurrence localities of N. lasiopterus and old-growth forests in
three “longitude groups” (Longitude ranges: −15�–0�, Western; 0�–15�, Central; 15�–50�

Eastern). Then, we first assessed overlap in bioclimatic space among the three groups of
N. lasiopterus occurrences (42 Support Vectors, SVM kernel = linear), by adapting the
‘hyperoverlap_set’ function (Brown, Holland & Jordan, 2020) to perform the analysis with
more than two groups (modified function reported in Supplemental Material).
Successively, we assessed niche overlap between each longitude group of N. lasiopterus
occurrences and each category of old-growth forests (e.g., ‘Near-virgin Forest’, ‘Long
Untouched Forest’), divided by longitude group as well (104 Support Vectors, SVM
kernel = polynomial, 2nd degree).

Also, for each longitude group we measured: (i) the distance between the N. lasiopterus
occurrence localities and the old-growth forests; (ii) the values of the most contributing
bioclimatic variables (as resulting from ENMs) within the occurrences of both
N. lasiopterus and old-growth forests.

We finally evaluated the protection status of N. lasiopterus by performing a gap analysis
(Scott et al., 1993; Jennings, 2000; Hermoso et al., 2022). Specifically, we assessed the
number of occurrence localities falling within protected areas, as well as their distance
from the easily reachable old-growth forests (i.e., those located within the 130 km buffer).
For this purpose, we downloaded spatial data about the Natura 2000 sites and Nationally
Designated Protected Areas (https://ec.europa.eu/environment/nature/natura2000/data/
index_en.htm and https://www.protectedplanet.net/en/thematic-areas/wdpa?tab=WDPA,
respectively; accessed on 9 March 2022).

RESULTS
Occurrence data and climate-based ecological niche models
At the end of the filtering phase, we selected 260 occurrence localities for Nyctalus
lasiopterus (Fig. 1, Table S2).

Average inter-point distance within the filtered occurrence dataset equaled 1,562 km,
while the median inter-point distance was 1,349 km. The correlogram drawn on residuals
from the 10 additional runs of GBM fitting indicated that spatial autocorrelation was
practically absent (i.e., Moran’s I ~ 0) when inter-point mean distance ranged between
1,250 and 2,000 km (Fig. S1). Thus, we may be quite confident that no spatial bias possibly
hidden in the occurrence dataset noticeably affected the ENM fitting process and the
resulting predictions.

Based on the VIF scores (Table S3), the climatic variables selected for model fitting were
BIO1 (annual mean temperature), BIO2 (mean diurnal temperature range), BIO6
(minimum temperature of the coldest month), BIO12 (annual precipitation), and BIO17
(precipitation of the driest quarter). The lowest RMSE was recorded for the GBM model
fitted with 15,380 trees, interaction.depth = 3, shrinkage = 0.001 and n.minobsinnode = 15,
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which also attained Boyce index = 0.867. The three most contributing variables within this
model were: BIO6 (38.2%), which showed a sigmoid-shaped curve of predicted suitability
peaking at ~−1 �C; BIO1 (18.3%), with suitability linearly decreasing after ~0 �C and BIO2
(17.5%), showing a peak in the 6–12 �C interval (marginal response curves are reported in
Figs. S2A–S2C). Also, BIO6 – BIO2 represented the pair of variables attaining the highest
interaction score (0.385), with highest predicted suitability when BIO6 ≥ 5 �C and BIO2
ranges between 8 �C and 12 �C (Fig. S1D).

Weighted model
After the implementation of the “couple-and-weigh” step, in which the reclassified map
from the optimized climate-based ENM was merged with the reclassified information
about elevation and major rivers, the resulting weighted model predicted highly suitable
areas (i.e., weighted suitability >0.8) within an extent spanning −9� ÷ 35� in longitude and
36� ÷ 47� in latitude (Fig. 1), and scored a Boyce index = 0.903.

Under current conditions, areas in the southern and northern Iberian Peninsula,
southwestern France, peninsular Italy, coastal areas of the Balkans, and coastal Anatolia

Figure 1 Current weighted suitability map. Predicted weighted suitability for Nyctalus lasiopterus (occurrence localities indicated as black dots)
across the study area under current climatic conditions. Full-size DOI: 10.7717/peerj.14446/fig-1
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host the highest weighted suitability (Fig. 1). On the contrary, only small suitable patches
are predicted in central and eastern Europe, corresponding to occurrence clusters.

A general decrease in weighted suitability on the gathered N. lasiopterus occurrence
localities emerged from current to future scenarios, with suitability losses being more
prominent as the time horizon of model projections moves forward (Figs. 2A and 2B).
In 2030, the percent suitability loss compared to current conditions is essentially equal
under the SSP 3.70 (−8.05%) and SSP 5.85 (−7.61%) scenarios. In 2050 and 2070, predicted

Figure 2 Current-to-future suitability shifts. Distribution of difference in weighted suitability for Nyctalus lasiopterus, sampled within the
gathered occurrence localities, between current conditions and each of the three considered future time horizons (2030, 2050, 2070) under the Shared
Socioeconomic Pathways (SSPs) 3.70 (A) and 5.85 (B). Interpolation of N. lasiopterus weighted suitability, measured within occurrence localities,
across the extent of the study area under current conditions (C) and the considered future scenarios (D).

Full-size DOI: 10.7717/peerj.14446/fig-2
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losses are even larger, bringing the total reduction to −17.90% and −17.31%, for the SSP
3.70 and SSP 5.85 scenarios, respectively.

The western areas, in particular those in the range of longitude −8� ÷ 30� and latitude
36� ÷ 48�, will experience the broadest suitability losses, with stronger evidence under the
SSP 5.85 scenario (Figs. 2C and 2D). Our models, on the other hand, predict a significant
increase in suitability in the north-eastern areas, particularly in the range of longitude 26�

÷ 45� and latitude 44� ÷ 60�, especially under the SSP 5.85 scenario, most likely as a result
of possible temperature increases in the northernmost latitudes (Figs. 2C and 2D).

Landscape connectivity among Nyctalus lasiopterus populations
The connectivity analysis among N. lasiopterus occurrence localities, based on the
weighted suitability map obtained under current conditions, resulted in a dense, vast
connection between northeastern Spain and southwestern France, overriding the Pyrenees
(Fig. 3A). Moreover, this connectivity core is linked to other smaller corridors systems in
southern France (Haut-Languedoc chain and coasts of southwestern Mediterranean
France) and the Azahar Coast. On the other hand, smaller intra-connections emerged in
Andalusia, Julian pre-Alps, and Bosphorus, even though there are few occurrence localities
in the surroundings of the two latter. Also, the pre- and sub-Alpine Italian areas showed
medium connectivity values, potentially linking the western systems to the eastern ones.
On the contrary, the central European (Slovakian) occurrence cluster resulted in lower
intra- and inter-connections.

When analysing future changes in connectivity through the SCCI, a loss can be observed
in the southern part of the Iberian Peninsula–southwestern France corridor system, as well
as in the corridors emerging in western Andalusia, Bosphorus and Slovakia (Fig. 3B).
On the other hand, concurrent stability is predicted for the Haut-Languedoc chain and
coasts of southwestern Mediterranean France. In contrast, connectivity increases in the
northern part of the Julian pre-Alps system (Fig. 3B). Also, significant connectivity gains
are observed for northern Portugal, southern Spain and northern France; in a similar way,
central and eastern Europe gain connections across broad areas. All these mentioned
trends are more pronounced as the time horizon for model projection is shifted farther
in the future (i.e., connectivity changes are greater in 2070 than in 2030); also, the
SSP5.85-based predictions generally resulted in higher connectivity changes than those
based on SSP3.70, especially in areas showing currently high connectivity.

Connectivity towards old-growth forests, niche overlap, and protection
status
About the connectivity inferred from the actualN. lasiopterus occurrence localities towards
old-growth forests, we found that major corridors exist where old-growth forests are
scarce. In fact, Sabatini et al. (2018) reported a high number, or even clusters, of
old-growth forests in central Italy, the Balkans, and central-western Europe, while the
major corridor systems emerging from our analyses are located in the northern Iberian
Peninsula, southern France and Italian Alps (Fig. 4A). In addition, another small corridor
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Figure 3 Current and future inter-population connectivity. (A) Pairwise landscape connectivity among Nyctalus lasiopterus occurrence localities,
computed using the weighted suitability map obtained under current conditions as input in Circuitscape v. 5 software. (B) Standardized Connectivity
Change Index (SCCI) showing the change in connectivity (blue-to-yellow color scale corresponding to loss-to-gain gradient) between each future
scenario and current conditions. Full-size DOI: 10.7717/peerj.14446/fig-3
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Figure 4 Connectivity towards old-growth forests and bioclimatic characterization of occurrence localities. (A) Landscape connectivity from
current Nyctalus lasiopterus occurrence localities towards European old-growth forests. Crossed buffer areas indicate old-growth forests easily
reachable by N. lasiopterus from its current occurrence localities, considering the species’ known maximum daily dispersal distance (i.e., ~130 km),
while hatched buffer areas represent forests more difficult to reach. (B) For each of the three “longitude groups” of populations (i.e., West, Central,
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system is observed in Andalusia, which is more linked to the farther old-growth forests in
the north than to the nearer ones, located eastward.

The SCCIs calculated on connectivity modelled between N. lasiopterus occurrences and
old-growth forests located within the 130-km buffer show overall corridors’ stability in the
future except for the Pyrenees, where a slight increase in connectivity is predicted for all the
scenarios (Fig. S3A), and for Andalusia, where instead a slight loss is predicted. Similarly,
the areas outside the 130-km buffer show stable connectivity, except for the gains reported
in the eastern Alps, northern France, and Denmark (Fig. S3B).

The three bioclimatic variables contributing the most to the climate-based ENM (i.e.,
BIO6, BIO1 and BIO2) show decreasing values along the west-east longitude gradient,
when sampled in N. lasiopterus presence localities. A similar trend emerges for the same
values measured in old-growth forests’ occurrences, altough these latter show higher
variability (Fig. 4B). A mixed trend is instead observed for the distances between
N. lasiopterus occurrences and old-growth forests, with the eastern ones being closer and
the central and western ones occurring at more considerable distances (Fig. 4B).

In the bioclimatic space modelled through the ‘hyperoverlap’ R package, we found a
separation (i.e., non-overlap) between the western and eastern N. lasiopterus populations,
with the central ones overlapping with both (Fig. 5A). When examining bioclimatic niche
overlap between the distinct longitude groups of N. lasiopterus and old-growth forests,
eastern N. lasiopterus populations overlap with all the forests’ categories except the western
ones, whereas the western N. lasiopterus populations overlap only with western forests
(Fig. 5B). Central N. lasiopterus populations overlap with ‘Old-Growth Forest’ and ‘Long
Untouched Forest’ categories from both the eastern and central longitude groups.
Moreover, N. lasiopterus eastern populations are the only ones overlapping with the
“near-virgin forest” category (Fig. 5B).

Finally, we found 59 N. lasiopterus occurrences (out of 260) falling into protected areas,
of which 15 in Natura 2000 sites, eight in Nationally Designated Protected Areas, and 36
covered by both (i.e., where these two kinds of protected areas overlap). The median
distance between these N. lasiopterus occurrence localities and old-growth forests ranges
from 20 km to nearly 120 km, depending on the considered longitude group and category
of protected areas (Fig. 6).

DISCUSSION
Many ecological aspects of Nyctalus lasiopterus are still poorly known, to the point of this
species being defined “enigmatic” (Naďo et al., 2019), and distributional data are still
accumulating (Snit’ko & Snit’ko, 2021; Ibáñez & Juste, 2022). In similar cases, recent
developments in Ecological Niche Modelling permitted to individuate climate-related

Figure 4 (continued)
East) are shown, following clockwise direction from top-left panel: (i) distance between N. lasiopterus occurrence localities and old-growth forests;
(ii) distribution of values for BIO6 in correspondence of the occurrence localities of N. lasiopterus (grey boxes) and old-growth forests (green boxes);
(iii) distribution of values for BIO1 in correspondence of the occurrence localities ofN. lasiopterus (grey boxes) and old-growth forests (green boxes);
distribution of values for BIO2 in correspondence of the occurrence localities of N. lasiopterus (grey boxes) and old-growth forests (green boxes).

Full-size DOI: 10.7717/peerj.14446/fig-4
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Figure 5 Bioclimatic niche overlap among the three longitudinal groups of giant noctule
populations and with old-growth forests. (A) Distribution of Nyctalus lasiopterus occurrences in the
bioclimatic niche space derived using the customized functions from ‘hyperoverlap’ R package, distin-
guishing among western (aquamarine), central (yellow) and eastern (violet) populations. (B) Bioclimatic
niche overlap, for each “longitude group”, among the different categories of European old-growth forests
and N. lasiopterus populations. Full-size DOI: 10.7717/peerj.14446/fig-5

Figure 6 Distance of protected Nyctalus lasiopterus occurrence localities from old-growth forests.
Distance from old-growth forests of the Nyctalus lasiopterus occurrences falling within Nationally
Designated Protected Areas (A), Natura 2000 sites (B) or both these protected areas categories (C), for the
three “longitude groups” of populations. Full-size DOI: 10.7717/peerj.14446/fig-6
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drivers influencing the distribution of many taxa of conservation interest (Franklin, 2013;
Cerasoli, Iannella & Biondi, 2019; Console et al., 2020; Gusmão et al., 2021; Sistri et al.,
2022), shedding light into hidden biogeographic (Reino et al., 2017; Iannella, D’Alessandro
& Biondi, 2018; Brunetti et al., 2019) and ecological (Mammola & Isaia, 2017; Di Musciano
et al., 2020; Cerasoli, D’Alessandro & Biondi, 2022) phenomena.

In this research, the climate-based ENMs indicated the minimum temperature of the
coldest month (BIO6) as the most contributing variable for N. lasiopterus, likely driving
the north-eastern shift of climatic suitability for this species under the considered future
scenarios, a trend observed also for other taxa (Iannella, D’Alessandro & Biondi, 2020; Guo
et al., 2021). Weighted suitability, resulting from merging climate-based predictions with
topographic and habitat information, confirmed this trend: in fact, the areas currently
showing the highest weighted suitability values are predicted to contract in the western
portion of the species’ range, balanced by an increase in medium-to-high suitability values
eastwards. This is shown to affect landscape connectivity, which is in fact predicted to
increase, in the future, among the central-easternN. lasiopterus populations; contrarily, the
easternmost populations would experience a loss of connectivity, thus posing them at a
high risk of isolation, considering their actual low connectivity. Almost null connectivity
emerged for the isolated occurrence localities from the Tuscan Archipelago and southern
Italy, which have been recently hypothesized to represent doubtful records in the chapter
of the new Handbook of the Mammals of Europe focusing on the giant noctle (Ibáñez &
Juste, 2022).

The current high-connectivity asset in western Europe, clearly defined in specific areas
of northern Spain, southern France and western Italian Alps, is also observed when
modelling corridors between N. lasiopterus populations and old-growth forests.
If considering these connections and their possible accessibility, the forests in northern
Spain and southern France show an evident importance in terms of conservation. On the
contrary, the mild northward connection observed in southwestern Spain, where
old-growth forests do not occur, breaks up in south-eastern Portugal. From a conservation
perspective, this disruption in connectivity may be considered as less alarming than in
other cases because previous research showed that N. lasiopterus populations occurring in
Andalusia use holes within trees located in urban green, such as Platanus sp. and the palm
Washingtonia filifera, for roosting, and are used to move several kilometers to find other
suitable areas (Popa-Lisseanu et al., 2008; Popa-Lisseanu, Bontadina & Ibáñez, 2009).
Instead, two main conservation concerns emerge more eastward. First, the northern Italian
old-growth forests’ corridor system could be exploited by N. lasiopterus not so easily, as no
occurrences are found within the 130 km buffer. Secondly, the central-eastern systems of
corridors host a number of old-growth forests but high connectivity emerges only in the
neighbourhoods of these latter. The shorter distances among the eastern N. lasiopterus
populations and old-growth forests may result from this lack of long-distance connections
coupled with the climatic conditions characterizing eastern forests. The trend we have
found suggests that forests take on great importance for N. lasiopterus when regional
climatic conditions are suboptimal. In fact, in western Europe the distance of N. lasiopterus
occurrences from old-growth forests is relatively high, despite vast corridors were predicted
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there; at the same time, in this region the values of the selected climatic predictors fall into
the intervals predicted as highly suitable for the species by the climate-based ENM.
On the other hand, areas covered by the eastern old-growth forests generally showed a
larger range of values for BIO6, BIO1 and BIO2 compared to the western ones; this resulted
in higher overlap for the former group with climatic conditions characterizing
N. lasiopterus occurrence sites. Thus, although current climatic suitability for N. lasiopterus
at the regional scale is lower in the East, eastern old-growth forests appear to host suitable
conditions for the giant noctule to thrive. Indeed, micro-climatic conditions or other
factors (e.g., micro-habitat availability, specific trophic resources, etc.) could allow
populations of some bat species to persist even within an environmental matrix being
unfavorable at a meso- or macro-scale (Popa-Lisseanu, Bontadina & Ibáñez, 2009;
Ancillotto et al., 2015).

The niche overlap tests confirm the strong link between N. lasiopterus populations from
the distinct “longitude groups” and the corresponding forests, highlighting a clear west-vs-
east pattern. Central European groups overlap with the eastern ones, while the western
populations form a separate group; also, eastern near-virgin forests overlap with eastern
N. lasiopterus populations.

These outcomes should inform the protection strategies for both the giant noctule and
the habitats it currently dwells in and/or which could possibly be used in the future. In fact,
despite its alarming conservation status and scarce distributional and demographic
information, N. lasiopterus is scarcely protected at present (Alcaldé, Juste & Paunović,
2016), which is confirmed by our finding of only 59 occurrence localities being covered by
protected areas. The giant noctule is listed in Eurobats and Bern conventions, which
however do not apply across the entire species’ range, so that the degree of protection
varies among the distinct countries; at the continental scale, it is listed only in the Annex
IV of the European Habitats Directive 92/43/EEC. The fact that protected areas
heterogeneously cover the territories linking N. lasiopterus occurrences and old-growth
forests, coupled with evidence of distinct environment-occurrence relationships of
western populations compared to the central and eastern ones, suggests that distinct
management practices are needed along the European longitudinal gradient. Evidently, the
co-occurrence of Nationally Designated Protected Areas and Natura 2000 sites permits the
highest protection, but the total number of N. lasiopterus localities occurring within
territories covered by this “doubled” protection is scarce. The western occurrence localities
and their potential corridors towards old-growth forests resulted scarcely protected,
despite landscape connectivity being noticeably high in this region. Thus, specific
protection measures should be applied to northern Spain and southwestern France. As
an exception, the Andalusian populations, occurring in urbanized environments
(Popa-Lisseanu, Bontadina & Ibáñez, 2009), seem to have adapted to the non-optimal
habitat thanks to the suitable climate (the most suitable of the entire study area), also
considering that no large and/or mature forests exploitable as roost sites are available in the
neighboring areas. Therefore, the best management choice in the western part of the study
area would be to avoid disturbances in the roosting Andalusian sites while keeping, and
possibly expand, the current Natura 2000 sites in northern Iberia and southern France.
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On the other hand, central and eastern European areas presently host suboptimal climatic
conditions, but a higher proportion of N. lasiopterus occurrences located near old-growth
forests, partially covered by a doubled protection. We would like to also underline that
some specific actions should be undertaken in areas where alien species could compete and
cause disturbance to the giant noctule. For instance, the Seville population seems to be
more and more threatened by the invasive alien rose-ringed parakeets (Psittacula krameri)
(Hernández-Brito et al., 2018). This species, which was also recently found to damage some
common noctule (N. noctula) populations in Italy (Giuntini et al., 2022), competes for tree
cavities with the giant noctules, causing the disruption of colonies, injures or even kills of
individuals (Hernández-Brito et al., 2018). Finally, the predicted northeastern expansion of
climatic suitability for the giant noctule and the exclusive niche overlap between its
central-eastern populations and the corresponding old-growth forests suggest that
well-targeted conservation measures for old-growth forests in these territories coupled
with accurate monitoring of N. lasiopterus, in terms of both possible future range
expansion and local population dynamics, should be the priority for the next years.
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