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ABSTRACT
Docynia delavayi (Franch.) Schneid is an evergreen tree with multiple benefits and high
development and utilization value. The fruit is consumed as fresh and dry fruit, juices,
and other products. However, it is unknown the chemical changes that occur upon
fruit maturation. The metabolite content of unripe and ripe fruit was examined using
UPLC-MS/MS technology based on a broadly targeted metabolome. We identified 477
metabolites, of which 130 differed between ripe and unripe fruit. These compounds are
primarily involved in the biosynthesis of secondary metabolites, such as pantothenic
acid, flavonoids, and amino acids. Moreover, in ripe fruit, there are 94 metabolites that
are upregulated, particularly flavonoids and terpenoids. In comparison, compounds
associated with sour flavors (amino acids, phenolic acids, organic acids) are down-
regulated. Remarkably, these metabolites have a strong relationship with the medicinal
properties of D. delavayi. This study provides a global perspective of the D. delavayi
fruit metabolome and a comprehensive analysis of metabolomic variations during fruit
development, thereby increasing the knowledge of the metabolic basis of important
fruit quality traits in D. delavayi fruit.

Subjects Agricultural Science, Biochemistry, Plant Science, Forestry
Keywords Docynia delavayi (Franch), Metabolites, PCA, OPLS-DA, UPLC-MS/MS, KEGG

INTRODUCTION
Docynia delavayi (Franch.) Schneid (Rosacea), is widely known as Duo-Yi in China. In
some provinces like Yunnan, Guizhou, and Sichuan, its planting concentrates in the valleys,
creeks, and shrubs at an altitude ranging between 1,000 and 3,000 m (Ci et al., 2020). The
flowering season of D. delavayi spans from March to April of the year, and the fruiting
season lasts from September to December of the year (Su, 2019).D. delavayi as a sort of fruit
has a distinctive taste, showing high nutritional and medicinal value. In southwest China,
it is commonly applied for the treatment of digestive disorders and hypertension (Xukun et
al., 2014). Fruit extracts are rich in secondary metabolites and natural active compounds,
including flavonoids, dietary fiber, amino acids, terpenoids, and alkaloids (Mei et al.,
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2002). In light of the above, D. delavayi fruit immaculously satisfies the functional fruit
requirements, thus is considered a desirable fruit.

As a crucial part of natural growth for plants, the development and ripening of fruit
are not only regulated by internal genetic information but also affected by external factors
(Ramos-Aguilar et al., 2021). During the course of ripening, the variations in sweetness,
hardness, and colour are the significant influencing factors for fruit quality (Bapat et
al., 2009). Thus, the research of fruit growth and ripening is needed to improve our
understanding as to the formation of fruit mass in D. delavayi. Despite some research that
has already been conducted on the fruit composition ofD. delavayi (Lee, Mattheis & Rudell,
2012), it is focused mainly on some particular metabolites. Unripe D. delavayi and ripe
D. delavayi differ in their nutrient metabolite profiles. For this reason, to better understand
the difference between them, a systematic analysis is required to understand the changes
in composition.

Metabolomics can be applied to identify and analyze the metabolites of fruit, which
is essential for determining its nutritional value (Quinet et al., 2019; Xu et al., 2021).
Broadly targeted metabolomics combines the benefits of both untargeted and targeted
metabolomics. Due to its high efficiency, high sensitivity, and extensive coverage, targeted
metabolomics has already been widely applied to the study of metabolic changes in
various fruits (Sawada et al., 2009; Chen et al., 2013). Based on ultra-performance liquid
chromatography/tandem mass spectrometry (UPLC-MS/MS), metabolomics has a library
for the easy recognition of various compounds. It has already been adopted to analyze
metabolite profiles and to examine the variations in plant composition (Xiao et al., 2014;
Wang et al., 2017; Li et al., 2021). For instance, metabolomics analysis can be conducted to
examine the metabolite changes in those apples subjected to various ripening treatments
(Lee, Mattheis & Rudell, 2012). The metabolomics method can be used to decode the
metabolic changes in strawberry during the course of development and ripening (Zhang et
al., 2010).

This study is purpose to determine the metabolic differences between unripeD. delavayi
and ripe D. delavayi by applying a targeted metabolomics strategy. Such metabolites
as amino acids, phenolic acids, organic acids, flavonoids and terpenoids, all of which
contribute to increasing nutritional value, are the focus of the present study. The findings
of it could help improve our understanding as to the metabolism of key mass characteristics
in fruit, thus providing a solution to the planting of high-quality D. delavayi.

MATERIALS AND PROCESSES
Sample collection
On July 18, 2020, the samples were collected from Lancang country (100◦21′E, 22◦56′N)
in Yunnan province, China. Field experiments were approved by the National Natural
Science Foundation of China (project number: 32060350) and the samples were collected
with the consent of Liu Yu and Zhang Xinluo villagers; Nuozadu village committee for
supporting this study. Immediately afterwards, the harvested fruits were transported to a
laboratory, where they were graded by maturity and colouring stage: green unripe (GW)
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and red ripe (GX). (Su, 2019). Approximately 15 fruits in each stage were combined to
represent one biological replicate, with three biological replicates prepared for each stage.
All samples were frozen with dry ice.

Sample preparation and extraction
These biological samples were freeze-dried by using a vacuum freeze-dryer (Scientz-100F).
Then, the freeze-dried samples were crushed for 1.5 min at 30 Hz by a mixer mill (MM
400, Retsch GmbH, Haan, Germany) fitted with a zirconia bead. 100 mg of lyophilized
powder was dissolved in 1.2 mL of 70% methanol solution, and then stirred for 30 s at a
30-minute interval (6 times in total). Finally, the samples were placed in a refrigerator at
4 ◦C overnight. After 10 min of centrifugation at 12,000 rpm, the extracts were filtrated
(SCAA-104, 0.22 µm pore size; ANPEL, Shanghai, China) for subsequent UPLC-MS/MS
analysis.

UPLC-MS/MS conditions
Given the limited availability of extracts, the application of ultra-performance liquid
chromatography coupled to tandem mass spectrometry is considered to be one of the
preferred methods of analysis. The following UPLC conditions are required for the present
study (Chen et al., 2013):
1. Column, Agilent SB-C18 (1.8 µm, 2.1 mm*100 mm);
2. The mobile phase included solvent A:

a. MilliQ water with 0.1% formic acid, and solvent B:
a. Acetonitrile with 0.1% formic acid.

ESI-Q TRAP-MS/MS
An AB4500 Q TRAP UPLC/MS/MS system, complete with an ESI Turbo Ion-Spray
interface, was adopted for both LIT and Triple Quadrupole (QQQ) scanning. This system
was operated by using Analyst 1.6.3 software (AB Sciex). The operational settings for the
ESI source are as follows: ion source, turbo spray; source frequency of 550 ◦C; ion spray
voltage (IS) 5,500 V (positive ion mode)/−4,500 V (negative ion mode); ion source gases I
(GSI), II (GSII), and curtain gas (CUR) fixed at 50, 60, and 25.0 psi, respectively; and large
collision-activated dissociation (CAD) value. To tune the device and calibrate the weight,
polypropylene glycol liquids of 10 and 100 mol/L were used, respectively, in the QQQ
and LIT modes. During MRM investigation, QQQ scans were obtained with the collision
gas (nitrogen) adjusted to medium. Both DP and CE were further enhanced to support
single MRM conversions. The MRM transitions for each session were tracked by eluting
the metabolites during each interval (Fig. 1) (Fraga et al., 2010).

Metabolite identification and quantification
MetWare databases were used. Match scores were given by using the MetDNA software
developed by Zhu et al. (2013) and the Masterview software developed by AB Sciex
(Toronto, Canada). The majority of the compounds in the database are standards. MRM
information was collected from each standard (Fig. 1). For metabolite quantification,
multiple reaction monitoring was performed. In the MRM mode, the quadrupole filtered

Chen et al. (2022), PeerJ, DOI 10.7717/peerj.14441 3/17

https://peerj.com
http://dx.doi.org/10.7717/peerj.14441


Figure 1 The multi-peak map of MRMmetabolite detection.
Full-size DOI: 10.7717/peerj.14441/fig-1

the precursor ions of the target substance first, excluding the ions corresponding to other
molecular weight substances for the preliminary elimination of interference. After the
collision chamber was induced to ionize, the precursor ions were fragmented to obtain
many fragment ions. Then, triple quadrupole filtering was conducted, with a distinctive
fragment ion used to remove non-target ion interference for improving the accuracy of
quantification and reproducibility. The peak area of all substancemass peaks was integrated
after the data on metabolite mass spectrometry was collected from several samples. Besides,
the peaks of the same metabolite in various samples were integrated and corrected.

Metabolite data analysis
Principal Component Analysis (PCA) was carried out with the statistically functional
prcomp in R (http://www.r-project.org). The data was unit variance scaled before
unsupervised PCA. The heatmaps of dendrograms were used to present the sample
and the hierarchical clustering results of metabolites. The correlation function in R can be
used to calculate the Pearson correlation coefficients between samples, which are displayed
in the form of heatmaps. The differential metabolites designated among groups were
identified by VIP >= 1 and absolute Log2FC (fold change) >= 1. Obtained from OPLS-DA
outcome, VIP values include two plots of score and permutation as formed with R package
Metabo Analyst R. The statistic was log transfer (log2) and mean centering before OPLS-
DA. A permutation test (200 permutations) was performed to stop overfitting. Pathway
database (http://www.kegg.jp/kegg/pathway.html) was used to make explanation using the
KEGG Compound database (http://www.kegg.jp/kegg/compound/). Then, metabolite sets
enrichment analysis was conducted, and the significance of pathways with heavily regulated
metabolites was determined according to the p-values of the hypergeometric test.
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Table 1 Classification of the detected metabolites in D. delavayi fruits into major classes.

Class Number of
Compounds

Amino acids and derivatives 53
Phenolic acids 72
Nucleotides and derivatives 33
Flavonoids 111
Lignans and Coumarins 18
Others 46
Tannins 12
Alkaloids 18
Terpenoids 24
Organic acids 29
Lipids 61

Statistical analysis
Through Excel (Microsoft Excel 2016, Microsoft, Redmond, WA, USA), a statistical
analysis was carried out. The statistics are presented as means ± standard deviations. The
least significant difference (p < 0.05) was used to assess the level of statistical significance.

RESULTS
Widely targeted metabolome profiling of D. delavayi fruit
To better understand the variation in nutritional values between unripeD. delavayi and ripe
D. delavayi, ‘GW’ and ’GX’ were applied for themetabolic profiling based onUPLCMS/MS.
With a total of 727 distinct metabolites identified in all samples, they were classified into 11
categories according to metabolite structure, as shown in Table 1. A significant number of
these metabolites are suspected to be responsible for fruit development (53 amino acids and
derivatives, 72 phenolic acids, 12 tannins, 29 organic acids). Among these 11 compounds,
phenolic acids (72 types) and flavonoids (111 types) were considerably more abundant
than the others.

Multivariate analyses of determined metabolites
In total, 477 metabolites were analyzed through PCA analysis (S1). The first principal
component (PC1) accounted for 65.63% of the variance, whereas the second principal
component (PC2) accounted for 26.26% of the variance (Fig. 2A), indicating a significant
difference between GW and GX. The heatmap of all metabolites was created to visualize
the variations between GW and GX (Fig. 2B). PCA and the heatmap reveal the significant
variations in metabolites between the two developmental stages.

By identifying the differential metabolites between GX and GW, it can be found out that
metabolites with fold change≥2 or≤0.5 and the VIP values greater than 1. There are a total
of 130 differentiated metabolites, of which 94 are up-regulated and 36 are down-regulated
(Fig. 3A). The 130 metabolites can be divided into 11 different categories, with phenolic
acids, flavonoids, terpenoids, and lipids in the majority (Fig. 3B).
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BA

Figure 2 Differential chemotype metabolites between ‘GW’ and ‘GX’. The numbers 1, 2, and 3 indi-
cate three biological replicates. (A) PCA analysis of metabolites identified from ‘GW’ and ‘GX’ (B) Cluster
analysis of metabolites from samples of ‘GW’ and ‘GX’. The colour indicates the level of accumulation of
each metabolite, from low (green) to high (red).

Full-size DOI: 10.7717/peerj.14441/fig-2
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Figure 3 Differential metabolites between ‘GW’ and ‘GX’. (A) Volcano plot of the 124 metabolites
identified. (B) Pie chart depicting the categories of the differential metabolites identified between ‘GW’
and ‘GX’.

Full-size DOI: 10.7717/peerj.14441/fig-3

Differential metabolite KEGG classification and enrichment analysis
The metabolic pathways of 130 differential metabolites were mapped to the KEGG
database (S2). Despite few metabolites classified as genetic information processing and
environmental information processing, the majority of metabolites were categorized into
‘metabolism’ (Fig. 4A). As revealed by the enrichment analysis of biological pathways
associated with two nutrient metabolisms (‘‘pantothenate and CoA biosynthesis’’ and
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A B

Figure 4 KEGG enrichment map of differential metabolites form ‘GW’ and ‘GX’. (A) KEGG differ-
ential enrichment classification map. The x axis indicates the proportion and number of metabolites an-
notated to the pathway, and the y axis indicates name of the KEGG metabolic pathway; (B) Statistics of
KEGG enrichment. The x axis indicates the rich factor corresponding to each pathway, and the y axis in-
dicates name of the KEGG metabolic pathway. The color of the point represents the p-values of the en-
richment analysis. The size and color of bubbles represent the number and degree of enrichment of differ-
ent metabolites.

Full-size DOI: 10.7717/peerj.14441/fig-4

‘‘flavone and flavonol biosynthesis’’), there were significant differences between unripe
and ripe D. delavayi: p< 0.05 (Fig. 4B).

Amino acids and derivatives, phenolic acids, organic acids
Concerning the types of metabolites that may affect the flavour of D. delavayi, both
‘GW’ and ‘GX’ contained amino acids and their derivatives, with L-glutamic acid
and L-phenylalanine in the majority. According to fold change and VIP values, seven
differential metabolites were selected. The concentrations of acetyltryptophan and n-
acetyl-dl-tryptophan were significantly higher in ‘GX’, whereas the content of other
five amino acids in ‘GW’ was lower than in ‘GX’ (Fig. 5), despite no significant change
(Table 2).

A total of 72 phenolic acids were identified in ‘GW’ and ‘GX’ (Table 1), of which
12 exhibited significant differences in accumulation. 1-O-(3,4-dihydroxy-5-methoxy-
benzoyl)-β-D-glucoside accumulated in significantly higher concentrations in ‘GX’ than
in ‘GW’ (Fig. 5). However, only one of the 29 organic acids was identified as a differential
metabolite (phosphoenolpyruvic acid), with ‘GX’ showing a considerably higher cumulative
concentration of phosphoenolpyruvic acid than ‘GW’ (Table 2).

Flavonoids and terpenoids
What is noteworthy is the primary source of nutrients in D. delavayi, in addition to the
metabolites. Flavonoids were found to have the largest number of unique metabolites.
In GW and GX, only four flavonoids were down-regulated, while the remaining 47
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Figure 5 Differences in the contents of 9 metabolites in GW (left) and GX (right).
Full-size DOI: 10.7717/peerj.14441/fig-5

flavonoids were up-regulated to varying degrees (Table 3). The three flavonoids that
were up-regulated to the most significant extent include 5,7,8,4′-tetramethoxyflavone
(348.620 fold), nobiletin (226.216 fold), and tangeretin (204.974 fold) (Fig. 5). These three
differential metabolites were all associated with nobiletin and tangeretin and were detected
to have higher concentrations in ‘GX’ than in ‘GW. ‘GX’ contained a substantially larger
amount of flavonoids than GW.
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Table 2 Statistics of differentially accumulating amino acids and derivatives, phenolic acids, organic acids in the ‘GW and ‘GX’.

Class Compounds Peak area Fold
change

VIP(≥1) Type

GW GX

L-Asparagine 1,830,000± 1,370,000 260,000± 14,600 0.086 1.08 down
L-AsparticAcid 1,120,000± 1,040,000 763,000± 313,000 0.498 1.04 down
L-Glutamic acid 19,500,000± 17,500,000 9,930,000± 5,220,000 0.409 1.16 down
L-Phenylalanine 5,100,000± 4,790,000 2,880,000± 652,000 0.358 1.01 down
1-
Methylhistidine

124,000± 119,000 41,400± 29,100 0.290 1.24 down

Acetyltryptophan 679,000± 568,000 7,100,000± 5,320,000 9.957 1.25 up

Amino acids
and derivatives

N-Acetyl-DL-
tryptophan

188,000± 179,000 1,380,000± 1,110,000 6.800 1.25 up

4-
Aminobenzoic
acid

222,000± 222,000 736,000± 677,000 3.183 1.25 up

3,4-
Dihydroxybenzaldehyde

69,600± 42,900 18,300± 16,800 0.312 1.22 down

Vanillin 998,000± 859,000 278,000± 271,000 0.296 1.25 down
Methyl-(2,4-
dihydroxyphenyl)
acetate

5,560± 3,810 11,000± 9,190 2.156 1.20 up

Sinapinaldehyde 542,000± 494,000 124,000± 120,000 0.236 1.25 down
Salicin 10,400± 4,590 4,310± 2,480 0.453 1.00 down
5-(2-
Hydroxyethyl)-
2-O-
glucosylohenol

304,000± 272,000 760,000± 735,000 2.596 1.25 up

1-O-Galloyl- β-
D-glucose

3,250,000± 2,900,000 1,540,000± 1,350,000 0.470 1.24 down

3-O-
Caffeoylshikimic
acid

173,000± 159,000 78,200± 69,500 0.445 1.25 down

1-O-(3,4-
dihydroxy-
5-methoxy-
benzoyl)-
β-D-glucoside

32,400± 32,100 585,000± 580,000 18.048 1.26 up

Glucosyringic
Acid

2,640,000± 2,510,000 1,180,000± 1,130,000 0.448 1.25 down

Phenolic acids

Quillaic acid 288,000± 270,000 2,220,000± 1,980,000 7.527 1.25 up
Organic acids Phosphoenolpyruvic

acid
101,000± 87,200 52,600± 38,100 0.482 1.21 down

Terpenoids are also the important metabolites contained in D. delavayi fruit, as revealed
in this study. A majority of terpenoids found to be clearly different between ‘GW’ and
‘GX’ were triterpenes (Table 4). In GW, only one triterpene (3-o-trans-feruloyl euscaphic
acid) was down-regulated, while the others were up-regulated. The three triterpenes that
were up-regulated most significantly include rutundic acid (6.539 fold), myrianthic acid
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Table 3 Difference of flavonoids in ‘GW and ‘GX.

Class Compounds Peak area Fold
Change

VIP
(≥1)

Type

GW GX

Dihydroflavone Liquiritin 704,000± 638,000 253,000± 210,000 0.345 1.25 down
Dihydroflavonol Dihydroquercetin (Taxifolin) 193,000± 162,000 50,700± 32,300 0.234 1.23 down

Hesperetin 5-O-glucoside 458,000± 424,000 969,000± 903,000 2.122 1.25 up
Anthocyanins Rosinidin O-hexoside 57,200± 43,900 18,500± 15,800 0.339 1.24 down

Cyanidin-3-O-(6′′-p-Coumaroylglucoside) 267,000± 219,000 1,120,000± 997,000 4.358 1.25 up
Delphinidin-3-O-
(6′′-p-Coumaroylglucoside)

1,470,000± 1,050,000 6,620,000± 6,130,000 5.058 1.25 up

Flavonoid 5,7,8,4′-Tetramethoxyflavone 760± 733 513,000± 7,560 348.620 1.11 up
Nobiletin 28,300± 18,000 10,200,000± 282,000 226.216 1.13 up
Kaempferol-3-arabinopyranoside 151,000± 143,000 385,000± 381,000 2.605 1.25 up
Pinocembrin 7-O- β-D-glucoside
(Pinocembroside)

171,000± 158,000 59,900± 56,100 0.352 1.25 down

Luteolin-4′-O- β-D-glucoside* 2,750,000± 2,470,000 7,720,000± 6,430,000 2.711 1.25 up
Isoscoparin 132,000± 109,000 407,000± 367,000 3.216 1.25 up
Chrysoeriol-5-O-hexoside 3,900,000± 3,810,000 12,700,000± 11,600,000 3.146 1.25 up
Taxifolin-3′-O- β-D-glucoside 1,110,000± 1,090,000 2,500,000± 2,280,000 2.173 1.25 up
Chrysoeriol-O-acetylhexoside 348,000± 335,000 1,350,000± 1,320,000 3.906 1.25 up
Isorhamnetin O-malonylglucoside 124,000± 109,000 294,000± 242,000 2.304 1.24 up
Kaempferol-7-O-neohesperidoside 106,000± 104,000 513,000± 489,000 4.771 1.25 up
Quercetin-3-O- β-D-xylopyranosyl-
(1→2)- β-D-galactopyranoside

63,300± 47,400 342,000± 198,000 4.880 1.22 up

Quercetin 3-O-(6′′-trans-p-Coumaroyl)-
β-D-galactopyranoside

6,460± 6,250 46,200± 44,600 7.142 1.26 up

Luteolin-8-C-hexosyl-O-hexoside 81,700± 67,100 388,000± 379,000 5.157 1.25 up
Kaempferol-3,7-di-O- β-D-glucopyranoside 24,100± 17,500 124,000± 88,500 5.104 1.24 up

Flavonols Tangeretin 15,000± 10,200 5,010,000± 158,000 204.974 1.14 up
Kaempferol-7-O-rhamnoside 32,000± 29,400 70,900± 60,100 2.134 1.24 up
Kaempferol-3-O-rhamnoside
(Afzelin)(Kaempferin)

50,200± 37,000 108,000± 90,600 2.276 1.22 up

3,5,6,7,8,3′,4′-Heptamethoxyflavone 2,930± 2,610 239,000± 11,100 45.138 1.09 up
Kaempferol-3-O-glucoside (Astragalin)* 1,720,000± 1,670,000 5,060,000± 4,950,000 2.951 1.25 up
Kaempferol-3-O- β-D-glucuronide 26,200± 21,900 152,000± 78,400 4.791 1.21 up
Quercetin-3-O- β-
D-glucoside(Isoquercitrin)*

3,800,000± 3,410,000 9,690,000± 7,230,000 2.348 1.23 up

Quercetin-3-O- β-D-Galactoside (Hyperin)* 3,790,000± 3,390,000 8,000,000± 7,530,000 2.163 1.25 up
Myricetin 3-O-galactoside 16,300± 6,940 138,000± 129,000 11.481 1.23 up
Kaempferol-3-O-(6′′-acetyl)-glucoside 742,000± 579,000 3,200,000± 3,170,000 4.826 1.25 up
Quercetin-3-O-(6′′-O-acetyl)-galactoside 4,270,000± 2,500,000 20,300,000± 16,800,000 5.472 1.23 up
Quercetin-3-O-(2′′-acetyl)- β-D-glucuronide 26,000± 13,400 42,100± 36,900 2.005 1.10 up

(continued on next page)
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Table 3 (continued)

Class Compounds Peak area Fold
Change

VIP
(≥1)

Type

GW GX

Kaempferol-3-O-(6′′-malonyl)-glucoside 258,000± 230,000 888,000± 846,000 3.553 1.25 up
Quercetin-7-O-(6′-O-malonyl)-
β-D-glucoside

128,000± 118,000 424,000± 366,000 3.211 1.25 up

Quercetin-3-O-(6′′-O-malonyl)-glucoside 71,700± 55,500 375,000± 368,000 5.839 1.25 up
’’Myricetin-3-O-(6′′-malony)glucoside’’ 3,140± 2,530 40,100± 27,700 11.951 1.25 up
Tiliroside 5,490± 4,820 148,000± 10,500 15.382 1.03 up
Kaempferol-3-O-rutinoside(Nicotiflorin) 570,000± 526,000 2,400,000± 2,150,000 4.148 1.25 up
Quercetin-3-O-rutinoside (Rutin) 3,760,000± 3,110,000 17,200,000± 15,500,000 4.753 1.25 up
6-Hydroxykaempferol-7,6-O-Diglucoside 82,700± 74,700 622,000± 614,000 7.853 1.25 up
6-Hydroxykaempferol-3,6-O-Diglucoside 48,900± 46,500 289,000± 273,000 5.891 1.25 up
Quercetin-5-O-malonylhexosyl-hexoside 18,800± 16,700 274,000± 269,000 15.272 1.25 up
Quercetin-7-O-malonylhexosyl-hexoside 27,600± 20,200 157,000± 116,000 5.704 1.24 up
Quercetin-O-rutinoside-hexose 9,150± 6,340 133,000± 93,900 14.669 1.25 up

Flavonoid
carbonoside

Isohemiphloin 28,700± 21,500 74,200± 49,500 2.463 1.20 up

8-C-Hexosyl-hesperetin O-hexoside 20,000± 15,700 213,000± 208,000 11.794 1.25 up
Flavanols Gallocatechin-Gallocatechin 21,300± 17,800 113,000± 113,000 5.775 1.25 up
Isoflavones Calycosin 62,100± 59,700 292,000± 208,000 4.105 1.24 up

Sissotrin 1,930± 1,350 25,700± 19,400 13.740 1.25 up
2′-Hydoxy,5-methoxy
Genistein-O-rhamnosyl-glucoside

43,200± 37,900 131,000± 60,100 2.357 1.09 up

(6.245 fold) and euscaphic acid (4.597 fold) (Fig. 5). These findings indicate an increase in
flavonoids and terpenoids.

DISCUSSION
So far, the widely targeted metabolite identification analysis based on UPLC-MS/MS has
been conducted for the large-scale metabolite identification of numerous plant species
(Oikawa et al., 2015;Wang et al., 2017). The existing research of D. delavayi focuses mainly
on only a few metabolites, such as the determination of tannins (Tiep et al., 2018), the
extraction of flavonoids (Deng et al., 2014), and the validation of the biological activity
(Mao, Li & Li, 2006). In the present study, the UPLC-MS/MS technique was applied to
understand the metabolomic differences between unripe D. delavayi and ripe D. delavayi
and to conduct the most comprehensive survey of fruit metabolites. Finally, a total of 477
metabolites were identified, among which there were 130 distinct metabolites between
unripe and ripe fruit. The data provide a comprehensive analysis of metabolic changes
between unripe D. delavayi and ripe D. delavayi. This lays a foundation for the metabolic
studies of fruit quality. More importantly, the findings of this study provide reference for
fruit tree breeding and contribute new ideas to the planting of high-quality fruit.

Herein, the organic acid content was found lower in unripe D. delavayi than in ripe D.
delavayi. This is likely attributable to the fact that most fruits require the consumption
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Table 4 Difference of terpenoids (triterpene) in ‘GW and ‘GX.

Class Compounds Peak area Fold
change

VIP(≥1) Type

GW GX

Terpenoids
(Triterpene)

Sanguisorbigenin 41,300± 41,200 92,000± 84,200 2.135 1.25 up

2,3-Dihydroxy 5(6),12(13)
diene ursolic acid

159,000± 136,000 363,000± 346,000 2.400 1.25 up

Camaldulenic acid 3,360,000± 2,870,000 8,010,000± 7,680,000 2.518 1.25 up
3 β,19 α-
Dihydroxyolean-12-en-28-oic acid

27,500± 25,500 54,800± 52,900 2.031 1.25 up

Rosamultic acid 1,510,000± 1,500,000 3,060,000± 3,050,000 2.031 1.26 up
Ursolic acid-OCH3 2,030,000± 1,550,000 4,200,000± 4,000,000 2.291 1.23 up
Rutundic acid 60,600± 58,100 391,000± 385,000 6.539 1.25 up
Euscaphic acid 116,000± 107,000 525,000± 502,000 4.597 1.25 up
Arjunic Acid 191,000± 167,000 541,000± 477,000 2.844 1.25 up
1 β,2 α,3 α,19 α-Tetrahydroxyurs-12
-en-28-oic acid

15,800± 15,500 79,600± 47,300 4.060 1.23 up

Myrianthic acid 25,700± 24,900 163,000± 153,000 6.245 1.25 up
3-O-Trans-feruloyl euscaphic acid 51,700± 50,300 6,630± 5,880 0.123 1.25 down

of organic acids as a respiratory substrate during ripening, which provides sufficient
energy for fruit development (Merewitz et al., 2012; Sui et al., 2017). Notably, the sugar
content rises as the fruit matures (Zhao et al., 2016). This phenomenon is reflected as the
preferential conversion of starch by external photoassimilates into sugar (Qiu et al., 2020).
However, the sugar content remained basically unchanged in ripe and unripe D. delavayi,
which is most likely due to D. delavayi being distributed in the low-altitude arid regions in
southwest Yunnan (Zhao et al., 2012), and the inhibited sugar synthesis by drought stress
during fruit development (Wang et al., 2018). However, a further research is required to
reveal the metabolic sugar mechanism of D. delavayi.

In comparison to other Rosaceae fruits, D. delavayi has a higher tannin content (Ben
Salem et al., 2017). Tannins are considered to produce anti-inflammatory and antioxidant
effects (Parveen et al., 2018), which enhances the anti-inflammatory effects of D. delavayi
(Xukun et al., 2014). Therefore, it is applicable as a fruit supplement to improve human
health. The pattern of change in amino acid content in D. delavayi is similar to tomato
and Loquat (Xu et al., 2019; Polak et al., 2021). In addition, ripe fruit contains more amino
acids than unripe fruit, which is likely due to greater maturity and longer daylight hours
(Snowden et al., 2015; Zou et al., 2020).

According to our findings,D. delavayi contains plenty of flavonoids and triterpenoids, of
which the flavonoids related to nobiletin and tangeretin is most significantly up-regulated.
Prior research has demonstrated that these compounds contribute significantly to the
colour change of fruit pericarp (Wang et al., 2020; Zhang et al., 2020). Therefore, it is
hypothesized in this study that this is one of the reasons why ripe D. delavayi is red or
yellow. During the ripening of D. delavayi, the triterpenoids exhibit a similar upward
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trend to jujube triterpenoids (Song et al., 2020), as discovered in this study. Triterpenoids
promote the biosynthesis of the fruit cuticle, which thickens the cuticle during ripening
(Snowden et al., 2015). This enhances the protection against biotic and abiotic stresses
during ripening, which ensures the integrity of fruit during development (Tafolla-Arellano
et al., 2017; Li et al., 2020).

KEGG enrichment analysis was conducted to reveal the most significant differences
between ripe and unripe metabolites from the phenolic pathway (flavonoid biosynthesis
and flavonol biosynthesis) (GX and GW). A vast majority of the up-regulated compounds
as enriched in these pathways have antioxidative and anti-inflammatory properties (e.g.,
isoquercitrin and astragalin) (Ferrer et al., 2008), which is consistent with the result of prior
research on the medicinal quality of D. delavayi. Meanwhile, this provides a reference for
future research on the physiology of D. delavayi during development.

CONCLUSION
Herein, the metabolome is applied to conduct a comprehensive analysis of the metabolic
changes between unripe D. delavayi and ripe D. delavayi, which lays a foundation for the
metabolic studies of fruit quality. These distinct metabolites are predominantly involved
in the biosynthesis and synthesis of secondary metabolites, such as pantothenic acid,
flavonoids, and amino acids. Notably, these metabolites are closely related to the medicinal
properties of D. delavayi. The findings of the study shed new light on the breeding of fruit
trees and the planting of high-quality fruits.
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