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ABSTRACT
Background. Superimposition of vibration has been proposed in sports training using
several devices and methods to enhance muscle activation and strength adaptations.
Due to the popularity of suspension training, vibration systems have recently been
developed to increase the effects of this training method. The present cross-sectional
study aims to examine the effects of superimposing vibration on one of themost popular
exercises in strength and conditioning programs: push-ups.
Methods. Twenty-eight physically active men and women executed push-ups in three
suspended conditions (non-vibration, vibration at 25 Hz, and vibration at 40 Hz).
OMNI-Res scale was registered, and surface electromyographic signals were measured
for the activity of the right and left external oblique, anterior deltoid, triceps brachii,
sternal, and clavicular heads of the pectoralis major.
Results. A linear mixed model indicated a significant fixed effect for vibration at 25 Hz
and 40 Hz on muscle activity. Suspended push-ups with superimposed vibration (25
Hz and 40 Hz) showed a significant higher activity on left (25 Hz: p= 0.036, d = 0.34;
40 Hz: p= 0.003, d = 0.48) and right external oblique (25 Hz: p= 0.004, d = 0.36; 40
Hz: p= 0.000, d = 0.59), anterior deltoid (25 Hz: p= 0.032, d = 0.44; 40 Hz: p= 0.003,
d = 0.64), and global activity (25 Hz: p= 0.000, d = 0.55; 40 Hz: p= 0.000, d = 0.83)
compared to non-vibration condition. Moreover, OMNI-Res significant differences
were found at 25 Hz (6.04± 0.32, p= 0.000 d = 4.03 CI= 3.27, 4.79) and 40 Hz (6.21
± 0.36 p= 0.00 d = 4.29 CI = 3.49, 5.08) compared to the non-vibration condition
(4.75 ± 0.32).
Conclusion. Superimposing vibration is a feasible strategy to enhance the muscle
activity of suspended push-ups.

Subjects Anatomy and Physiology, Kinesiology, Sports Medicine
Keywords Instability, Muscle activity, Suspension training, Upper limb, Vibration

INTRODUCTION
Combining different strength training methods is an increasingly used strategy to reach
sports performance and competitive advantages. The synergistic effect of recruiting prime
movers, antagonists, and stabilizers, justifies the use of complex exercises that present
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instability (La Scala Teixeira et al., 2019). This effect can be even more important in sports,
where perturbed tasks constitute the essence of their specificity (Behm & Anderson, 2006).
The upper body muscles can benefit from instability, especially in overhead disciplines,
such as handball, water polo or hockey, and gymnastic sports, continuously demanding
precise, powerful, complex, and unidirectional actions. Acting as a pendulum by rotating
around a singular anchor point above, suspension training uses its essential characteristics
(vector resistance, stability, and pendulum) and body weight to enhance neuromuscular
demands (Bettendorf, 2010).

Complex tasks involving instability have been combined with mechanical vibrations to
increase its neuromuscular demands in the past (Cloak et al., 2013; Marín & Hazell, 2014;
Ritzmann et al., 2014; Sierra-Guzmán et al., 2018; Aguilera-Castells et al., 2019; Aguilera-
Castells et al., 2021). Vibratory training transfers vibration on the muscle to elicit the tonic
vibration reflex (Cardinale & Bosco, 2003). Superimposing vibration can alter the motor
unit recruitment, activating faster and larger motor units (Martin & Park, 1997; Xu et al.,
2018), thus reinforcing the possible benefits of using those devices in standard training
methods (Cardinale & Wakeling, 2005). Whole-body vibration (WBV) applied through
platforms is the most studied vibrating method to provoke acute neuromuscular effects
(Cardinale & Lim, 2003; Rønnestad, 2009a; Rønnestad, 2009b) and long-term adaptations
(Gollhofer, 2010;Manimmanakorn et al., 2014). In contrast, other studies demonstrated no
significant chronic effects of vibration in parallel squat 1RM (Rønnestad et al., 2012) and
elbow flexion 1RM (Drummond et al., 2014). Nevertheless, several devices superimposed
vibration on barbells (Poston et al., 2007; Mischi & Cardinale, 2009; Moras et al., 2010;
Xu, Rabotti & Mischi, 2013), dumbbells (Bosco, Cardinale & Tsarpela, 1999; Cochrane
& Hawke, 2007), and cables (Issurin & Tenenbaum, 1999; Issurin et al., 2010) have also
been designed to transfer vibratory stimuli to the upper body. Mischi & Cardinale (2009)
reported significantly higher muscle activity in armmuscles when performing the isometric
V exercise. Moras et al. (2010) have demonstrated the acute effects of superimposing
vibration in a bench press in the prime movers, especially during flexion. Poston et al.
(2007) showed a greater bench press average power in a vibrating condition, although
they did not assess muscle activity. The authors superimposed the vibrating engine on the
barbell side. Similarly, Xu, Rabotti & Mischi (2015) prototyped a bench to combine the
effect of muscle tension and vibration on muscle activation, demonstrating the benefits of
using an adaptive normalized least mean square algorithm to determine the real effects of
superimposed vibration on the biceps brachii. Lately, vibration has been superimposed on a
suspension device in lower limb exercises (Aguilera-Castells et al., 2021). When performing
dynamic supine bridges and hamstring curls, surface electromyography reflected a higher
activity of the muscles proximal to the straps (gastrocnemius medialis, lateralis, and
semitendinosus). However, the effect on the primary movers was non-significant.

Beyond the physiological markers, reporting the perception of how hard the load is lifted
has been a recurrent method to guide and monitor the strength training programs. For this
purpose, OMNI Perceived Exertion Scale for Resistance Exercise (OMNI-Res) has been
developed by Robertson et al. (2003) and validated in several strength and conditioning
contexts with promising results (Robertson et al., 2005; Lagally & Robertson, 2006; Colado
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et al., 2012; Bautista et al., 2014; Buscà et al., 2020). Indeed, the mentioned studies reported
that the scale is strongly connected to 1RM,muscle activity, or total weight lifted in different
training environments. Furthermore, other studies have demonstrated the increased
exertion perception performing the exercises under vibration conditions (Marín et al.,
2012a;Marín et al., 2012b; Aguilera-Castells et al., 2021).

Therefore, the main objective of the present study was to examine the effects of
vibration on muscle activity in dynamic suspended push-ups. It was hypothesized that the
superimposed vibration on the suspension straps might obtain higher muscle activity than
the suspended condition without vibration. It was also hypothesized that the OMNI-Res
perceived exertion scale for resistance exercise would be higher in the vibration exercises
than the non-vibrating exercises.

MATERIALS & METHODS
Design
A cross-sectional study design investigated the effects of a suspension device with
superimposed vibration on upper body muscle activity. Participants performed suspended
push-ups in non-vibration, vibration at 25 Hz and 40 Hz. Surface electromyography
(sEMG) was used to record and compare the activity of the right and left external
oblique, anterior deltoid, triceps brachii, and sternal and clavicular heads of the pectoralis
major. sEMG values were expressed as a percentage of maximum voluntary isometric
contraction (% MVIC). Furthermore, the perceived exertion was assessed using the
OMNI-Perceived Exertion Scale for Resistance Exercise (OMNI-Res) under all suspended
push-ups conditions (Fig. 1).

Participants
Twenty-eight physically active male (n= 25, mean age = 22.7 ± 3.6 years, height = 1.8
± 0.1 m, body mass = 77.7 ± 8.4 kg, body mass index = 24.5 ± 2.1 kg m−2, suspension
training experience = 5.2 ± 2.7 years) and female (n= 3, mean age = 22.6 ± 0.6 years,
height = 1.6 ± 0.0 m, body mass = 56.0 ± 4.0 kg, body mass index = 21.9 ± 2.4 kg m−2,
suspension training experience = 3.7 ± 2.5 years) voluntarily participated in the study.
Participants were excluded from participating in the study if their suspension training
experience was under one year, did not perform a minimum of 90 min of physical activity
per week, or had cardiovascular,musculoskeletal, or neurological diseases. Before beginning
the familiarization session, all participants were informed of all study procedures, benefits,
and risks, in oral and written form, before receiving and signing the informed consent
form. The Physical Activity Readiness Questionnaire (PAR-Q) was also handed out to the
participants to identify any health risks related to physical exercise (Warburton et al., 2011).
Three to four hours before the testing sessions participants did not ingest any stimulant
substances (e.g., caffeine), food or drink. In addition, no high-intensity physical activity was
performed 24 h before the tests. The Ethics and Research Committee Board of Blanquerna
Faculty of Psychology and Educational and Sport Sciences at Ramon Llull University in
Barcelona, Spain (ref. number 1819005D) approved this study, and the protocols followed
the principles of the Declaration of Helsinki (revised in Fortaleza, Brazil, 2013).
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Figure 1 Study design, standardized suspended push-up, and sEMG signal. (A) Schematic representation of the study design with the timeline of
the different procedures. The vertical arrow indicates the recording of the sEMG signal and the collection of the OMNI-Res. (B) Suspended push-up
under vibration conditions. The black box represents the vibration device. The sketched arrow indicates the direction and transmission of vibration
through the suspension straps. (C) Sample of the sEMG signal of the clavicular head of pectoralis major during a repetition of the suspended push-
up. The eccentric phase is the range of motion from the upper to the lower limit, and the concentric phase from the lower to the upper. T0= start of
the suspended push-up; T1= end of the eccentric phase and onset of the concentric phase; T2= end of the suspended push-up.

Full-size DOI: 10.7717/peerj.14435/fig-1

Procedures
A familiarization session was held one week before the testing sessions. Participants were
instructed to perform the suspended push-ups with proper technique in the different
conditions (non-vibration, vibration at 25 Hz and 40 Hz) in two sets of five repetitions.
Anthropometric (e.g., weight, height, acromion distance) and training experience data were
collected. The test session was carried out a week later and at the same time in the morning.
Researchers cleaned the electrode site with alcohol, shaving the skin area when necessary,
thus placing the surface electrodes (Biopac EL504 disposable Ag-AgCl; BIOPAC System,
Inc., Goleta, CA) on the external oblique (left and right), anterior deltoid, triceps brachii,
sternal and clavicular portion of pectoralis major on the dominant upper limb (Criswell
& Cram, 2011). A reference electrode over the iliac crest was placed and all electrodes
were placed at an inter-electrode distance of two cm following the SENIAM guidelines
(Hermens et al., 2000). Next, a standardized warm-up consisting of 10 min of dynamic
upper body calisthenics and two sets of eight repetitions of strict push-ups on the floor
was performed. Then, participants executed a maximal voluntary isometric contraction
(MVIC) test for the right and left external oblique, anterior deltoid, triceps brachii, and the
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sternal and clavicular head of the pectoralis major. TheMVIC values were used as a baseline
to normalize the sEMG signal (Halaki & Ginn, 2012). After the normalization protocols,
participants completed a set of five dynamic repetitions for each push-up condition in a
randomized order. The standardized suspended push-up technique consisted of holding
the legs at shoulder-width apart, the hands separated at 150% of the acromial distance, in
a pronated position, and grabbing the suspension strap handles (TRX Suspension Trainer;
Fitness Anywhere, San Francisco, CA, USA). Throughout the exercise, participants were
instructed to maintain the lower back natural sway. For the lower position during the
suspended push-up conditions, the elbow flexion was standardized at 90◦ and measured
using a goniometer. Customized stoppers (similar to hurdles) were used to control the
elbow flexion and 150% acromial width. Participants began the suspended push-up in
the upper position (elbow extension) with a plantar flexion over the plumb line between
the anchor point of the suspension strap and the ground. Participants flexed their elbows
to 90◦ (lower position) in this position, then pushed with their hands on the handles to
extend their elbows and return to the upper position (Fig. 2). The length of the suspension
strap was standardized at 1.64 m, and the inclination ranged from 20◦ to 33◦ (mean ±
SD: 26.5◦ ± 3.5). A positional transducer (WSB 16k-200; ASM Inc., Moosinning, DEU)
was used to control the range of movement in each suspended push-up condition. The
positional transducer tether was attached to the chest. The measured signal was used to
identify the beginning and end of each repetition and determine the eccentric phase (lower
position) and the concentric phase (upper position) of the suspended push-up. The pace
of the push-up repetitions was standardized using a metronome settled at 60 beats per
minute (1 s per phase). Furthermore, all participants were given two-minute rest for each
suspended push-up attempt. Those repetitions that did not follow the standard technique
established by the researchers were repeated with two-minute rest between attempts. All
participants were asked about the possible discomfort from the vibration exposure on the
head or other body regions. None of them reported discomfort.

A vibration device provided the superimposed vibration on the suspension straps for
suspension training settled at two frequencies (25 Hz and 40 Hz) with an amplitude of
eight mm (peak to peak). The device was attached between the ceiling anchor point and
the suspension strap to transmit the vibration through the straps using a connecting rod’s
vertical motion caused by an electric motor’s rotary motion.

Muscle activity assessment
Muscle activity of the analyzed muscles during suspended push-ups (non-vibration,
vibration at 25 Hz and 40 Hz) was obtained using the six-channel sEMG BIOPACMP-150
System (sampling rate: 1.0 kHz; BIOPAC System, Inc., Goleta, CA). The sEMG was
processed using a bandpass filtered at 10–500 Hz with a fourth-order 50 Hz Butterworth
notch filter. The motion artifacts were remove using additional notch filters and applied for
the 25 Hz and 40 Hz vibration frequencies, as recommended Borges et al. (2017). Then, the
root mean square (RMS) algorithm with a moving window of 150 ms with 50 ms overlap
was used to smooth the sEMG signal. Afterward, the sEMG signal was normalized using the
maximum smoothed sEMG activity reached by each muscle group in the different MVIC
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Figure 2 Suspended push-up: frontal view.Detail of the customized stops (similar to hurdles) used to
standardize the elbow flexion and the acromial width. The black box represents the vibration device.

Full-size DOI: 10.7717/peerj.14435/fig-2

trails. The normalized sEMG signal was expressed as a percentage of the MVIC (%MVIC).
This process was done with the AcqKnowledge 4.2 software (BIOPAC System, Inc., Goleta,
CA). In order to normalized the sEMG signal, the MVIC protocol consisted of performing
anMVIC for 5 s, increasing the contraction progressively for 2 s andmaintaining theMVIC
for 3 s, with a 3-minute rest between attempts. The best of the three 5-second attempts
was used to normalize the EMG signal (Jakobsen et al., 2013). The different positions to
reach the MVIC followed the Konrad (2006) guidelines, thus for the sternal and clavicular
head of pectoralis major the participants lay supine, with their feet on the floor and pushed
with their arms (elbows 90◦) against an immovable resistance (fixed bar); for the anterior
deltoid, the participants sat on a bench with their feet on the floor and leaned their back
against the backrest to perform a glenohumeral flexion movement by holding a fixed bar
with the hand closed in a pronated position blocking the elbows; in the previous position,
the bar was adjusted to allow the participants to hold their elbows at 90◦, and in this
position to perform an extension movement of the elbows against the fixed bar to perform
the MVIC of the triceps brachii; for the external oblique (left and right) participants laid
on a bench in a side position with their legs and hips held with ratchets, in this position a
manual resistance was applied against the lateral trunk flexion movement.

Perceived Subjective Exertion Measurement (OMNI-Res scale)
After performing each suspended push-up condition, participants were asked about
perceived subjective exertion using the OMNI-Res scale and following Robertson et al.
(2003) protocol. During the familiarization session, a visual OMNI-Res scale was displayed
to ensure that participants provided an accurate perception of the exertion. Participants
were asked to report their subjective perception of exertion values ranging from0 (extremely
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easy) to 10 (extremely hard). Participants were instructed that on the OMNI-Res scale, a
value of 0 is equivalent to performing an unweighted exercise and a value of 10 is equivalent
to lifting one repetition maximum. In the test session, the protocol mentioned above was
followed, and the OMNI-Res value of each exercise condition was recorded.

Data analysis
The data analysis consisted of determining the differences in each analyzed muscle’s peak
activation (%MVIC) in the different conditions of the suspended exercise (push-ups
non-vibration, 25 Hz, and 40 Hz) for three intermediate repetitions. Thus, each suspended
push-up condition’s first and fifth repetition were discarded. In addition, the peak sEMG
was analyzed for the concentric (upper position) and eccentric (lower position) phases of
the three repetitions. For OMNI-Res, all recorded values after each exercise condition were
analyzed as mean OMNI-Res.

Statistical analyses
The power analysis and the sample size were calculated with the General Linear Mixed
Model Power and Sample Size software (GLIMMPSE; version 3.0.0) (Kreidler et al., 2013).
For a sample of 28 participants, GLIMMPSE showed power of 0.95 and α level of 0.05. The
Shapiro–Wilk test was used to determine if dependent variables were normally distributed,
except the OMNI-Res. The dependent variables were: (i) the peak EMG amplitude (right
and left external oblique, anterior deltoid, triceps brachii, sternal and clavicular heads
of the pectoralis major), (ii) mean value in these muscles (global activity), and (iii) the
OMNI-Res values. Data from all dependent variables were shown as mean ± standard
error of the mean (SE). An inferential parametric test, a linear mixed model, was carried
out to determine the acute effects of suspended push-ups conditions (non-vibration, 25 Hz
and 40 Hz) on each analyzed muscle and the global activity. The linear mixed model used
muscle activity and global activity as dependent variables, suspended push-ups conditions
as the fixed effect, and participants as the random effect. If the linear mixed model showed
a statistically significant fixed effect (p< 0.05), post hoc comparisons with Bonferroni
correction were conducted.

For the previous model, the significance of the fixed effects associated with the outcome
variable included in the model was assessed using the Wald test, with statistical significance
set at p< 0.05. After the models were validated, the residuals of the final models were
explored for normality, homogeneity, and independence assumptions. The normality
assumption of the residuals was checked using a normal Q–Q plot of residuals.

The effect of suspended push-ups conditions on OMNI-Res was established using a
non-parametric Friedman test. A post hoc Wilcoxon test with the Bonferroni correction
was carried out in case of a significant main effect. Cohen’s (1988) d effect size with 90%
confidence intervals (CI) were calculated and interpreted as trivial (<0.2), small (from 0.2
to 0.6), moderate (from 0.6 to 1.2), large (from 1.2 to 2.0), and very large (>2.0) (Hopkins
et al., 2009). The SPSS statistical software (version 26; SPSS Inc., Chicago, IL, USA) was
used to conduct the statistical data analyses setting the p-value at <0.05.
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RESULTS
The normalized sEMG (%MVIC) values for each analyzedmuscles under suspended push-
ups conditions for concentric and eccentric phase are shown in Table 1, with the fixed effect
of the exercise condition on muscle activity. For the concentric phase, the suspended push-
ups with superimposed vibration (25 Hz and 40 Hz) showed a significant higher activity on
left (25 Hz: p= 0.036, d = 0.34; 40 Hz: p= 0.003, d = 0.48) and right external oblique (25
Hz: p= 0.004, d = 0.36; 40 Hz: p= 0.000, d = 0.59), anterior deltoid (25 Hz: p= 0.032,
d = 0.44; 40 Hz: p= 0.003, d = 0.64) and global activity (25 Hz: p= 0.000, d = 0.55; 40
Hz: p= 0.000, d = 0.83) compared to non-vibration condition. Superimposed vibration at
25 Hz on the suspension strap provoked a significant small increase on the sternal head of
pectoralis major compared to non-vibration condition (p= 0.007, d = 0.39). For triceps
brachii and clavicular head of pectoralis major a significant small increase on activity was
found under suspended push-up at 40 Hz compared to non-vibration condition (p= 0.007
d = 0.47, p= 0.000 d = 0.60; respectively). Moreover, the standardized differences at 90%
CI for the suspended push-ups conditions are represented as forest plots (Figs. 3 and 4).
For the eccentric phase, superimposed vibration (25 Hz and 40 Hz) significantly increased
left (25 Hz: p= 0.034, d = 0.41; 40 Hz: p= 0.002, d = 0.53) and right external oblique (25
Hz: p= 0.024, d = 0.33; 40 Hz: p= 0.000, d = 0.64), and the sternal head of pectoralis
major activity (25 Hz: p= 0.013, d = 0.35; 40 Hz: p= 0.000, d = 0.51) compared to
suspended push-up without vibration. Additionally, a significant small increase of right
external oblique activity was found under suspended push-up at 40 Hz, in comparison
with superimposed vibration at 25 Hz (p= 0.035, d = 0.29).

Figure 5 shows the OMNI-Res comparison under suspended push-up conditions. A
significant main effect was found on suspended push-up conditions on OMNI-Res [X2(2)
= 26.805 p= 0.000]. The perceived subjective exertion (OMNI-Res) was significantly
higher for suspended push-ups at 25 Hz (6.04 ± 0.32, p= 0.000 d = 4.03 CI = 3.27, 4.79)
and 40 Hz (6.21 ± 0.36, p= 0.000 d = 4.29 CI = 3.49, 5.08) compared to non-vibration
(4.75 ± 0.32). A non-significant difference on OMNI-Res was found between suspended
push-ups at 25 Hz and 40 Hz (p= 0.867, d = 0.50 CI = 0.05, 0.94).

DISCUSSION
The present study showed that superimposing vibration to an upper limb suspended
push-up is beneficial, increasing the analyzed muscles’ global activity. This primary finding
reinforces the evidence that combining different strength methods can elicit superior
muscular demands (Poston et al., 2007; Mischi & Cardinale, 2009; Moras et al., 2010; Xu,
Rabotti & Mischi, 2013). These results can be relevant for coaches and practitioners trying
to optimize the time spent in strength and conditioning practices, especially in team-sport
settings where time devoted to sessions is limited in-season.

Push-up is one of the most used upper body exercises in sports training. Moreover,
it has become even more popular since several authors (Snarr et al., 2013; Calatayud et
al., 2014a) have demonstrated that push-ups can be more challenging under suspension
or using unstable environments (Calatayud et al., 2014b; De Araújo et al., 2020). In the

Buscà et al. (2022), PeerJ, DOI 10.7717/peerj.14435 8/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.14435


Table 1 sEMG activity for each analyzed muscle under suspended push-up conditions.

Suspended push-up

Musclesa Non-Vibration Vibration at 25 Hz Vibration at 40 Hz
Mean± SE Mean± SE Mean± SE F p

Concentric phase
External oblique_R 4.30± 0.40 5.08± 0.43* 5.60± 0.44* 15.81 0.000
External oblique_L 4.08± 0.40 4.82± 0.44* 5.09± 0.40* 6.67 0.003
Triceps brachii 29.04± 1.18 30.26± 1.71 33.36± 2.14* 5.46 0.007
Anterior deltoid 41.18± 2.10 47.05± 2.86* 48.84± 2.39* 6.51 0.003
Pectoralis major_S 24.81± 2.02 29.23± 2.27* 27.77± 2.20 5.32 0.008
Pectoralis major_C 38.67± 2.47 42.26± 2.44 46.16± 2.28* 9.99 0.000
Global activityb 23.68± 0.85 26.45± 1.05* 27.80± 1.02* 24.15 0.000
Eccentric phase
External oblique_R 4.46± 0.35 5.11± 0.40* 5.72± 0.40** 14.34 0.000
External oblique_L 4.18± 0.34 4.96± 0.37* 5.27± 0.43* 7.17 0.002
Triceps brachii 26.55± 1.48 28.54± 1.81 27.44± 1.83 1.10 0.337
Anterior deltoid 43.22± 2.64 42.13± 3.08 39.78± 3.37 1.35 0.266
Pectoralis major_S 19.08± 1.26 22.09± 1.92* 23.42± 1.90* 9.73 0.000
Pectoralis major_C 31.50± 3.09 32.62± 3.22 35.10± 3.01 2.54 0.087
Global activityb 21.50± 1.01 22.57± 1.21 22.79± 1.18 2.84 0.066

Notes.
*Significantly different with non-vibration condition.
**Significantly different with vibration at 25 Hz condition.
aData presented as normalized muscle activity (%MVIC).
bGlobal activity=mean of the six muscles.
C, clavicular head; L, left; R, right; SE, standard error of the mean; S, sternal head.

present study, no comparison was performed between traditional and suspended push-
ups; nevertheless, it was hypothesized that the combination of vibration and suspension
increases the activation of the primary push-up movers and, probably, the stabilizers of
the action. The hypothesis was mainly confirmed in all the analyzed muscles, especially
in the concentric phase at 40 Hz. Several authors have demonstrated differentiated effects
depending on vibration frequencies, mainly in lower bodymuscles (Hazell, Jakobi & Kenno,
2007; Di Giminiani et al., 2013). However, the effects on the upper body muscles are still
unclear. In this vein, the addition of vibration at a higher rate of frequencies tested (30–40
Hz) has been shown as an activity enhancer in this and similar exercises performed in a
vibration plate (Ashnagar et al., 2016; Grant et al., 2019). Thus, superimposing vibration
seems to be a proper strategy to enhance muscle activity in a suspended push-up. However,
no significant differences were found between 25Hz and 40Hz when overall muscle activity
was considered.

The anterior deltoid is the most differentially demanded muscle under superimposed
vibration (Grant et al., 2019) or oscillatory vibration exercises (Arora et al., 2013). Its role
as a prime mover of shoulder adduction and stabilizer of the shoulder joint, together
with the proximity to the vertical plane of the vibration transmission, might explain this
finding (Aguilera-Castells et al., 2021). Furthermore, body inclination (20◦ to 33◦), type of
grip, and angle between the straps and the floor reinforce the role of the anterior deltoid
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Figure 3 Acute effects of superimposed vibration at 25 Hz and suspended push-up without vibration
on sEMG activity for each analyzed muscle at concentric phase. Bars represent the 90% confidence in-
terval for the effect of superimposed vibration at 25 Hz on suspended push-up. Dotted lines represent the
smallest substantial threshold. C, clavicular head; Global activity, mean of the six muscles; L, left; R, right;
S, sternal head.

Full-size DOI: 10.7717/peerj.14435/fig-3

in stabilizing the shoulder. However, this muscle is less active under unstable conditions
(Calatayud et al., 2014b; Borreani et al., 2015; Youdas et al., 2020). As contributors to arm
flexo-extension and shoulder adduction, these two muscle heads are close to the vertical
plane and proximal to vertical vibration transmitted through the suspension strap. The
activity of the anterior deltoid is probably not enough to dampen vibration. Both heads
of the pectoralis major have the additional work to perform and stabilize the suspended
dynamic push-up, especially the clavicular head at 40 Hz (Fig. 4) closer to the vibration
point. Furthermore, the technique used in this study, with straps situated inside the grip,
could explain the present findings. Indeed, this type of grip, with less distance between
the two handles, makes the action more unstable, and the main involved muscles are
overstimulated by the effect of vibration (Aguilera-Castells et al., 2019). This might also be
the case with triceps brachii at 40 Hz. If superimposed vibration improves the quality of
the strength exercises that recruit this muscle by raising the muscle activation, this effect
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Figure 4 Acute effects of superimposed vibration at 40 Hz and suspended push-up without vibration
on sEMG activity of each analyzed muscle at the concentric phase. Bars represent the 90% confidence in-
terval for the effect of superimposed vibration at 40 Hz on the suspended push-up. The dotted lines repre-
sent the smallest substantial threshold. C, clavicular head; Global activity, mean of the six muscles; L, left;
R, right; S, sternal head.

Full-size DOI: 10.7717/peerj.14435/fig-4

could potentially help to reduce injuries in overhead athletes. Deltoids are synergists of
the rotator cuff muscles; these muscles are typically torn by overuse when athletes present
shoulder impingement (Page, 2011), one of the most frequent injuries in these disciplines.

Although the action plane of this muscle during most of the range of movement is not
vertical, the action of the triceps brachii before the complete extension of the arm at the
end of the concentric phase is aligned with the vertical transmission of vibration and thus
overstimulated. The effect is even more apparent in the adducted technique proposed
in the present study (Cogley et al., 2005). This conclusion agrees with Moras et al. (2010)
comparing the vibration effects of pushing a vibratory bar and Mischi & Cardinale (2009)
pushing an electromagnetic arm actuator involving biceps and triceps brachii. Both studies
used frequencies around 30 Hz.
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Figure 5 Perceived subjective exertion under suspended push-up conditions. Bars represent the mean
of OMNI-Res values, and the error bars represent the standard error of the mean (SE). A.U., arbitrary
units. An asterisk (*) indicates that it is significantly different from the non-vibration condition.

Full-size DOI: 10.7717/peerj.14435/fig-5

According to Chen et al. (2019), in the present study, both external obliques were
significantly higher stimulated with the superimposition of vibration. The external oblique
is located on the lateral and anterior parts of the abdomen. It is a broad, thin, and
irregularly quadrilateral muscle whose muscular portion holds the side. Its aponeurosis
is in the anterior wall of the abdomen, and the anterior internal oblique is deep below
the anterior external oblique. Thus, in contrast to other studies where no effects were
found for the most distal muscles from the vibration exposure point (Aguilera-Castells et
al., 2021), the present findings evidenced the increased activation of abdominals (Wirth,
Zurfluh & Müller, 2011). The superior fatigue of the core muscles induced by the vibration,
especially in suspended exercises, might be a relevant factor (Behm et al., 2010; Mok et al.,
2015). Indeed, core muscles need to use more energy to maintain posture in an unstable
environment, and muscle activity increases (Cuğ et al., 2012; Panza et al., 2014). Again,
the role of core muscles in athletic performance and injury prevention it is not negligible
(Cissik, 2011). Higher activation of these muscles by means of superimposed vibration may
have a superior protective effect in athletes at risk.

OMNI-Res results showed a significant increase in effort perception in both vibration
frequencies for the non-vibration condition. Similarly, Marín et al. (2012b) found
significant increased RPE when performing a squat + biceps curl on a WBV platform
and Aguilera-Castells et al. (2021) in suspended supine bridge and hamstring curl
superimposing vibration. The authors found significant OMNI-Res increases in all
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vibration conditions in this work. This finding suggests that the superimposition of
vibration is always perceived as a more demanding condition (Marín et al., 2012a).

The present study investigated a limited variety of vibration frequencies. Although the
used frequencies are the most studied, lower to 25 Hz and higher than 40 Hz should be
considered for future research. In addition, the number of sEMG channels limited the
number of muscles analyzed. Thus, one could have observed the role played by other
allegedly secondary muscles during the different phases of the push-up exercise. Indeed,
the cocontraction phenomenon between agonists and antagonists of an unstable upper
limb task (Behm & Anderson, 2006) can be explored when adding the additional stimulus
provided by the vibratory system (Rodríguez Jiménez et al., 2015). Since the exercise was
dynamic, the wired system used for the sEMG assessment and its compatibility with the
suspended push-up forced the investigators to choose a proper technique for avoiding
electrode removals. For this reason, the effects of vibration found in the studied push-up
technique might not be generalized to other types of execution. The present study was
conducted with trained individuals. All of them experienced in suspension training and
with total movement control, even under vibrating conditions. However, this might not
happen in less experienced populations, wheremotion control should be guaranteed. Other
protocols used accelerometers for this purpose (Buscà et al., 2020).

CONCLUSIONS
Superimposing vibration seems to be a proper strategy to enhance muscle activity in
suspended push-ups. 25 Hz and 40 Hz frequencies provoked similar effects on global
activity, and all the muscles analyzed, except in triceps brachii and anterior deltoid in the
eccentric phase. Nevertheless, no differences were found between the two frequencies,
except in the right external oblique. Vibration also led to a higher value of subjective
perception of exertion (OMNI-Res), but no differences were found between the two tested
frequencies.
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