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ABSTRACT
Ubiquitination is an important post-translational modification of proteins that reg-
ulates many cellular activities. Traditional experimental methods for identification
are costly and time-consuming, so many researchers have proposed computational
methods for ubiquitination site prediction in recent years. However, traditional
machine learning methods focus on feature engineering and are not suitable for
large-scale proteomic data. In addition, deep learning methods are mostly based
on convolutional neural networks and fuse multiple coding approaches to achieve
classification prediction. This cannot effectively identify potential fine-grained features
of the input data and has limitations in the representation of dependencies between
low-level features and high-level features. A multi-dimensional feature recognition
model based on a capsule network (MDCapsUbi) was proposed to predict protein
ubiquitination sites. The proposed module consisting of convolution operations and
channel attention was used to recognize coarse-grained features in the sequence
dimension and the feature map dimension. The capsule network module consisting of
capsule vectorswas used to identify fine-grained features and classify ubiquitinated sites.
With ten-fold cross-validation, the MDCapsUbi achieved 91.82% accuracy, 91.39%
sensitivity, 92.24% specificity, 0.837 MCC, 0.918 F-Score and 0.97 AUC. Experimental
results indicated that the proposed method outperformed other ubiquitination site
prediction technologies.

Subjects Bioinformatics, Computational Biology, Molecular Biology, Data Mining and Machine
Learning
Keywords Ubiquitination site, Capsule network, Feature recognition, Channel attention

INTRODUCTION
Ubiquitination is one of the most important post-translational modifications (PTMs)
processes of proteins. Protein ubiquitination is a process in which ubiquitin conjugates
to the substrate protein under the catalysis of E1 activation enzymes, E2 conjugation
enzymes and E3 ligation enzymes (Herrmann, Lerman & Lerman, 2007). Studies have
shown that the ubiquitin-proteasome pathway plays a significant role in the regulation of
many biological processes, such as DNA repair, cell apoptosis and cell proliferation (Tu
et al., 2012). In addition, ubiquitination is not only associated with inflammation, cancers
and neurodegenerative diseases, but also plays a role in the onset of autoimmunity and
muscle dystrophies (Hoeller, Hecker & Dikic, 2006; Popovic, Vucic & Dikic, 2014). Effective
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prediction of ubiquitinated sites is the key to understanding the mechanism of ubiquitin
modification. Traditional experimentalmethods for predicting ubiquitinated sites are costly
and time-consuming, so it is necessary to develop efficient and accurate computational
methods. In this article, the prediction of ubiquitinated sites is regarded as a dichotomous
classification problem, in which we can determine whether a site belongs to a ubiquitinated
site or a non-ubiquitinated site.

There are some computationalmethods based onmachine learningwhich have been used
to predict ubiquitinated sites. These methods can generally be divided into three categories:
(1) Some approaches focus on developing or combining coding methods to improve the
feature representation capability of the model. Tung & Ho (2008) proposed an IPMA
algorithm and combined the algorithm with support vector machines (SVM) to design
the UbiPred. Chen et al. (2011) proposed the CKSAAP encoding method and developed a
predictor called CKSAAP_UbSite. Based on the CKSAAP_UbSite, hCKSAAP_UbSite (Chen
et al., 2013b) was constructed by combining three other encoding methods. iUbiq-Lys (Qiu
et al., 2015) based on SVM combined the sequence evolutionary information (PseAAC).
(2) Some remove redundant features to improve the performance of the classifier by
using feature selection algorithms. Chen et al. (2013a) used the information gain (IG)
algorithm to integrate the information of key amino acid residues and key positions.
The principle of maximum relevance and minimum redundancy (mRMR) was used to
improve the performance of the prediction engine (Cai et al., 2012). Both UbiSitePred
(Cui et al., 2019) and Ubisite-Xgboost (Liu et al., 2021b) used LASSO to remove redundant
information. (3) Others have been proposed to develop efficient classifiers. Lee et al. (2011)
developed a predictor using a radial basis function network.Huang et al. (2016) constructed
a two-layer SVM model called UbiSite. Zhao et al. (2011) designed an ensemble random
forest classifier using feature vectors and extracted four features from protein sequences.
RUBI (Walsh, Di Domenico & Tosatto, 2014) was constructed with an iterative approach.
Efficient Bayesian Multivariate Classifier (EBMC) (Cai & Jiang, 2016) was combined with
531 physicochemical properties. ESA-UbiSite (Wang et al., 2017) used the ESA algorithm
to screen ubiquitinated sites.

The generation of large-scale proteomics data has led to the analysis of large amount
of ubiquitination data, but traditional machine learning methods are not applicable on
this topic. Therefore, deep learning models for large-scale ubiquitinated protein data
have also been developed, mainly in terms of combining encoding methods and using
transfer learning strategies. In terms of fusing encoding methods,He et al. (2017) proposed
a multimodal deep learning model, which fed sequence information, physicochemical
property information and evolutionary information of proteins into three sub-networks.
In addition, DeepUbi (Fu et al., 2019) extracted four different features from protein and
used convolutional neural networks (CNNs) to predict. In terms of using transfer learning
strategies, DeepTL-Ubi (Liu et al., 2021a) was developed for predicting ubiquitination sites
of multiple species. Wang et al. (2020) combined the transfer learning with a multilayer
CNN to identify plant ubiquitinated sites. It revealed the differences among three species
of animals, plants and fungi based on the sequences of ubiquitination proteins.
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At present, capsule network has been applied to PTMs site prediction. The CapsNet
architecture proposed by Wang, Liang & Xu (2019) consisted of three one-dimensional
convolutional layers and one fully connected layer, and had been used in seven PTM
types. The first two traditional convolutional layers in the model were used to increase
the representation ability. The extracted features were inputted into the latter two layers
(PrimaryCaps and PTMCaps) for further feature abstraction. This CapsNet model only
extracted sequence dimension features by convolution operation, and it was not applied
to ubiquitination site prediction. Caps-Ubi proposed by Luo et al. (2022) used capsule
network to predict ubiquitination sites, it also ignored two dimensions of features.

Although the existing computational methods have achieved considerable performance,
the following challenges remain in how to better predict large-scale protein ubiquitination
sites: (1) The machine learning models perform effectively on small-scale data, but it is
necessary to develop deep learningmethods due to the large-scale proteomic data. (2) Some
of the currently available deep learning models improve the performance of prediction
tools by merging multiple encoding methods to obtain more features of the ubiquitinated
protein. However, the above methods only extract single-dimensional features under
different encoding methods through convolution operation. This ignores features of other
dimensions, such as the feature map dimension. (3) Most deep learning models used to
predict ubiquitinated sites are based on traditional CNNs. Although CNNs have achieved
excellent classification performance in this field, its internal neurons are all scalars and
cannot represent the hierarchical dependence between high-level features and low-level
features. Therefore, the existing methods still have some limitations.

To address the drawbacks of the existing computational models, a new deep learning
model MDCapsUbi was proposed. The proposed model which encodes protein fragments
as feature vectors, recognizes the features of input data in sequence dimension and
feature map dimension respectively through convolution operation and channel attention
mechanism. After obtaining the coarse-grained features of the above two dimensions,
the capsule mapping (CapsMap) layer of the capsule network further fuses the features
of the two dimensions and refines them into capsule vectors. Features are transformed
in a coarse-to-fine fashion. The different capsule vectors also reflect different amino acid
position relationships on protein fragments, namely motifs. The capsule classification
(CapsClassify) layer is composed of a positive capsule and a negative capsule. The mapping
relationship between the low-level features represented by the CapsMap and the high-level
features represented by the CapsClassify is determined by the dynamic routing algorithm.
The routing process is more effective than the pooling operation in traditional CNNs. With
the effective combination of multi-dimensional feature recognition and capsule network,
MDCapsUbi achieves superior performance compared with other computational models.

MATERIALS & METHODS
Dataset
The large-scale protein ubiquitination dataset used in this article is collected from PLMD
(Xu et al., 2017), which is the largest online lysine modification database and contains
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121,742 ubiquitination sites from 25,103 proteins. To avoid interference from redundant
information of homologous sequences with high similarity, CD-HIT (Huang et al., 2010)
was used to clean the original dataset. First, we used the cd-hit module to remove
homologous sequences with a threshold of 40% in the original dataset. Then, 60,879
protein ubiquitination sites from 17,406 proteins were obtained. The negative samples
were also extracted from these protein sequences. To avoid homologous interference
between the sequences in the negative samples and the positive samples, the cd-hit-2d
module was used to filter the sequences in the negative samples with more than 50%
similarity to the positive samples, and 320,083 non-ubiquitination sites were obtained.
Following the previous study (Fu et al., 2019; Khanal et al., 2022), we selected the same
number of positive and negative samples to form a balanced dataset (the number of both
ubiquitinated and non-ubiquitinated sites was 60,879).

Architecture design
MDCapsUbi consists of a sequence encoding module (SEM), multi-dimensional feature
recognition module (MD-FRM) and capsule network module (CapsNM). SEM intercepts
the raw protein sequence into protein fragments and encodes the amino acids on the protein
fragments. Protein fragments are mapped as numerical vectors. MD-FRM identifies multi-
dimensional hidden features by convolution operations and channel attention mechanism.
CapsNM fuses and refines the features of two dimensions and realizes the classification
of ubiquitinated sites and non-ubiquitinated sites. The architecture of the proposed
MDCapsUbi is shown in Fig. 1.

Sequence Encoding Module (SEM)
To obtain the input data, n amino acids are extracted from each side of a ubiquitinated
site to form L-long protein fragments. If the protein fragment length is less than the
window length L, the corresponding position is represented by supplementary amino acid
X. One-hot encoding is used to encode protein fragments. For the 20 commonly used
amino acids (ACDEFGHIKLMNPQRSTVWY) and the supplementary amino acid X, each
amino acid is mapped as a numeric vector with 21*1 dimension consisting of 0 and 1.
For example, A is encoded as [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], and X is encoded as
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]. Eventually, a protein fragment can be represented
as a 21*L feature matrix M, which is expressed as follows:

M = [m1,m2,m3,...,mL] (1)

L= 2∗n+1 (2)

Multi-dimensional Feature Recognition Module (MD-FRM)
To improve the ability of the model to learn complex features, the features of protein
fragments are divided into coarse-grained features and fine-grained features. This module
ismainly used to identify coarse-grained features of proteins.MD-FRMrecognizes sequence
dimension features through convolution operations and further recognizes higher-order
hidden features of feature map dimension through channel attention mechanism.
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Figure 1 The architecture of the proposedMDCapsUbi.MDCapsUbi consists of SEM, MD-FRM and
CapsNM. The length of the protein fragment in SEM is L. The dimension of feature M in SEM is 21*L.
MD-FRM includes a convolutional block and channel attention. The number of channels in the first 1D
convolutional layer (Conv1) is 256, and the kernel size is 7. The number of channels in the second 1D
convolutional layer (Conv1) is 256, and the kernel size is 11. The channel attention is AvgNet. CapsNM
consists of CapsMap and CapsClassify. The dimensions of capsules are 10.

Full-size DOI: 10.7717/peerj.14427/fig-1

In feature recognition of sequence dimension, a convolution block is used for feature
matrixM . The convolution block consists of two one-dimensional convolution layers and
linear activation functions (ReLU). Then we obtain the feature maps M1 and M2. The
operations of the convolution block are defined as follows:

M1=ReLU (Conv (M ,W1,b1)) (3)

M2=ReLU (Conv (M1,W2,b2)) (4)

where b1,b2,W1 and W2 indicate the biases and weight matrices of the first convolution
layer and the second convolution layer respectively. Conv (.) defines the convolution
operation.

In feature recognition of feature map dimension, the global average-pooling operation
is used to compress feature map M2 first, and aggregate information on each channel of
feature maps is obtained. The aggregated feature information is then fed into a two-layer
fully connected network to obtain the weight feature, which has the same number of
channels as the feature map M2. Finally, M2 is multiplied by the weight feature to obtain
the final mapM

′

. The relevant operations are defined as follows:

Favg =GAP (M2) (5)

C = FC2
(
FC1

(
Favg ,W3

)
,W4

)
(6)

M
′

=M2⊗C (7)

where GAP (.) defines the global average-pooling operation. Favg indicates the average-
pooled feature with dimension size 1*1*h (h is the number of channels in the feature
map). FC1(.) and FC2(.) define fully connected networks, which use ReLU and Sigmoid
as activation functions, respectively. W3 and W4 indicate the weights of the two fully
connected layers respectively.
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Capsule Network Module (CapsNM)
Compared with CNN, the capsule network is composed of capsules instead of scalar
neurons. A capsule means a vector, which is a set of neurons. The capsule network in
this article adopts a similar capsule network structure in (Sabour, Frosst & Hinton, 2017),
consisting of the CapsMap layer and CapsClassify layer.

CapsMap can identify fine-grained features by further fusing and refining the features
identified in the sequence dimension and the feature map dimension, and it converts
them into capsule vectors. That means coarse-grained features are further converted into
fine-grained features. This layer is similar to a one-dimensional convolution layer, but the
scalar neurons are replaced by capsule vectors. There are only two capsule vectors inside
the CapsClassify, one is a positive capsule and the other is a negative capsule. Their length
represents the probability of ubiquitinated site and non-ubiquitinated site respectively.
The dimension of capsules in CapsNM is 10D. The nonlinear mapping between CapsMap
and CapsClassify is established by an iterative algorithm. This special nonlinear mapping is
called dynamic routingmechanism (Sabour, Frosst & Hinton, 2017), which enables network
internal parameters to be updated. The relevant operations are defined as follows:

ui=CapsConv
(
M
′
)
,i= 1,2,...,N (8)

ûj|i=Wijui,j = 1,2 (9)

oj =ROUTING
(
ûj|i,r,l

)
(10)

whereCapsConv(.) indicates the capsule mapping operation of CapsMap layer, ui indicates
i capsule vectors obtained. Wij is a trainable weight matrix. ûj|i indicates the prediction
vector from capsule i to capsule j.ROUTING

(
ûj|i,r,l

)
is the dynamic routing algorithm

and l denotes CapsMap layer. The hyperparameter r indicates that the dynamic routing
algorithm iterates r times. The value of r does not have a significant effect on the model in
this article, so r is 3 here. oj indicates the output value of capsule j.

Since the length of the capsule vector means probability, Squash function is used as the
activation function in the dynamic routing process. It can not only compress the norm of
the vector to [0,1], but also retain the length information. The mathematical expression is
as follows:

oj =

∥∥vj∥∥
1+

∥∥vj∥∥2 vj∥∥vj∥∥ (11)

where vj indicates the input vector of capsule j. Ultimately, the longer the length of
the positive capsule, the higher the probability that the ubiquitination site is present.
Therefore, we use L2 norm to calculate the length of the two capsule vectors. The margin
loss function (Sabour, Frosst & Hinton, 2017) is used as the loss function of capsule network.
Its mathematical formula is expressed as follows:

Lj = yj ·ReLU
(
(1−m)−

∥∥oj∥∥)2
+λ

(
1−yj

)
·ReLu

(∥∥oj∥∥−m)2 (12)

where yj is the predicted value of the model. The hyperparameter m and λ are 0.1 and 0.5
respectively.
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Pooling operations in CNN can result in the loss of spatial information. The dynamic
routing algorithm in the capsule network retains all the association information between
the capsules in CapsMap and CapsClassify, which is more effective than the traditional
average-pooling and max-pooling. The scalar neurons in traditional CNN summarize
global features, so it cannot characterize the hierarchical relationship between low-level
features and high-level features. In the capsule network, the capsules in CapsMap represent
low-level features and the capsules in CapsClassify represent high-level features. In addition,
while other neural networks require a sufficient number of samples for neuron training,
the ‘‘equivariant’’ of the capsules (Wang, Liang & Xu, 2019) enables capsule network to
learn effectively even from a small training set. ‘‘equivariant’’ means that the parameters
of low-level capsules change with the change of perspective, while the probability of the
presence of the corresponding high-level capsules remains unchanged.

Evaluation metrics
Evaluation metrics such as accuracy (Acc), sensitivity (Sn), precision (Pre), specificity (Sp),
Mathews correlation coefficient (MCC), F-Score and receiver operating characteristic curve
(AUC) were used to assess the performance of MDCapsUbi. The formulas for evaluation
metrics are shown as follows:

ACC=
TP+TN

TP+TN +FP+FN
(13)

Sn=
TP

TP+FN
(14)

Sp=
TN

TN +FN
(15)

Pre=
TP

TP+FP
(16)

MCC=
TP×TN −FP×FN

√
(TP+FP)×(TP+FN )×(TN +FP)×(TN +FN )

(17)

F-Score=
2TP

2TP+FP+FN
(18)

where TP, TN, FP and FN are the number of true positive samples, true negative samples,
false positive samples and false negative samples respectively.

AUC is the area under the receiver operating characteristic curve (ROC). The horizontal
coordinate of the ROC curve indicates the false positive rate and its vertical coordinate
indicates the true positive rate. As the area value of ROC curve, AUC can be used as an
important indicator to measure the performance of a classifier.

Model training
In this article, 10% of the balanced dataset was randomly selected as the independent test
set, and the remaining 90% of the dataset was used as the training set. In the training
process, we adopted the training method of k-fold cross verification. That was equivalent
to generating k independent classifiers. The value of k was 10, and the final result was
obtained by averaging the results of all classifiers. The number of iterations for training
was set to 45.
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We use the Adam stochastic optimization method (Kingma & Ba, 2014). The learning
rate is set to 0.002. The exponential decay rates for the first-moment estimates and
second-moment estimates are set to 0.9 and 0.999. The same training strategy was used for
both MDCapsUbi and its variant models. The experimental platform is implemented by
Tensorflow 2.4.0 and Keras 2.4.3. Model runs on Ubuntu 20.04.3 LTS system with NVIDIA
GeForce RTX 2080 Ti.

RESULTS
Performance of MDCapsUbi with different window sizes
Different classifiers have different structures and operatingmechanisms, so they are suitable
for different lengths of protein fragments. To find feasible values of the window size for
MDCapsUbi, we have conducted some experiments. We increased the window size from
29 to 75 and ran 24 experiments. Then we got the accuracy and MCC values of different
window sizes (Fig. 2). The performance of the model tended to increase and stabilize as
the value of the window size was incremented from 29 to 69. But the model performance
got worse as the window length was incremented from 71 to 75. This may be due to the
fact that the sequence information recognized by the model contains more redundant
information when the sequence is too long. We consider that the optimal window size
L for MDCapsUbi is 69. Compared with previous studies (He et al., 2017; Fu et al., 2019;
Liu et al., 2021a; Wang et al., 2020), MDCapsUbi applies to a larger window size. It also
shows that the proposed model can explore more sequence information and detect deeper
features of the sequences compared with other models. In addition, these experiments also
verify that the long-distance features are useful for the prediction of ubiquitination sites
(Qiu et al., 2015).

Comparative experiment of MD-FRM variants
Tobetter understand the practicability ofMD-FRM,we changed the number of convolution
layers and the dimension of feature recognitionmodule. The corresponding variant models
were constructed. First, two variants (MD-FR_1 and MD-FR_3) were constructed by
changing the number of convolutional layers in the sequence dimension feature recognition
module to study the influence of the complexity of the module. Then, we designed the
single-dimension feature recognition model (SDCapsUbi), which meant that the model
only recognized the features of the sequence dimension, not the features of the feature map
dimension. The architecture details of MD-FRM of the models are shown in Table 1. The
above models are described in detail as follows:
MD-FR_1:This model consists of SEM, MD-FRM, and CapsNM. In the MD-FRM, the
number of convolutional layers used to recognize sequence dimension features is 1.
MD-FR_3:This model consists of SEM, MD-FRM, and CapsNM. In the MD-FRM, the
number of convolutional layers used to recognize sequence dimension features is 3.
SDCapsUbi: This model consists of SEM, a sequence dimensional feature recognition
module and CapsNM. The sequence dimension feature recognition module has the same
structure as the convolution block in MDCapsUbi.
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Figure 2 Accuracy andMCC values of MDCapsUbi with different window sizes.
Full-size DOI: 10.7717/peerj.14427/fig-2

Table 1 Architecture details of MD-FRM.

Layer name MD-FR_1 MD-FR_3 SDCapsUbi MDCapsUbi

filters kernel_size filters kernel_size filters kernel_size filters kernel_size

Conv1D_1 256 7 256 7 256 7 256 7
Conv1D_2 – – 256 11 256 11 256 11
Conv1D_3 – – 256 11 – – – –
Dropout 0.3

The test results of the above variantmodels were comparedwithMDCapsUbi. The results
are shown in Fig. 3. From the figure, it can be seen that the performance of MDCapsUbi
is better than that of SDCapsUbi with the same parameters. This means that the feature
recognition module combining sequence dimension and feature map dimension proposed
in this article is meaningful. Compared with MD-FR_1, the Acc, Sp, MCC, F-Score and
AUC of MDCapsUbi are substantially improved. Compared with MD-FR_3, MDCapsUbi
also shows superiority, and all evaluation indicators are higher than MD-FR_3. The
above shows that for the model and application scenarios in this article, the effect of one
convolution layer in the process of feature extraction is limited. On the contrary, too many
convolutional layers not only increase the complexity and running time of the model, but
also add redundant information, which affect the model in a bad way. The experiments also
demonstrate the importance of the appropriate number of convolution layers to capture
hidden features in the sequences.

Effectiveness of channel attention
The MDCapsUbi aggregates the information of each feature map through the global
average-pooling operation and further trains the weight features corresponding to different
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Figure 3 Performance comparison betweenMDCapsUbi and three variant models.
Full-size DOI: 10.7717/peerj.14427/fig-3

feature maps to achieve feature recognition in the feature map dimension. We can call
this channel attention mechanism. Different channel attention structures extract different
features of data. There are several related attention methods (Fig. 4). We compared and
discussed the attention mechanism of MDCapsUbi with related methods.

AvgNet (Fig. 4A) compresses feature maps by global average-pooling and aggregates
background information of feature images. MaxNet (Fig. 4B) differs from AvgNet in that
MaxNet uses the global max-pooling operation to compress feature maps and aggregates
texture information of feature maps. ConcatNet (Fig. 4C) uses both global average-pooling
and global max-pooling to aggregate the background information and texture information
of the input feature map M2. The aggregated features of the two types of information are
then fed into the respective fully connected networks for training to obtain the weight
features, and finally the attentional feature map incorporating background and texture
information is obtained by element summation.

As shown in Table 2, AvgNet achieved the best performance, followed by ConcatNet and
MaxNet. It could be concluded that background information of feature maps was more
important than texture information for protein ubiquitination data. In the identification of
protein ubiquitinated sites, we speculated that the texture information obtained by global
max-pooling could only represent part of the interaction between amino acids on the
protein sequence, while the background information obtained by global average pooling
was the aggregation of complex interaction between different amino acids.

Performance of MDCapsUbi on single species data
The ‘‘equivariant’’ of capsules enables the model to achieve good performance on small
data sets (Wang, Liang & Xu, 2019). To further validate the performance ofMDCapsUbi on
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Figure 4 The diagram of the channel attention of MDCapsUbi and its variant structure. (A) The archi-
tecture of AvgNet. (B) The architecture of MaxNet. (C) The architecture of ConcatNet. Feature M2 and
Feature M’ of dimension m*n*h in (A, B and C) represent the input map and output map respectively.
The dimensions of the trainable weight features in (A, B and C) are 1*1*h. GAP(.) in (A and C) represents
global average-pooling. GMP(.) in (B and C) represents global max-pooling. FC1(.), FC2(.), FC3(.) and
FC4(.) in (A, B and C) represent fully connected networks.

Full-size DOI: 10.7717/peerj.14427/fig-4

Table 2 Performance comparison of the three channel attention structures.

Method Acc Sn Sp MCC F-Score AUC

MaxNet 0.8954 0.9090 0.8818 0.791 0.897 0.94
AvgNet 0.9182 0.9139 0.9224 0.837 0.919 0.97
ConcatNet 0.9017 0.8922 0.9111 0.804 0.900 0.96

small data sets of single-species, the data of 60,879 ubiquitinated sites were further divided
according to different species. Seven single-species datasets with the number of positive
data between 200 and 20,000 were obtained and shown in Table 3. The seven species
included Arabidopsis thaliana, Emericella nidulans, Mus musculus, Toxoplasma gondii,

Li et al. (2022), PeerJ, DOI 10.7717/peerj.14427 11/21

https://peerj.com
https://doi.org/10.7717/peerj.14427/fig-4
http://dx.doi.org/10.7717/peerj.14427


Table 3 Statistical summary of positive data sets constructed for seven species.

Species Number of
positive
data

Arabidopsis thaliana 2171
Emericella nidulans 3245
Mus musculus 4782
Toxoplasma gondii 668
Oryza sativa 376
Saccharomyces cerevisiae 5367
Rattus norvegicus 885

Oryza sativa, Saccharomyces cerevisiae and Rattus norvegicus. To avoid the imbalance of
positive and negative samples, this module also randomly selected negative samples with
the same number of positive samples.We selected 10% of the data from each species dataset
separately as independent test sets, and the remaining 90% of the samples were used to
train.

We applied the data of the seven species to MDCNN, SDCapsUbi and MDCapsUbi
respectively. MDCNNmodel which had a similar structure and complexity to MDCapsUbi
consisted of SEM, MD-FRM, and a convolutional neural network module. Each model
was cross-validated and tested by independent test sets. Finally, the test results were
averaged and drawn into bar charts (Fig. 5). The experimental results revealed several
advantages of MDCapsUbi: (1) The overall performance of MDCapsUbi consistently
outperformed SDCapsUbi and MDCNN with single-species data. (2) Compared with
MDCNN, MDCapsUbi showed greater performance improvements with small data sets
compared to the models trained under mixed data. In Arabidopsis thaliana, MDCapsUbi
increased accuracy by 10%, sensitivity by 9%, specificity by 12%, MCC by 0.2, F-Score by
0.9, and AUC value by 0.06 compared with MDCNN. This showed the more significant
advantages of the capsule network compared to the CNN on small data sets. (3) By
comparing the performance of MDCapsUbi and SDCapsUbi with the results, we could
conclude that feature recognition in the feature map dimension played a greater role in
single-species ubiquitination site prediction. (4) The model performance of Arabidopsis
thaliana, Emericella nidulans, Oryza sativa and Rattus norvegicus was generally higher than
that of the mixed data, while the model performance of Mus musculus, Toxoplasma gondii
and Saccharomyces cerevisiae was lower than that of the mixed data. This may be due to
the fact that the motifs detected by models of the latter three species were not significant
enough compared with the others.

Interpretability of MDCapsUbi
Although deep learning models have achieved great research results in many fields, their
internal structures are complex. Deep learning models have been criticized for their
black box effect caused by high nonlinearity (Guo et al., 2020). Therefore, it is challenging
to improve the interpretability of the model. To present the role of each module of
MDCapsUbi more intuitively, t-SNE (Van Der Maaten, 2014) was used to visualize each
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Figure 5 Performance comparison of MDCapsUbi, SDCapsUbi andMDCNN on single-species data
sets. (A) The performance in Arabidopsis thaliana. (B) The performance in Emericella nidulans. (C) The
performance in Oryza sativa. (D) The performance in Rattus norvegicus. (E) The performance inMus mus-
culus. (F) The performance in Toxoplasma gondii. (G) The performance in Saccharomyces cerevisiae.

Full-size DOI: 10.7717/peerj.14427/fig-5
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Figure 6 Visualization of eachMDCapsUbi module using t-SNE. (A) Representation of raw data. (B)
Representation of positive and negative samples after identifying the features of the sequence dimension.
(C) Representation of positive and negative samples after identifying the features of the feature map di-
mension. (D) Representation of positive and negative samples after classification by capsule network.

Full-size DOI: 10.7717/peerj.14427/fig-6

module during testing. The t-SNE converts the similarity between data into probability
and maps the data from the high-dimensional space to the low-dimensional space, while
it still preserves the local characteristics of the dataset. We used t-SNE on the independent
test set and visualized the features extracted from each module as a two-dimensional
scatter diagram. We used different color scatters to distinguish positive and negative
samples, where orange points represented ubiquitinated sites and blue points represented
non-ubiquitinated sites. The positive and negative samples of the raw input data were
completely mixed (Fig. 6A). Then, the separation trend of positive samples and negative
samples was becoming more and more obvious (Figs. 6B–6D). After the initial feature
identification in the sequence dimension by the convolution operations, there was an
initial trend of separation between positive and negative samples. Channel attention
further identified features in the feature map dimension, and the separation of positive
and negative samples was more obvious. Finally, the capsule network refined the features
and realized the classification of ubiquitinated sites, and the scatter points of positive and
negative samples were easily separable.

To further explain what was learned in the model of channel attention and demonstrate
the role of feature recognition in the feature map dimension, we randomly selected 200
positive samples from the independent test set. The weights of positive samples in each
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Figure 7 Heatmap visualization of channel weights. The abscissa represented the position of the chan-
nels, and the ordinate represented the position of the positive samples. Each element represented the value
of the channels’ weight.

Full-size DOI: 10.7717/peerj.14427/fig-7

channel of the channel attention module were shown in the form of a heatmap (Fig. 7).
Each element represented the value of the channels’ weight. The darker the color of the
channel, the more important the channel was. We could find that the colors of channels
33, 72, 73, 78, 79, 84, 99, 108, 129 and 253 were relatively darker, so the feature maps
corresponding to these channels had more influence on the model. In contrast, channels
14, 16, 71, 111, 144, 173, 176, 183, and 235 were relatively lighter in color, so the influence
of the feature maps corresponding to these channels was relatively less for the model.

DISCUSSION
Comparison of models on independent test sets with existing
methods
ESA-UbiSite (Wang et al., 2017), UbiProber (Chen et al., 2013a; Chen et al., 2013b),
iUbiq-Lys (Qiu et al., 2015) and Ubisite (Huang et al., 2016) are some of the popular
ubiquitination site prediction tools that support bulk samples. UbiSitePred (Cui et
al., 2019) is a novel machine learning model for predicting ubiquitination sites. And
deepUbiquitylation (He et al., 2017) and DeepUbi (Fu et al., 2019) are two deep learning
models. To prove the superiority of the model in practical application, MDCapsUbi
was compared with the above prediction tools. Due to the same data set used for
deepUbiquitylation, the results of deepUbiquitylation were directly referenced. We
replicated UbiSitePred and DeepUbi based on the source code they provided, using
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Table 4 Comparison of MDCapsUbi with other prediction tools under independent test set.

Method Acc Sn Sp MCC AUC

ESA-Ubisite 0.6126 0.4614 0.6334 0.064 –
UbiProber 0.5506 0.6240 0.5405 0.107 –
iUbiq-Lys 0.8463 0.3350 0.9688 0.005 –
Ubisite 0.7363 0.2962 0.7964 0.073 –
UbiSitePred 0.8234 0.8195 0.8274 0.647 0.91
deepUbiquitylation 0.6643 0.6667 0.6640 0.221 0.73
DeepUbi 0.8293 0.7297 0.9288 0.674 0.92
MDCapsUbi 0.9182 0.9139 0.9224 0.837 0.97

Table 5 Comparison of MDCapsUbi and Plant-UbiPred.

Method Acc Pre Sn F-Score AUC

Plant-UbiPred 0.756 0.733 0.767 0.749 0.81
Plant-MDCapsUbi 0.892 0.865 0.936 0.898 0.95
MDCapsUbi 0.918 0.913 0.914 0.918 0.97

the same training set and independent test set as MDCapsUbi. The comparison results are
shown in Table 4.

Compared with other models, MDCapsUbi achieved higher Acc, Sn, MCC and AUC
values, and was superior to most models in Sp. The overall performance of the multi-
dimensional feature recognition model based on capsule network outperformed the above
comparisonmodels. This indicates that MDCapsUbi has better performance on the protein
ubiquitination site prediction problem.

The previous study (Wang et al., 2020) has shown that there are significant differences
in protein sequence characteristics among animals, plants and fungi. Therefore, the
prediction model is interfered by inter-species characteristic differences during training.
To investigate the ability ofMDCapsUbi to resist disturbance of feature differences between
species, the dataset of Plant-UbiPred was used for MDCapsUbi. The trained model was
called Plant-MDCapsUbi. The test results of the above model are shown in Table 5.

Compared with Plant-UbiPred, Plant-MDCapsUbi achieved better performance in plant
ubiquitination site prediction. It shows that the multi-dimensional feature recognition
based on capsule network can extract features more effectively compared with word-
embedding scheme. In addition, MDCapsUbi is insensitive to the negative effects of
characteristic differences between different species and has stronger robustness and
generalization ability.

Comparison of MDCapsUbi and convolutional neural network
The low-level capsules of the capsule network module are used to fuse and refine the
features extracted by MD-FRM, and the activation of the low-level capsules to the high-
level capsules is achieved through the dynamic routingmechanism. To show the superiority
of capsule network compared to traditional convolutional neural networks, we compared
the CapsNM with a CNN having the corresponding structure. The same protein encoding
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Figure 8 Performance comparison of MDCapsUbi andMDCNN.
Full-size DOI: 10.7717/peerj.14427/fig-8

method and training strategy were used for MDCapsUbi and MDCNN, and ten-fold
cross-validation was carried out in the same training set and test set. Compared with
MDCNN, MDCapsUbi improved Acc by 3%, Sn by 1%, Sp by 6%, MCC by 0.06, F -Score
by 0.03, and AUC by 0.02 (Fig. 8).

In addition to improving the performance of the predictor, developers should also
explore the underlying biological significance of the model. CNN can be viewed as a feature
detector, and similarly, so can capsule networks. MDCapsUbi’s capsules can be used to
fuse and refine features. In biology, the features recognized by the capsules are the motifs
of the protein sequences (Khanal et al., 2022; Wang, Liang & Xu, 2019). Motifs represent
the ubiquitinated features of protein sequences, which often signal post-translational
modification sites (Bulavka et al., 2021).

CONCLUSIONS
In this article, we proposed a new prediction tool, MDCapsUbi, which was a deep learning
model using capsule network for protein ubiquitination site prediction. MDCapsUbi
consisted of three parts: SEM,MD-FRMandCapsNM. It took the original protein sequences
as input data and identified coarse-grained features of sequence dimension and feature
map dimension under the effect of convolution and channel attention. Then it obtained
fine-grained features and further identified ubiquitinated sites through the capsule network.
To recognize the dependencies of potential features between channels more effectively,
we tried three channel attention methods: MaxNet, AvgNet and ConcatNet. Ultimately,
we found that the channel attention of the AvgNet structure could better improve the
feature representation of MDCapsUbi. MDCapsUbi could also be applied to the problem
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of single-species ubiquitination site prediction on small data sets. With the same dataset,
MDCapsUbi had better performance compared to existing deep learning models. In
addition, the model outperformed other popular machine learning models and MDCNN
with similar structure. Experimental results showed that the effective combination of
MD-FRM and CapsNM enabled MDCapsUbi to have better feature recognition ability on
long-range sequences. We also visualized the attentional weights of channel attention in
the form of a heatmap and visualized the classification effects of each module of the model
using t-SNE.

Since there are characteristic differences among different species, it is necessary
to conduct targeted studies on different species and further develop species-specific
computational models based on capsule network. Second, the proposed model only takes
protein sequences as input data, and the features identified by the model are also based
on the features of the original protein sequences. Researchers can also try to combine
other specific features of proteins, such as shape features, structural features, etc., and
further realize the combination of computational methods with biological mechanisms
of protein ubiquitination. Although MDCapsUbi is currently applied only to the protein
ubiquitination site prediction, we believe that it has great potential in other biological
sequence-based identification and analysis studies.
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