
Submitted 10 August 2022
Accepted 30 October 2022
Published 7 December 2022

Corresponding authors
Yu Li, fungi966@126.com
Weiming Cai, caiwm527@126.com

Academic editor
Ravinder Kumar

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.14426

Copyright
2022 Chang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Metagenomics analysis of the effects of
Agaricus bisporus mycelia on microbial
diversity and CAZymes in compost
Wanqiu Chang1,2, Weilin Feng2, Yang Yang3, Yingyue Shen2, Tingting Song2,
Yu Li1 and Weiming Cai2

1 Jilin Agricultural University, Engineering Research Centre of Chinese Ministry of Education for Edible and
Medicinal Fungi, Changchun, Jilin, China

2Zhejiang Academy of Agricultural Sciences, Institute of Horticulture, Hangzhou, Zhejiang, China
3Chinese Academy of Tropical Agricultural Sciences, Environment and Plant Protection Institute,
Haikou, Hainan, China

ABSTRACT
Agaricus bisporus growth alters the lignocellulosic composition and structure of
compost. However, it is difficult to differentiate the enzyme activities of A. bisporus
mycelia from the wider microbial community owing to the complication of completely
speareting the mycelia from compost cultures. Macrogenomics analysis was employed
in this study to examine the fermentation substrate of A. bisporus before and after
mycelial growth, and the molecular mechanism of substrate utilization by A. bisporus
mycelia was elucidated from the perspective of microbial communities and CAZymes
in the substrate. The results showed that the relative abundance of A. bisporus mycelia
increased by 77.57-fold after mycelial colonization, the laccase content was significantly
increased and the lignin content was significantly decreased. Analysis of the CAZymes
showed that AA10 family was extremely differentiated. Laccase-producing strains
associated with AA10 family were mostly bacteria belonging to Thermobifida and
Thermostaphylospora, suggesting that these bacteria may play a synergistic role in lignin
decomposition along with A. bisporus mycelia. These findings provide preliminary
evidence for themolecularmechanismof compost utilization byA. bisporusmycelia and
offer a reference for the development and utilization of strains related to lignocellulose
degradation.

Subjects Agricultural Science, Microbiology, Molecular Biology, Mycology
Keywords Agaricus bisporus, Metagenome, Community succession, CAZymes, Lignocellulose,
Laccase, Xylanase

INTRODUCTION
Agricultural biomass wastes comprise organic substances generated by humans during
agricultural activities (Malool, Keshavarz Moraveji & Shayegan, 2021). As these wastes
are produced in abundant quantities and pose disposal problems, there has been an
increasing interest to develop efficient and safe strategies to utilize agricultural biomass
waste (Sherwood, 2020; Grimm &Wösten, 2018). At present, compost is still a primary
mode of organic matter degradation (Wang et al., 2021a andWang et al., 2021b).
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Industrial-scale production ofAgaricus bisporus, an ediblemushroomwith a long history
of cultivation (Baars et al., 2020), has solved part of the problem of agricultural waste reuse
to a certain extent (De Andrade et al., 2008). In the process of large-scale production of
A. bisporus, agricultural wastes, such as wheat straw and chickenmanure, aremainly used as
raw materials for fermentation (Roncero-Ramos & Delgado-Andrade, 2017), which is both
environmentally-friendly and economical, addressing the issue of reusing of agricultural
waste to a certain extent (Colmenares-Cruz, Sánchez & Valle-Mora, 2017). In recent years,
significant improvements in the A. bisporus cultivation process have been achieved, and
the application of tunnel inoculation has altered the cultivation pattern and increased
the mycelial growth rate. It has been reported that the localized tunnel-growth model
achieved a 13.6% increase in A. bisporus growth rate, when compared with the cultivation
house growth model (Wang et al., 2021a; Wang et al., 2021b). However, only a few studies
have performed comparative investigations of inoculated and uninoculated mushroom
compost. Some studies have suggested that A. bisporusmycelial growth produces a range of
extracellular enzymes that are involved in the degradation of the lignocellulosic fraction in
compost. Lignin is mainly degraded during A. bisporus mycelial growth stage (PIII), with
an increase in guaiacyl lignin content (G-type lignin) (Wood & Leatham, 1983), and the
lignin-degradation products have been speculated to be the substrate for subsequent growth
of A. bisporus (Jurak et al., 2015; Jurak, Kabel & Gruppen, 2014). The decrease and changes
in lignin during the mycelial growth stage can improve the digestibility of carbohydrates
in the later growth phases. In a previous study, A. bisporus appeared to be the dominant
fungal species based on visual observation of cropping beds. However, phospholipid fatty
acid analysis (PLFA) conducted on mushroom compost revealed that A. bisporus mycelia
accounted for 6.8% w/w of the mushroom compost after complete colonization, with only
less than half of the mycelia being active (McGee, 2017).

Many studies have focused on the crucial role of bacteria and fungi in the degradation
of organic compoundsand their diverse modes of action on organic matter decomposition.
While bacterial growth becomes restricted owing to their enhanced propagation on the
surface of organic matter that acts as the main source of nutrients, the fungal hyphae
have a strong penetrating ability. About concerning Agaricus growth, both mycelia and
fruiting body production are not only dependent on the mushroom itself, but also bacteria
and other fungi in the substrate, and the microbial community dynamics can completely
change at the end of the composting process (Song et al., 2021). It has been noted that the
final secondary fermentation (PII) compost mainly comprised lignocellulosic components
from wheat straw together with microbial biomass (Martínez et al., 2008). Pasteurization
of the compost material before inoculation has been found to result in the predominance
of fungal community in the substrate, with A. bisporus becoming the major fungal strain
and its mycelia subsequently colonizing the substrate by degrading the organic material
to release nutrients (McGee, 2018). However, little is known about the composition and
activity of the wider fungal community in the compost substrate besides A. bisporus
throughout the mushroom cultivation process. Therefore, the present study aimed to
reveal the utilization of compost substrate before and after A. bisporusmycelial growth and
compare the differences in the microbial communities and enzyme families in the compost.
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Furthermore, the effects of A. bisporus mycelial growth on other microorganisms during
large-scale cultivation of A. bisporus were determined to identify novel microorganisms
with potential roles in lignin degradation.

MATERIALS & METHODS
Sample collection and DNA extraction
Commercial strain A15 of A. bisporus from Sylvan (USA) was used in this study and stored
in the Engineering Research Center of Chinese Ministry of Education for Edible and
Medicinal Fungi (ERCCMEEMF) at Jilin Agricultural University (Changchun, China).
The compost fermentation and mycelial culture experiments were performed at Zhejiang
Longchen Modern Agricultural Science and Technology Co. Ltd, Jiaxing City, Zhejiang
Province, China. The compost comprised wheat straw (90 t), chickenmanure (83 t), peanut
meal (3 t), and gypsum (9 t). Peanutmeal was added as an auxiliary nitrogen source because
the components of wheat straw and chicken manure in China were different from those
in Europe and America (Jun et al., 2021). Before commencing compost fermentation, the
initial C/N ratio of the compost was adjusted to 25:1. The straws were completely dampened
and piled up for 1–3 days, and then the other materials were mixed and piled again for
2–3 days. The pre-compost was placed into the tunnel for primary fermentation (PI)
(Straatsma et al., 2000;Mouthier et al., 2017). The pile was turned three times on days 2, 4,
and 7, respectively. The treatment parameters were adjusted based on compost temperature
to allow the material temperature to reach 70 ◦C–80 ◦C and remain constant for 6 days
(PI). Immediately after that, secondary fermentation (Compost-PII) was conducted for 6–7
days by pasteurization (Vieira & Pecchia, 2018). After secondary fermentation, inoculation
was performed when the temperature decreased to 24 ◦C and NH3 level was ≤10 mg/L
(Sharma, Lyons & Chambers, 2005). The temperature, humidity, air pressure, air volume,
and other environmental factors were adjusted using Dutch Christiaens Group equipment
for the intelligent control system. Under optimal environmental conditions, A. bisporus
mycelia could grow all over the compost after 18 days (Mycelium-PIII) (Iiyama, Stone &
Macauley, 1994).

Subsequently, samples were collected from the uninoculated compost and mycelia-filled
compost, respectively. Before sample collection, the composts in the top, middle, and
bottom layers of the reactor were fully mixed (Meng et al., 2021). All the samples were
divided into two parts: one part was stored at 4 ◦C for physicochemical analysis and the
other was frozen at−80 ◦C for DNA extraction. The genomic DNA was extracted from the
samples using an Omega EZNA soil DNA kit, and the integrity, purity, and concentration
of the extracted genomic DNA were examined by 1% agarose gel electrophoresis (100 V,
1.5 h), NanoDrop 2000, and Qubit 3.0, respectively. The extracted DNA was stored in an
ultra-low-temperature freezer at −20 ◦C and transported to OE Biomedical Technology
(Shanghai, China) for sequencing.

Analysis of compost physicochemical properties
The compost samples were dried in an oven at 105 ◦C for 5 h to assess the moisture content.
The dried samples were crushed and placed in the control box of a resistance furnace at
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600 ◦C for 2 h to determine the ash content. The total nitrogen (Total-N) and carbon
(Total-C) content in the samples were determined using the Kjeldahl method and K2Cr2O3

oxidation. Determination of the pH values with an electronic pH meter (Mettler-Toledo
Instruments Co., Ltd., Shanghai, China) using 10%(w/v) sample suspensions were used.
Laccase and xylanase activities in the samples were evaluated using a Solarbio kit, and
lignin, cellulose, and hemicellulose components were determined according to Van Soes
method.

Metagenome sequencing, assembly, and annotation
Metagenome sequencing was accomplished using the Illumina HiSeq platform with a
500 bp sequencing library. The raw data (raw reads) quality was pre-processed using
Trimmomatic (Bolger, Lohse & Usadel, 2014) software, and optimized sequences were
spliced and assembled using MEGAHIT (Li et al., 2015; Li et al., 2016) software based on
De-Bruijn graph principle, and contigs with length <500 bpwere filtered out for subsequent
analysis. The open reading frame (ORF) of the spliced contigs was predicted with Prodigal
software (Hyatt et al., 2010). CD-HIT software was adopted to remove redundant and
non-redundant initial unigenes. The clustering parameters included 95% identity and 90%
coverage. The clean reads of each sample were aligned to the non-redundant genes set (95%
identity) using bowtie 2 software to calculate the gene abundance in the corresponding
samples. The representative sequences in the non-redundant unigenes set were annotated
to the obtained species information according to the best alignment attained by BLASTP (E
value<1e−5) to National Center for Bio-technology Information (NCBI) Non-Redundant
Database (Nr). Then, the sum of gene abundances for the corresponding species was used
to calculate species abundance.

Identification of carbohydrate-active enzymes
To evaluate the carbon utilization potential of microbial communities during A. bisporus
mycelial growth, the non-redundant genes were compared with the carbohydrate-active
enzymes database (CAZy) using DIAMOND software (e<1e−5) (Buchfink, Xie & Huson,
2015). First, all proteins with the highest sequence similarity were screened and subjected to
CAZy to search against sequence libraries with the families of glycoside hydrolases (GHs),
auxiliary activities (AAs), carbohydrate-binding modules (CBMs), glycosyltransferases
(GTs), polysaccharide lyases (PLs), and carbohydrate esterases (CEs). Then, the differences
in the CAZyme family between the two samples (uninoculated compost and mycelia-filled
compost) were compared and analyzed (Donhauser et al., 2021).

Data and statistical analyses
Raw data were entered and stored in Excel. The differences among the samples were
examined by independent samples t -tests with statistical significance at p< 0.05 and
p< 0.01. The data are presented as mean ± standard deviation (SD). GraphPad Prism 8.0
software and Origin 2021 were applied for statistical analysis and plotting, and a cloud
platform (http://www.cloudtutu.com/) was employed for plotting.
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Table 1 Physicochemical properties of Compost-PII andMycelium-PIII.

Phase Total carbohydrates
(w/w%)

Total nitrogen
(w/w%)

Moisture(%) Ash(%) pH

T1 28.48± 0.20 2.12± 0.03 66.46± 0.60 33.6± 1.69 7.85± 0.09
T2 28.63± 0.18 2.14± 0.07 66.11± 0.25 33.54± 1.06 7.65± 0.25Compost-II

T3 28.58± 0.06 2.18± 0.08 66.95± 1.74 33.96± 0.79 7.90± 0.20
T1 23.59± 0.22 2.05± 0.02 59.50± 4.14 36.00± 1.22 6.30± 0.01
T2 23.74± 0.15 2.06± 0.02 61.80± 0.86 36.20± 1.36 6.24± 0.02Mycelium-III

T3 23.44± 0.28 2.13± 0.06 63.00± 1.47 34.10± 2.61 6.30± 0.04

Notes.
Notes. T1,T2,T3: different trials; Results represent mean± standard deviation (n= 3).

RESULTS
Physicochemical properties of Compost-PII and Mycelium-PIII
After completion of PII, the material temperature was reduced using fans. Subsequently,
A. bisporus was inoculated (4h (w/w)) and the compost substrate was filled with mycelial
growth after 18 days of incubation at 22 ◦C–24 ◦C. During this period, the water content
in the compost decreased from 66.48% to 61.77% with the increase in mycelial growth,
whereas the ash content increased by 1.71% (Table 1). It must be noted that the water
content can affect microbial activities, which in turn can influence enzyme activities.
During A. bisporus mycelial growth, carbon consumption predominantly increased,
whereas nitrogen utilization was relatively less maintained at 2.12–2.13% and no significant
difference (Table 1). After mycelial growth, the pH of the compost decreased from 7.80
to 6.27. Analysis of the cellulose and lignin contents in the compost by Van Soes method
revealed that the cellulose content and lignin content significantly decreased (Fig. 1).
Furthermore, evaluation of the activities of several known carbon source degradation-
related enzyme families indicated a moderate increase in xylanase and laccase activities
after A. bisporus mycelial growth, three-fold and 15-fold increase respectively (Figs. 2B
& 2C). The solubility of lignin in aqueous solutions was low, and the decrease in the pH
of the culture material may have a significant effect on lignin solubility. In addition, the
increase in protease (Fig. 2D) also promotes better development of the mycelium (Wang
et al., 2021a andWang et al., 2021b).

Diversity of microbial communities in Compost-PII and Mycelium-PIII
The effective data volume of each sample in this experiment was 11.23–17.22 G. The N50
statistics of Contigs were distributed between 1631–2349 bp, and the number of OFR
in the set of non-redundant genes was 1029162 after redundancy. The annotation rates
were 89.44%, 74.62%, 42.21% and 2.57% for the non-redundant genes compared with
NR, eggNOG, KEGG and CAZy databases respectively. Metagenomics analysis indicated
the dominance of bacterial community in Compost-PII and Mycelium-PIII samples
(93.17% and 94.27%, respectively), followed by fungi (0.25% and 0.29%, respectively),
whereas the archaeal abundance remained almost unchanged. However, the abundance
of viruses declined with A. bisporus mycelial growth (1.18% in Compost-PII and 0.13%
in Mycelium-PIII). A total of 181 phyla, 157 classes, 805 families, 3460 genera, and
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Figure 1 The lignocellulose contents of Compost-PII andMycelium-PIII. Lignocellulose: cellulose,
hemicellulose, lignin. Compost-PII: end of the compost; Mycelium-PIII: A. bisporusmycelia could grow
all over the compost after 18 days. (* p< 0.05, ** p< 0.01) (n= 3).

Full-size DOI: 10.7717/peerj.14426/fig-1

22,567 species were detected in the samples. The six most prominent bacterial phyla
were Proteobacteria, Actinobacteria, Chloroflexi, Planctomycetes, Bacteroidetes, and
Firmicutes (Zhang et al., 2014), and the abundances of Actinobacteria and Planctomycetes
significantly increased after A. bisporus mycelial growth (Fig. 3A). Intriguingly, numerous
lignocellulose-decomposing bacteria have been reported to belong to Proteobacteria,
Firmicutes, Actinobacteria, and Bacteroidetes (Lewin, Wentzel & Valla, 2013; Pankratov et
al., 2011). Proteobacteria andBacteroidetes are known to play amajor role in organicmatter
degradation and C cycling (Wang, Mao & Li, 2018), and Bacteroidetes can break down
lignocellulose into short-chain fatty acids (Dodd, Mackie & Cann, 2011). It is noteworthy
that although the relative abundance of the Basidiomycota phylum was low, it showed a
great increase (Fig. 3B).

Analysis of bacterial and fungal communities
In the present study, Thermobifida, Thermostaphylospora, Sphaerobacter, Thermopolyspora,
Pseudoxanthomonas, and Rhodothermus were the predominant bacterial genera in the
Compost-PII and Mycelium-PIII samples (Cao et al., 2019; Durrant, Wood & Cain,
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Figure 2 Enzyme activities in various stages. (A) FPA activity; (B) xylanase activity; (C) laccase activity;
(D) protease activity. Note: * P < 0.05. ** P < 0.01. *** P < 0.001. **** P < 0.0001.

Full-size DOI: 10.7717/peerj.14426/fig-2

1991). When compared with the Compost-PII samples, the relative abundances of
Thermobifida, Thermostaphylospora, Sphaerobacter, Thermomonospora, and Chelatococcus
were significantly increased in Mycelium-PIII samples; in contrast, the relative abundances
of Thermopolyspora, Rhodothermus, and Pseudoxanthomonas presented the opposite trend
(Fig. 4A). Analyses of the microbial community composition confirmed significant
shifts in the microbial community structure between the two groups, and many of the
enriched genera also co-varied with function. Moreover, the variability of these microbial
communities may be correlated with nutrients, compost temperature, moisture content,
and pH.

Chang et al. (2022), PeerJ, DOI 10.7717/peerj.14426 7/21

https://peerj.com
https://doi.org/10.7717/peerj.14426/fig-2
http://dx.doi.org/10.7717/peerj.14426


Prot
eo

bac
ter

ia

Acti
nob

ac
ter

ia

Chlor
ofl

ex
i

Bact
ero

idete
s

Plan
cto

myce
tes

Dein
oc

occ
us-T

herm
us

Firm
icu

tes

Acid
ob

act
eri

a

uncla
ssi

fie
d

Urov
iri

cot
a

0

10

20

30

40

Phyla

R
el

at
iv

e
ab

un
da

nc
e%

Compost-PΙΙ
Mycelium-PΙΙΙ

Asco
myco

ta

Basi
diom

yc
ota

Asco
myco

ta

Basi
diom

yc
ota

0.00

0.05

0.10

0.15

0.20

Phyla

R
el

at
iv

e
ab

un
da

nc
e%

Compost-PΙΙ
Mycelium-PΙΙΙ

(A) (B)

Figure 3 Microbial community analysis of Compost-PII andMycelium-PIII (phylum level). (A) Rel-
ative abundance of microbial communities (Top 10 phyla level). (B) Relative abundance of Ascomycota
and Basidiomycota (phylum level).

Full-size DOI: 10.7717/peerj.14426/fig-3

At the species level, the relative abundance of A. bisporus presented the highest
increase among fungi, exhibiting a 77.57-fold increase after complete mycelial growth
(Fig. 4D). In addition to A. bisporus, the activities of other microorganisms, such as
the bacteria (Fig. 4C) Thermostaphylospora_chromogena, Thermomonospora_sp._CIF_1,
Sandaracinaceae_bacterium, and Chelatococcus_composti, and fungi (Fig. 4D) Spizel-
lomyces_punctatus, Rozella_allomycis, and Basidiobolus_meristosporus, were also enhanced
during A. bisporus mycelial growth.

Analysis of CAZymes
The carbon-utilization potential of the microbial communities in the compost was assessed
to evaluate the effects of altered substrate quantity and quality resulting from the shift in
microbial activity during A. bisporus mycelial growth. Among the genes annotated with
CAZy, in total, 431 different CAZyme families (229 GHs, 81 GTs, 48 PLs, 17 AAs, 16
CEs, and 40 CBMs) were detected in the samples. The most abundant enzyme classes
at all temperatures were GHs and GTs, whereas those with the lowest abundance were
PLs and AAs. At the family level, GTs were especially abundant in all the samples, with
GT2 (cellulose/chitin synthase and other functions), GT4 (sucrose synthase and other
functions), and GT83 (galacturonosyl transferase and other functions) being the most
abundant (Paixão et al., 2021; Leadbeater et al., 2021).

Cellulose, hemicellulose, and lignin are major constituents of lignocellulose-containing
raw materials (Stech et al., 2014). In the present study, cellulose- and hemicellulose-
degrading enzymes exhibited the highest activities in Compost-PII and Mycelium-PIII
samples, with GH5, GH8, and GH9 families being the predominant cellulose-degrading
enzymes and GH2, GH10, GH11, GH26, and GH53 families being themajor hemicellulose-
degrading enzymes (Table 2). The GH2 family includes multiple enzymes, and it has been
demonstrated that α-1,3-L-arabinofuranosidase activity on substituted xylan does not
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Figure 4 Significant differences between fungal and bacterial communities for compost-PII andmycelium-PIII on the genus level. (A) Bacterial
community; (B) fungal community and species level; (C) bacterial community; (D) fungal community.

Full-size DOI: 10.7717/peerj.14426/fig-4

improve compost degradation by A. bisporus. In nature, it is generally attributed to the
metabolism of basidiomycetes white-rot fungi, since they degrade lignin more rapidly
and extensively than other microorganisms (Woiciechowski et al., 2013). Although not a
wood-rotting fungi, the Agaricus bisporus still plays a key role in the degradation of lignin
as a grass-rotting fungi. Although AA7 family genes have been reported to play a role in
lignin degradation (Andlar et al., 2018) and the content of these genes was relatively high
in the lignin-degradation-related enzymes family in the present study, this enzymes family
was not significantly different. There is a large content of the AA3 and AA6 enzyme families
associated with lignin breakdown (Table 2).

Variations in enzyme families between Compost-PII and Mycelium-PIII
The effect of A. bisporus mycelium on the compost substrate was mainly reflected in the
enzyme families with low relative abundance at the population level. For instance, the
abundances of GT32 and GH24 significantly decreased, whereas those of GH42, AA10,
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Table 2 Enzyme family identified in the metagenome.

CAZy family Annotation Genes_Count Total putative
CAZy genes,
≥50% Covered
Fraction

Total putative
CAZy genes,
50–70% Covered
Fraction

Total putative
CAZy genes,
≥90% Covered
Fraction

Cellulose degrading
GH5(-) Endo-beta-1,4-glucanase ;cellu-

lase
73 50 19 0

GH6(-) Endoglucanase; cellobiohydro-
lase

31 26 4 19

GH8(↓) chitosanase ;cellulase;licheninase 60 49 13 31
GH9(-) Endoglucanase ; endo-beta-

1,3(4)-glucanase
152 94 21 47

GH12(-) Endoglucanase ; xyloglucan hy-
drolase

38 36 0 33

GH140(-) Apiosidase 41 24 8 9
GH44(-) Endoglucanase; xyloglucanase 24 15 5 9
GH116(-) Beta-glucosidase ;beta-xylosidase 24 14 4 8
GH3(-) Beta-glucosidase ; xylan 1,4-

beta-xylosidase
471 382 87 222

GH48(-) Endo-beta-1,4-glucanase ;chiti-
nase

13 4 1 2

Hemicellulose degrading
GH10(-) Endo-1,4-beta-xylanase ;endo-

1,3-beta-xylanase
223 168 56 78

GH11(-) Endo-beta-1,4-xylanase ;endo-
beta-1,3-xylanase

35 31 3 27

GH1(-) Beta-glucosidase; beta-
galactosidase

217 136 34 72

GH42(↑) Beta-galactosidase; alpha-L-
arabinopyranosidase

60 31 13 10

GH2(-) Beta-galactosidase ; beta-
mannosidase; beta-
glucuronidase; alpha-L-
arabinofuranosidase

151 81 66 7

GH26(-) Beta-mannanase; beta-1,3-
xylanase

67 32 0 14

GH27(↓) Alpha-galactosidase; alpha-N-
acetylgalactosaminidase

10 6 6 0

GH3(-) Beta-glucosidase; xylan
1,4-beta-xylosidase; beta-
glucosylceramidase

471 382 87 222

GH31(-) Alpha-glucosidase; alpha-
galactosidase; alpha-
mannosidase; alpha-1,3-
glucosidase

164 102 36 54

(continued on next page)
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Table 2 (continued)

CAZy family Annotation Genes_Count Total putative
CAZy genes,
≥50% Covered
Fraction

Total putative
CAZy genes,
50–70% Covered
Fraction

Total putative
CAZy genes,
≥90% Covered
Fraction

GH38(-) Alpha-mannosidase 64 55 15 32
GH39(-) Alpha-L-iduronidase; beta-

xylosidase
196 108 85 5

GH4(-) Maltose-6-phosphate glucosi-
dase; alpha-glucosidase

79 69 11 52

GH43(-) Beta-xylosidase; alpha-L-
arabinofuranosidase; xylanase

5 2 0 1

GH5(-) Endo-beta-1,4-xylanase; beta-
glucosidase; beta-mannosidase

73 50 19 0

GH53(-) Endo-beta-1,4-galactanase 19 15 4 5
GH92(-) Mannosyl-oligosaccharide

alpha-1,2-mannosidase;
mannosyl-oligosaccharide
alpha-1,3-mannosidase

62 30 14 13

GH30(-) Endo-beta-1,4-xylanase; beta-
glucosidase; beta-glucuronidase

19 11 3 7

CE1(-) Acetyl xylan esterase; cinnamoyl
esterase

730 663 244 163

CE4(-) Acetyl xylan esterase; chitin
deacetylase

623 589 87 251

CE7(-) Acetyl xylan esterase;
cephalosporin-C deacetylase

123 74 22 33

CE15(-) 4-O-methyl-glucuronoyl
methylesterase

111 101 36 51

CE6(-) Acetyl xylan esterase 23 22 2 20
GH78(-) Alpha-L-rhamnosidase 165 60 28 24
GH28(-) Polygalacturonase; alpha-L-

rhamnosidase
39 22 11 7

GH35(-) Beta-galactosidase; beta-1,3-
galactosidase

34 25 12 11

PL1(↑) Pectate lyase; pectin lyase 9 9 0 2
PL9(-) Pectate lyase 76 22 11 1
CE8(↓) Pectin methylesterase 16 8 5 3
CE12(-) Pectin acetylesterase; acetyl xylan

esterase
20 20 1 16

GH18(-) Chitinase; lysozyme 129 77 30 21
GH19(-) Chitinase; lysozyme 22 9 6 2
GH3(-) Beta-glucosidase; xylan

1,4-beta-xylosidase; beta-
glucosylceramidase

471 382 87 222

CE4(-) Acetyl xylan esterase; chitin
deacetylase

623 589 87 251

GH13(-) Alpha-amylase; pullulanase 77 59 15 28
GH23(-) Lysozyme type G; chitinase 568 539 93 22

(continued on next page)
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Table 2 (continued)

CAZy family Annotation Genes_Count Total putative
CAZy genes,
≥50% Covered
Fraction

Total putative
CAZy genes,
50–70% Covered
Fraction

Total putative
CAZy genes,
≥90% Covered
Fraction

GH51(-) Endoglucanase; endo-beta-1,4-
xylanase; beta-xylosidase

118 62 20 0

GH67(-) Alpha-glucuronidase; xylan
alpha-1,2-glucuronidase

58 30 8 13

GH127(-) Beta-L-arabinofuranosidase ; 3-
C-carboxy-5-deoxy-L-xylose

56 31 9 18

GH32(-) Endo-inulinase; 43 38 10 20
GH97(↓) Glucoamylase; alpha-

glucosidase; alpha-galactosidase
41 21 9 11

GH16(-) Licheninase 106 94 24 42
GH29(-) Alpha-L-fucosidase; alpha-

1,3/1,4-L-fucosidase
65 48 14 14

GH95(-) Alpha-L-fucosidase ; alpha-
1,2-L-fucosidase; alpha-L-
galactosidase

53 30 13 13

GH94(-) Cellobiose phosphorylase ;lami-
naribiose phosphorylase

54 29 15 2

GT35(-) Glycogen or starch phosphory-
lase

162 92 69 11

Lignin degrading
AA1(↓) Laccase/ferroxidase 1 0 0 0
AA2(-) Manganese peroxidase ; versatile

peroxidase ;lignin peroxidase
39 12 1 7

AA3(-) Ellobiose dehydrogenase;glucose
1-oxidase

201 122 119 0

AA5(-) Alactose oxidase;glyoxal oxidase ;
alcohol oxidase

8 0 0 0

AA6(-) 1,4-benzoquinone reductase 98 86 10 61
AA7(-) Glucooligosaccharide oxidase;

chitooligosaccharide oxidase
405 140 68 49

AA10(↑) Lytic chitin monooxygenase 22 21 0 20

Notes.
‘‘ ↑’’ and ‘‘ ↓’’ indicate the up-regulation and down-regulation of the relative abundance for differential CAZy, ‘‘-’’ indicate that there is no difference between the two compari-
son groups.

and CBM13 significantly increased. Furthermore, the abundance of GH8 presented a slight
decrease (Fig. 5A). GH24 is known to act in association with lysozyme, GH8 is the main
family of enzymes involved in cellulose degradation, and GH42 plays an important role
in hemicellulose degradation. Thermostaphylospora belonging to Actinobacteria mainly
causes an increase in the activities of β-galactosidase and α-L-arabyranosidase of the GH42
family in the galactose metabolism pathway during the mycelial growth stage, and CBM67
has been reported to exhibit α-L-rhamnose-binding activity (Fujimoto et al., 2013).

In the present study, the increase in the laccase content during the mycelial growth stage
was mainly related to the AA10 family (Table 2). The major strains that cause differential
laccase production are Thermobifida, Thermostaphylospora, and Cellulomonas, and in the
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Figure 5 Differentiated analysis of enzyme families. (A) Difference of putative carbohydrate-activite
enzymes of two groups samples. (B) Sankey plots for AA10 in compost-PII. (C) Sankey plots for AA10
in mycelium-PIII. (D) Sankey plots for cbm13 CBM13 in compost-PII. (E) Sankey plots for CBM13 in
mycelium-PIII.
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present study, the relative abundances of Thermobifida and Cellulomonas decreased, while
that of Thermostaphylospora increased (Figs. 5B & 5C). Furthermore, the increase in the
xylanase content during A. bisporusmycelial growth stage was mainly related to the CBM13
family, and Thermostaphylospora was also the dominant genus that caused this increase
(Figs. 5D & 5E).

DISCUSSION
Degradation of lignin during the composting process has been reported to be caused by
certain fungi and several species of bacteria and Actinomycetes (Kabel et al., 2017; Fermor
& Wood, 1981; Del Cerro et al., 2021; Ayuso-Fernández, Ruiz-Dueñas & Martínez, 2018). In
the present study, the artificial introduction of A. bisporus at the end of the composting
process and the resultant dominance of A. bisporus in the fungal community played amajor
role in lignin degradation. A similar finding has also been reported by Jean-Michel Savoie et
al. (Savoie, 1998;Zhang et al., 2019).During themycelial growth ofA. bisporus, the oxidative
phosphorylation pathway became dominant, which subsequently affected the bacterial and
fungal communities composition, and a part of lignin degradation originated from bacterial
action. Jurak, Kabel & Gruppen (2014) showed that xylan solubility increased by 20%during
mycelial growth, indicating partial degradation of the xylan skeleton. In the present study,
xylan degradation was mainly associated with the action of Thermostaphylospora. However,
despite xylan degradation, the carbohydrate composition and degree of substitution of
xylan in the compost at the beginning and end of the mycelial growth stage were rather
similar (Jurak, Kabel & Gruppen, 2014). The protease activity that was measured had an
increasing trend. This might imply that after accessing the mycelium of Agaricus bisporus,
the raw material chicken manure and wheat straw were used for the breakdown of the
macromolecular nitrogen source material and subsequently for the development and
growth of their mycelium (Wang et al., 2021a andWang et al., 2021b).

In a previous study, some researchers (Zhang et al., 2014) determined the rRNA gene
copy number of Bacteria and Fungi during the composting process by quantitative PCR, and
found that the fungal genus Agaricus and unknown fungal community accounted for 45%
and 55% of the microbial community, respectively, while the bacterial genus Streptomyces
accounted for 60% of the total bacterial community during the mycelial growth phase.
In contrast, in the present study, although the abundance of Streptomyces varied before
and after the mycelial growth stage, the difference was not significant. Moreover, besides
Agaricus, Basidiobolus and Spizellomyces were also the predominant fungi, thus providing
further insights into the composition of the fungal community in the compost.

During the A. bisporusmycelial growth stage, the relative abundances of gene sequences
still remained high at high-temperature composting, and although the abundance of fungal
communities increased, the number of bacterial genes was much higher than that of fungal
genes. However, as it was not possible to determine the number of active bacteria during
this stage, microbial communities with a higher relative abundance of gene sequences were
compared, and A. bisporus was found to be dominant in the fungal community. While
enzymes related to lignocellulose breakdown were not detected in the macrogenome of A.
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bisporus, analysis of whole-genome data of A. bisporus substrate confirmed the presence of
a large number of genes encoding lignocellulose-degrading enzymes (Morin et al., 2012),
because macrogenome sequencing results did not assemble genes encoding lignocellulose-
degrading enzymes inA. bisporus. Moreover, variations were also noted in the expression of
genes encoding CAZymes between compost-grown mycelia and fruiting body, with genes
encoding plant cell wall degrading enzymes detected in compost-grownmycelia, but largely
undetected in the fruiting body. Similarly, Patyshakuliyeva et al. (2013) also confirmed that
compost-grown mycelia could express a large variety of CAZyme genes related to the
degradation of plant biomass components. In addition, transcriptomics and proteomics
investigations performed in a previous study also demonstrated that genes related to
lignin degradation were only highly expressed on day 16 of mycelial growth, indicating
that lignin was degraded at the initial stage of mycelial growth and was no longer altered
after complete growth of mycelia (Patyshakuliyeva et al., 2015). Moreover, compost-grown
mycelia were found to express a large number of CAZymes-encoding genes associated with
the degradation of plant biomass components. In summary, the present study uncovered
lignocellulose-degrading microorganisms and enzyme expressions in bacteria during A.
bisporus mycelial growth stage in the composting process, providing further insights into
lignin degradation in compost. Lignin degradation was mostly bacteria, and the main
laccase-producing bacteria belonged to Thermobifida (Mironov et al., 2021; Vanee, Brooks
& Fong, 2017) and Thermostaphylospora, with Thermostaphylospora presenting a significant
increase. The results obtained can further strengthen our understanding of the specificity
of A. bisporus mycelial growth.

CONCLUSIONS
The present study found the laccase content was increased during the A. bisporus
mycelial growth stage. Laccases belonging to the AA10 family were mainly derived from
Thermobifida and Thermostaphylospora, the potential for lignin-degrading enzymes of
bacterial origin may be grossly underestimated. Agaricus proliferation may require an
interacting consortium of both bacteria and fungi for effective lignocellulose degradation.
The results obtained offer insights into the difference in enzyme activities between A.
bisporusmycelia and other microbial communities, and enhance our understanding of the
changes in microbial communities and enzyme families during A. bisporusmycelial growth
phase in the composting process.
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