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ABSTRACT
The optimization of resources for research in developing countries forces us to consider
strategies in the wet lab that allow the reuse of molecular biology reagents to reduce
costs. In this study, we used linear regression as a method for predictive modeling of
coverage depth given the number of MinION reads sequenced to define the optimum
number of reads necessary to obtain >200X coverage depth with a good lineage-clade
assignment of SARS-CoV-2 genomes. The research aimed to create and implement
a model based on machine learning algorithms to predict different variables (e.g.,
coverage depth) given the number ofMinION reads produced byNanopore sequencing
to maximize the yield of high-quality SARS-CoV-2 genomes, determine the best
sequencing runtime, and to be able to reuse the flow cell with the remaining nanopores
available for sequencing in a new run. The best accuracy was −0.98 according to
the R squared performance metric of the models. A demo version is available at
https://genomicdashboard.herokuapp.com/.

Subjects Bioinformatics, Computational Science, Data Mining and Machine Learning, Data
Science, COVID-19
Keywords Oxford nanopore technologies, Genomes, Machine learning, Sequences,
Linear models

INTRODUCTION
The Oxford Nanopore Technologies (ONT) MinION sequencing platform provides
a method for high-throughput and cost-effective long-read sequencing in a portable
device (Gauthier et al., 2021), and has become a fast and reliable tool for epidemiological
surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). During
the COVID-19 pandemic ONT accelerated the production of genome data worldwide
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(As of October 15, 2022 there are about 13.8 million SARS-CoV-2 genomes submitted
to the Global Initiative on Sharing All Influenza Data (GISAID) database), allowing for
characterization of different lineages or variants and providing an essential tool for effective
health policy decision making. The most widely adopted targeted amplicon approach for
SARS-CoV-2 genomic sequencing is the ARTIC protocol (Lambisia et al., 2022).

Despite its multiple advantages for clinical and epidemiological applications, this
sequencing technology is very expensive, especially for the public health systems in
developing countries. The estimated costs of reagents and consumables range between
$11.50 to $35.88 for one sample when calculated based on 96 samples per sequencing run
(Lambisia et al., 2022) plus $900 per flow cell. Therefore, optimized one-time reuse of the
MinION flow cells is a feasible cost-effective alternative that provides an opportunity to
perform another additional experiment using the same set of barcodes with a different
type of sequencing approach/targets. The idea would be to stop sequencing once enough
reads are attained for optimal genome assembly, leaving a remaining number of nanopores
still available for sequencing in a new experiment. In fact, Oxford Nanopore provides flow
cell wash buffers and storage buffers that facilitate the storage of second-use flow cells.
The implementation of machine learning algorithms can help optimize different variables
involved in obtaining a good quality SARS-CoV-2 genome from a certain number of
sequenced reads. Linear Regression is a statistical model well-known in SupervisedMachine
Learning (SML), and it is applied to establish the relationship between a dependent variable
and one ormore independent variables since the algorithm is trained on both input features
and output labels (Osisanwo et al., 2017).

In addition to generating value and exploiting data potential, data science applications
should allow visualization and manipulation of the results obtained from the analysis
(Verbert et al., 2014). Therefore, we also propose an online monitoring model that provides
other researchers with a helping hand for their experiments, since the Web applications
enhance the software performance, availability, and scalability (Verbert et al., 2013). In this
study, different machine learning algorithms were implemented to make predictions of
the optimal number of sequenced reads needed to obtain good coverage depth (>200X)
using the MinION sequencing platform and lab-scale data for SARS-CoV-2 genomes.
Additionally, we designed a Machine Learning application by loading the best model into
dynamic dashboards that allow users to modify and interact with the model’s inputs, apply
filters, and visualize graphics interactively.

MATERIALS & METHODS
Data collection and processing
We used five variables: number of sequenced reads per genome, CT (Cycle threshold) value
(N2 target gene; N is the Nucleocapside protein gene and number 2 is a second specific
sequence targeted within theN gene), mean coverage depth, coverage genome (percentage),
and quantification cDNA (ng/µl) for a dataset (1) that included 1461 samples without CT
values, and a dataset (2) with 471 samples that was a subset of dataset 1 (Table S1) that
included CT values. Data were generated in amplicon-targeted sequencing experiments
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for SARS-CoV-2 genomes assemblies using ARTIC Network’s protocol V3 (Tyson et al.,
2020) and a MinION device. This protocol of primer sets, and amplicons is one of the
most widely used SARS-CoV-2 sequencing protocols (Tyson et al., 2020). To understand
the meaning and the predictive power of the variables we conducted exploratory analysis
before modeling, as follows: (i) The number of reads data were grouped into bins and the
means (and medians) of coverage depth in each bin were compared; if coverage depth
was similar across bins, the number of reads would be non-predictive. (ii) We plotted the
number of reads against coverage depth. These plots were generated using Python (v3.9.9)
and libraries Pandas (v1.4.4), NumPy (v1.23.3), Matplotlib (v3.5.3), and Seaborn (v0.12.0).

Model building
The primary independent variable was ‘‘sequenced reads’’, while the remaining variables
(e.g., CT, cDNA) were used to describe and proceed with the design, training, testing, and
evaluation of the SML model. Both datasets were scaled using the RobustScaler function
from Sklearn (v1.1.1), then the datasets were split into train (75%) and test (25%) sets. For
reproducibility purposes, a random seed of 27 was set for all models that used a random
state.

All models were trained with both datasets to select the best performance estimator. We
use Lasso (LssR), Gradient Boosting Regressor (GBR), Random Forest Regressor (RFR),
and Support Vector Regressor (SVR) as SML algorithms to predict continuous-valued
outputs. LssR is a linear model regression that estimates sparse coefficients based on
L1 penalization (Cherkassky & Ma, 2003). On the other hand, both RFR and GBR are
ensemble methods that combine multiple learning algorithms to get a better performance
prediction. Specifically, GBR builds an additive model in a forward stage-wise fashion and
each stage fits a regression tree on the negative gradient of the given loss function. RFR
fits a set number of decision trees of subsamples of a dataset to improve the predictive
power. Lastly, SVR is an SML algorithm that analyses data regression based on a hyperplane
and support vectors (Smola & Schölkopf, 2004); this method considers the points that are
within the decision boundary line and fit the error within a certain threshold. The best fit
line is the hyperplane that optimizes classification. Model hyperparameters were modified
to achieve better performance for models. LssR was trained with different values for alpha
regularization; those values were 200 numbers on a log scale from −10 to 3. For RFR
and GBR, random seeds were set at 27. For SVR default hyperparameters were used. All
algorithms were implemented using Python v3.9.9 and Sklearn (v1.1.1). Additionally, to
compare the models, we used R squared as our metric for model performance with k-fold
cross-validation splitting the dataset into five random folds to avoid model overfitting.
Additionally, we reported the average of the five scores provided by the cross-validation
process.

Taking into account that all variables are continuous, a Pearson correlation coefficient
was calculated as a measure of the strength of the relationship between them; this
kind of analysis was carried out on both datasets to decide which features to keep or
discard according to predictive power. To aid the reproducibility of this work, the code
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was uploaded to an open access repository on GitHub (https://github.com/TAOLabUV/
PredictION) as well as selected datasets.

Performance metrics
We assessed the efficiency of the model using the coefficient of determination (R2) (1),
mean absolute error (MAE) (2), and root mean squared error (RMSE) (3). Since errors can
be both positive (actual > prediction) and negative (actual < prediction), we measure the
absolute value and the squared value of each error. The R2, MAE, and RMSE are computed
as follows:

R2
=

(
∑n

i=1(obsi−µobs)(predi−µpred))2∑n
i=1(obsi−µobs)2

∑n
i=1(predi−µpred)2

(1)

MAE=
1
n

n∑
i=1

|obsi−predi| (2)

RMSE=

√
1
n

n∑
i=1

(obsi−predi)
2 (3)

where n represents the total number of sampled genomes, obsi corresponds to the number
of reads measured for a specific genome, predi is the predicted value of reads, i represents
each individual genome, and µcorresponds to the mean. The method is shown in a flow
chart in Fig. 1.

Creation of the dashboard
Since themachine learningmodel was trained in Python, we created a dashboard developed
in this language. The source code was packaged in an image using Docker (Anderson,
2015) containers. This image was uploaded to an open-source cloud platform as a web
application for other researchers to use. This dashboard has three sliders and a textbox for
‘‘Concentration of cDNA (ng/µl)’’, ‘‘Coverage depth (mean)’’ and ‘‘Coverage per genome
(percentage)’’ that is updated when the user changes these objects. Also, input values are
displayed in a figure with all values used for model training. Finally, users can verify the
value of the prediction reads together with the local explanation graph; in this way, every
time a value is modified in the slider, the prediction, and the graphs are automatically
updated. The application also allows the saving of the graphs obtained with each prediction
thanks to interactive buttons that are displayed on each graph. The web application can be
accessed at: https://genomicdashboard.herokuapp.com/.

Ethical considerations
The study was approved by the Ethics Committee of Universidad del Valle, Colombia, with
code 188-020, samples and database were anonymized.

RESULTS
Data analysis
The average number of reads in the evaluated genomes was 42.58k ± 42.9k for dataset (1)
and 42.81k ± 34.93k for dataset (2) (Table S1) with a positively skewed distribution in
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Figure 1 Methodology flowchart for an obtained optimal model.
Full-size DOI: 10.7717/peerj.14425/fig-1

both datasets (Figs. 2A and 2C). In dataset (1), outliers were on both sides of log e scale
boxplots, mainly accumulated on the lower side, while dataset (2) has values exclusively
in that space (Fig. S1). The average coverage depth per genome was 519.91 ± 563.5X and
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Figure 2 Histogram of distribution of sequenced reads and coverage depth in the dataset of 1461 (A
and B, respectively) and 471 genomes (C and D, respectively).

Full-size DOI: 10.7717/peerj.14425/fig-2

510.2 ± 453.22X for dataset (1) and dataset (2), respectively (Table S1), with an almost
identical distribution (Figs. 2B and 2D).

We analyzed the correlation between the target variable (number of reads sequenced)
and the dependent variable (coverage depth) (Fig. 3). Since the curve was not flat, the
feature was predictive and could be used for model construction (Figs. 3A and 3C). This
trend is shown in the univariate regression of the number of reads compared to coverage
depth, pointing to a strong direct relationship between these features (Figs. 3B and 3D)
with a Pearson’s Correlation Coefficient of 0.977 and 0.959 for dataset (1) and dataset (2),
respectively (p-value <0.001 in both cases).

We found the relationship in the dataset (1): y = 0.0129x − 30.315; for every 100 reads
added in real-time in an experiment, the expected average coverage depth of each sample
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Figure 3 The behavior of the target variable (number of reads per genome) for coverage depth in the
dataset 1 (A) and dataset 2 (C). Scatter plot with the distributions of the two variables in dataset 1 (B)
and dataset 2 (D). The plot of sequenced reads into bins comparing the mean and median value of cover-
age depth data in each bin.

Full-size DOI: 10.7717/peerj.14425/fig-3

increases by 1.3X. Therefore, if we desire 200X depth for lineage assignment, we need at
least 17,854 reads.

Models’ performance
The performance metrics values for all models tested showed R2 between 0.93 and 0.98
(Table 1). The ensemble models had better performance in both datasets with an R2 of
0.9794 for GBR in dataset1 and 0.9506 for RFR in dataset2; moreover, SVR showed in
both cases the lowest R2 values (0.9646 and 0.9347, respectively) (Table 1). In the case of
dataset1, GBR was followed by models LssR, RFR, then SVR. However, the performance
order of the models changed when we used the smaller dataset (2), with the best being RFR,
followed by GBR, LssR, then SVR. This performance pattern is similar when the average
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Table 1 R2, RMSE, andMAE performance values of dataset 1 and 2 evaluated under different models.

Dataset Model Average R2 R2 MAE RMSE

LssR 0.9715 0.9741 3817.5526 6509.1245
SVR 0.9610 0.9646 2762.9007 7607.8926
GBR 0.9771 0.9794 2843.2006 5804.2179

1

RFR 0.9756 0.9727 2559.9966 6683.7374
LssR 0.9637 0.9411 5191.3255 9082.4665
SVR 0.9539 0.9347 3874.7963 9565.7193
GBR 0.9539 0.9497 5099.3944 8393.9312

2

RFR 0.9603 0.9506 4478.2003 8317.3773

Notes.
The best values for each metric are in bold.

R2 of cross-validation is evaluated, where GBR outperforms the rest of the models with an
R2 of 0.9771 and only changes radically in dataset 2, where LssR is the highlight as the best
fitting, with 0.9637, following by RFR, SVR, and GBR. RFR and SVR presented the least
mean absolute error of predictions in both datasets (2560 and 3875 sequenced reads for
dataset (1) and dataset (2), respectively: Table 1).

We used GBR for the construction of the predictive app of variables modulating the
total number of sequenced reads. In short, the best performance models (GBR and RFR)
explain 95–98% of the variance of total reads of genomes in both used datasets. On average,
predictions for these models in dataset (1) and dataset (2) have a mean error of 2698 (12%)
and 4779 (18%) sequenced reads, respectively.

We visualized the results of k-fold validation by plotting predicted values against the
actual sequenced reads, observing that points are close to a diagonal line where predicted
= real (Figs. S2 and S3). Consistent with the performance metrics, the ensemble models
presented better predictive power and fitting compared to other algorithms. Figure 4 shows
the high similarity in predicted reads values between models in both datasets, with SVR
having more outliers compared to the rest, underestimating the true values of the target
variable.

The biggest error in the test set was over 73,353 and 53,444 sequenced reads modeled
by RFR for dataset (1) and dataset (2), respectively. Figs. S4 and S5 visualize the errors
in both datasets by plotting predicted against the residual of each prediction; for dataset
(1), most errors lie on the negative side, meaning these predictions are underestimated
(composed of 61.20, 51.91, 57.92, and 60.38% of residuals in LssR, SVR, GBR, and RFR,
respectively). Similarly, dataset (2) has 70.34, 53.40, 61.01, and 70.34% negative residuals,
respectively. In both datasets, SVR showed the most equitable distribution of positive and
negative errors. Moreover, LssR and SVR showed a slight positive skew with many values
in the interval of 10,000 to 30,000 compared to ensemble models that have more randomly
distributed errors, which is consistent with a more approximately normal distribution of
residuals in GBR and RFR compared to LssR and SVR (Figs. S6 and S7).

Finally, the plausibility of the GBR model predictions for both datasets was evaluated.
In the case of the dataset (1), the model predicts 43,089 reads were obtained (42,740 true
reads), given cDNA quantification values between 14.85–24.20 ng/uL, coverage between
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Figure 4 Scatter plot for predicted vsmeasured (true) values for sequenced reads, using linear regres-
sion with Lasso regularization, Support Vector Regressor, Gradient Boosting, and Random Forest for
two datasets of 1461 (A) and 471 genomes (B). R2 scores are equivalent to Table 1 values, obtained from
test partitions of each dataset. ‘‘Average R2’’ values obtained from the geometric mean of the scores of 5-
iterations of cross-validation.

Full-size DOI: 10.7717/peerj.14425/fig-4

91.12–96.03, and coverage depth between 380-688X. In dataset (2), the model predicts
that 78,807 reads were obtained (73,161 true reads), given N2 CT between 13-16, cDNA
quantification values above 34.8 ng/uL, coverage between 91.18–95.28, and coverage depth
above 643X.

DISCUSSION
The objective of this study was to test multiple SML regression algorithms to accurately
estimate enough sequenced reads per SARS-CoV-2 genome to achieve an acceptable
depth of coverage given different sample variables. Therefore, we compared simple linear
regression with parametric models SVR and ensemble algorithms for the accuracy and
robustness of the predicted target variable. The sample variables of the mean number
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of sequenced reads, mean coverage per genome and CT have literature-supported
relationships (Liu et al., 2022; Wang et al., 2011). Both genome coverage and depth of
coverage are highly dependent on the viral concentration of the sample, Gauthier et al.
(2021) showed that RT-qPCR SARS-CoV-2 samples with CTs greater than 25 tend to have
coverage less than 95%. Similarly, Brinkmann et al. (2021) reported that using 75,000 reads
with a depth>10X, they achieved> 98% coverage of the SARS-CoV-2 genome using ONT.
Consequently, including these variables was a priority to develop and create a machine
learning model, from data gathering to evaluation.

Estimated performance metrics show GBR had the highest R2 and lowest RMSE values
for predicted reads in the test and training datasets, indicating this ensemble model can
provide accurate depth estimations. However, this performance order changes in average
R2 of cross-validation in dataset 2, indicating that GBR (where R2

test < R2
training) does

not generalize well or has poor stability in this dataset (Li, Luan & Wu, 2020); however,
this limitation can be attributed to small sample size. On the other hand, MAE in both
tested datasets was reduced in RFR and SVR models, outperforming GBR (Table 1). This
pattern can be attributed to the nature of RMSE, which penalizes large gaps in the model
predictions, while MAE does not (Koutsandreas et al., 2021). On average, RFR and SVR
have more large-scale errors but fewer small-scale errors than GBR; this can be visualized
in the residuals plots (Figs. S4 and S5), where GBR accumulates more small-scale errors
in the interval of 10,000 to 30,000 reads, while SVR and RFR have more large-scale errors
randomly distributed.

Most of the sequencing input variables used in this study are correlated. Due to this, GBR
was preferred over other models that are more sensitive to collinearity, such as SVR (Cutler
et al., 2007). Moreover, both the adaptability of ensemble models to small sample sizes
along with the insensitivity to overfitting data, outliers, and less predictive input (when the
depth of coverage function was removed from data set 2) were advantages (Bellido-Jiménez,
Gualda & García-Marín, 2021;Wang et al., 2016).

Finally, we propose the use of Gradient Boosting Regressor for real-time monitoring of
ONTMinION sequencing of SARS-CoV-2 samples. The prediction accuracy of the method
should be further validated by optimizing the modeling algorithms. Therefore, the online
dashboard was created using GBR to predict themean depth of coverage and other variables
from simple input (number of sequenced reads), to improve the cost-effectiveness of flow
cells and ONT sequencing for laboratories with fewer resources. It would be interesting to
apply the method to monitor other reactions a priori sequencing parameter as storage of
sample time, quality metrics of cDNA, and different primer kits to verify reproducibility.
This research contributes to the establishment of SARS-CoV-2 genomic surveillance
management strategies for simple experiment monitoring and precise modeling methods.

CONCLUSIONS
We propose a novel method for the prediction of reads necessary to sequence SARS-CoV-2
at a sufficient coverage depth that allows database-acceptable lineage. Different machine
learning models were trained; the Gradient Boosting Regression algorithm showed the
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best fit, explaining more than 98% of the variance of the sequenced reads, and presented
an average error of 16% in the predictions. The Gradient Boosting Regressor provides a
useful exploratory and predictive tool for estimating reads given a priori sequencing process
variables such as CT (gene N) and amount of cDNA per sample and a posteriori sequencing
quality variables coverage and mean depth of coverage per genome. The implementation
of these methods will bring a reduction in sequencing costs through process optimization.
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