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Background

The leporid lagomorphs (rabbits and hares) are adapted to running and leaping (some more than others)
and consequently have unique anatomical features that distinguish them from ochotonid lagomorphs
(pikas) and from their distant rodent relatives. One such feature is an intracranial joint that circumscribes
the back of the skull, thought to facilitate skull mobility. This joint separates the anterior portion of the
cranium (including the dentition, rostrum and orbital apparatus) from the posterior portion of the cranium
(which encompasses the occipital and the auditory complex). Aside from the observation that the
intracranial joint is absent in pikas (locomotor generalists ) and appears more elaborate in the genera with
cursorial and saltatorial locomotory habits, the evolutionary history, biomechanical function and
comparative anatomy of this feature in leporids lacks a comprehensive evaluation.

Methodology

The present work analysed the intracranial joint (as well as facial tilting and lateral fenestration of the
maxilla) in the context of leporid evolutionary history using a Bayesian inference of phylogeny (18
genera, 23 species) and ancestral state reconstruction. These methods were used to gather information
about the likelihood of the presence of these three traits in ancestral groups.

Results

Our phylogenetic analysis found it highly likely that the last common ancestor of all living leporids had an
intracranial joint (92.9% likelihood) and that the last common ancestor of all living lagomorphs did not
(70.1% likelihood). These findings provide a broader context to further studies of evolutionary history and
will help inform the formulation and testing of functional hypotheses.
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Abstract

Background

The leporid lagomorphs (rabbits and hares) are adapted to running and leaping (some more than
others) and consequently have unique anatomical features that distinguish them from ochotonid
lagomorphs (pikas) and from their rodent relatives. One such feature is an intracranial joint that
circumscribes the back of the skull, thought to facilitate skull mobility. This joint separates the
anterior portion of the cranium (including the dentition, rostrum and orbital apparatus) from the
posterior portion of the cranium (which encompasses the occipital and the auditory complex).
Aside from the observation that the intracranial joint is absent in pikas (generalist locomotors)
and appears more elaborate in the genera with cursorial and saltatorial locomotory habits, the
evolutionary history, biomechanical function and comparative anatomy of this feature in leporids

lacks a comprehensive evaluation.

Methodology

The present work analysed the intracranial joint (as well as facial tilting and lateral fenestration
of the maxilla) in the context of leporid evolutionary history using a Bayesian inference of
phylogeny (18 genera, 23 species) and ancestral state reconstruction. These methods were used

to gather information about the likelihood of the presence of these three traits in ancestral groups.

Results
Our phylogenetic analysis found it highly likely that the last common ancestor between all living

leporids had an intracranial joint (92.9% likelihood) and that the last common ancestor of all

Peer] reviewing PDF | (2022:05:73671:0:0:NEW 13 May 2022)



PeerJ

40 living lagomorphs did not (70.1% likelihood). These findings provide a broader context to
41  further studies of evolutionary history and will help inform the formulation and testing of

42  functional hypotheses.
43 Introduction

44  The order Lagomorpha is a highly successful, geographically widespread mammalian group,

45  with a rich taxonomic history which has waneaand dates almost to the Cretaceous-Paleogene

46  (K-Pg) extinction event (Lopez-Martinez 2008). As herbivores, generally adapted to a cursorial
47  locomotory form, lagomorphs have a set of anatomical features that distin them from their
48 @)dent relatives, but these featm@iid not grant them ordinal status until relatively recently

49  (Gidley 1912). A general understanding that lagomorphs are morphologically conservative with
50 an “evolutionary picture [that is] one of the simplest of any group of mammals” (Wood 1957),
51 has somewhat exacerbated the lack of research focusing on the group, relative to rodents.

52 However, the extensive use of the European rabbit (Oryctolagus cuniculus) as a model organism
53 in medical research, particularly that relating to disease and disorders of the musculoskeletal

54 system (Esteves et al., 2018; Li et al., 2015), warrants further understanding of the general gross

55 anatomy and evolutionary history of lagomorphs as a whole.

56  The literature on functional anatomy in lagomorphs has primarily focused on the limbs in

57 relation to locomotion (Camp & Borell 1937; Fostowicz-Frelik 2007; Gambaryan 1974; Young
58 etal., 2014). Comparatively little research has been undertaken on the cranium (Bramble 1989;
59 Kraatz et al., 2015; Stott, Jennings & Harris 2010; Watson et al., 2014; Watson et al., 2021).

60 Many cranial features appear to correlate with posture and gait (DuBrul 1950) and there are a

61 number of unique traits that are poorly understood in terms of how they relate functionally to
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ecological factors such as diet, locomotion and burrowing (Bramble 1989; Feijo et al., 2020;
Gambaryan 1974; Kraatz et al., 2015; Moss & Feliciano 1977). One interesting cranial feature in
leporid lagomorphs (rabbits and hares) is the presence of an intracranial joint that may facilitate
cranial kinesis (Bramble 1989). The intracranial joint is located between the parietal and
occipital bones dorsally, the basioccipital-basisphenoid ventrally and between the squamosal and
otic complex at the sides of the cranium. This feature therefore divides the cranium into anterior
and posterior units and is thought to provide a degree of movement that sets it apart from the
cranial sutures (Bramble 1989). It is most elaborate in the extant genus Lepus (hares and
jackrabbits), although the exact nature of this elaboration is not yet well understood. Intracranial
joints are common in vertebrates such as reptiles and birds but @)resence in leporids is unique
for mamma@n other animals, intracranial joints span a wide range of joint types and functions
primarily in feeding; e.g., Holliday & Witmer (2008) but in leporids, the function is currently
hypothetical and lacks comparative evolutionary, histological and biomechanical data (Bramble
1989). Furthermore, the influence of other ecological factors, such as diet, have not been

sufficiently explored.

Other unique features of the leporid cranium that have had more recent attention include
fenestration of the lateral maxilla and the presence of marked facial tilting. Maxillary
fenestration appears in all leporid genera, albeit to varying degrees (Moss & Feliciano 1977).
Ochotonids, the sister-family to leporids, also share this trait; however, in Ochotona, it presents
as a single vacuity (Moss & Feliciano 1977). There are two primary hypotheses regarding the
function of this trait: the first postulates that it serves to lighten the crania, reducing torque forces
during high-speed locomotion (DuBrul 1950) and the second, is that it relates to the lack of

masticatory forces transmitted through the area (Moss & Feliciano 1977). However, a recent
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biomechanical investigation of the strains generated during mastication show that fenestrations
do not diminish the transmission of masticatory forces, and therefore likely supports the first
hypothesis: minimising bone while maintaining a mechanically resistant morphology (Watson et
al., 2021). Facial tilting in leporids was identified by Kraatz et al., (2015) who noted that, across
leporids, there is variation in the angle between the upper diastema and occipital plane. They
hypothesised that this functions to increase frontation of the orbits in order to aid vision in taxa
that have specialised, high-speed locomotion. The presence and complexity of these cranial
specialisations have been found to vary with locomotory form; for example, the fastest running
species have the greatest degree of fenestration in their crania (and subsequently, markedly
lighter skulls) (Bramble 1989; DuBrul 1950), higher degrees of tilting in the facial region
(Kraatz et al., 2015) and more elaborate intracranial joints (Bramble 1989). Given that these
features tend to appear together, it is somewhat likely that they form a functional complex that

allows the cranium to withstand the mechanical forces present during high-speed locomotion.

Lagomorphs are notable in exhibiting higher diversity in the fossil record than at present

with 12 extant genera (11 leporid, one ochotonid) and ~94 extant species (61-63

leporid, 30 ochotonid) compared to approximately 78 genera and 234 species from the fossil
record (Lopez-Martinez 2008). Due to th@nd the conservative lagomorph body plan,
lagomorph evolutionary history remains a contentious issue (Matthee et al., 2004). Although
large-scale molecular phylogenetic studies have aided the general systematics, the use of
morphological data in character-based phylogenetic methods remains important for time
calibration, ancestral state reconstruction and trait evolution rates (Donoghue & Yang 2016). The
identification of new, derived morphological characters for discrete character-based

phylogenetics would therefore be welcomed (Ruf 2014). Furthermore, the use of comparative
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phylogenetic methods in the field of functional anatomy allows for the study of functional traits
(or groups of functional traits) in the context of the evolutionary history of a group (Blanke et al.,

2017; McElroy, Hickey & Reilly 2008)

Due to the difficulties preserving the anterior and posterior portions of the crania together in situ,
as the two parts separate easily, the posterior portion of the crania is often poorly preserved or
entirely absent in many fossil remains (Quintana, Kéhler & Moya-Sola 2011). This complicates
any attempt to directly classify an intracranial joint in extinct species. Furthermore, the
identification of facial tilt angle and fenestration of the lateral maxilla also requires high levels of
cranial preservation in the fossil record. By applying various methods to a morphological
discrete character matrix, which includes data from extant and extinct species such as
Palaeolagus, it is possible to predict the most likely character state at internal nodes on the

resultant phylogenetic tree (Reyes et al., 2018).

Hence, there are two specific aims of this work. First, to develop a lagomorph phylogeny using
morphological characters and generated via Bayesian inference, that is mostly concordant with
major clades and divergence estimates reconstructed by large-scale molecular lagomorph
phylogenies (such as Matthee et al., 2004 and Ge et al., 2013). Secondly, to utilise this tree to
undertake an ancestral state reconstruction to better understand where these unique cranial traits
likely arose in the lagomorph lineage. Results from this work will be used to ascertain whether
any of these unique cranial traits would be useful as morphological characters for leporid

systematics in general.

Methodology
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Reconstructing phylogeny

Phylogenetic analyses were run using Mr Bayes v. 3.2.7a (Ronquist et al., 2012) via CIPRES
Science Gateway (Miller, Pfeiffer & Schwartz 2010). The matrix used was primarily based on
that published by Asher et al., (2005) (which is based on a matrix developed by Meng, Hu & Li
(2003) supplemented with additional characters. Character definitions for original characters are
identical to Asher et al., (2005). In addition to adding characters, the number of taxa was
expanded to better reflect extant species diversity. The resulting morphological data matrix
contains 23 taxa and 228 characters. The resulting taxa are extant and extinct lagomorphs with a

tree-shrew genus Tupaia serving as the outgroup.

Additional taxa

The matrix developed by Asher et al., (2005) includes a broad range of both extant and extinct
genera belonging to (or close to) the supraorder Glires. The taxa used by Asher et al., (2005)
were chosen in order to place new Gomphos material in the context of Glires systematics. Since
our study is concerned with a morphology that is only found in (extant) leporids, we have
adjusted our data accordingly. For extant lagomorphs, the original inclusion of Lepus, Sylvilagus,
Oryctolagus and Ochotona was expanded to include all extant genera and multiple species for
genera that are polyspecific (Table 1). For fossil data, only genera that are part of, or close to, the

lagomorph lineage were included (Mimolagus, Gomphos, Mimotona, Paleolagus, Prolagus).

Additional characters

Three new characters were added to the matrix. These characters represent cranial traits that are
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likely linked to locomotory habit; perhaps forming a suite of functional traits that perform

somewhat together (Figure 1).

Character 95: angle between the upper diastema and the occipital plane (facial tilt) (Kraatz et
al., 2015) — -- (0) more obtuse: >39.9° (e.g., Ochotona) (1) more acute: <39.Q.g.,

Pronolagus).

The non-leporids included in the taxon list are defined as having more obtuse facial tilt angles.
For leporids, a species is defined by having a more obtuse degree of facial tilt if the median angle
between the upper diastema and the occipital plane is greater than 39.9°. They are defined as
having a more acute degree of facial tilt if the median angle between the upper diastema and
occipital plane of a species is less than 39.9°. This character is based on data collected by Kraatz
et al., (2015). It was found by Kraatz et al., (2015) that leporid species that locomote in a
specialised, cursorial or saltatorial, way generally exhibit a more acute degree of facial tilting
than those who locomote in a more generalised way. Therefore, leporids can be grouped into one

or the other of these categories.

Character 113 lateral fenestration of maxilla (if present)--- (0) large single opening (e.g.,
Ochotona), (1) a latticework of small openings (reduced) (e.g., Oryctolagus), (2) a latticework of

small openings (advanced) (e.g., Lepus). Ordered (see discussion).

These states are based on observations by (Wible 2007). A multi-state character was necessary to
expand on the original character for lateral fenestration of the maxilla (character M121, MW66,
A111) as the differences appear to correlate with locomotory form. This character is coded as

inapplicable for those without lateral fenestration of the maxilla.

Character 136 (new) intracranial joint --- (0) absent (e.g., Ochotona), (1) present (e.g., Lepus).
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The intracranial joint is located along the occipito-parietal union dorsally and continues down
either side of the braincase between the squamosal and the otic complex. In Oryctolagus, which
has an unfused interparietal bone, the joint is diverted around the posterior edge of the
interparietal. Mid-ventrally, it is completed by a union at the basioccipital-basisphenoid
articulation (Bramble 1989). Due to the lack of published data pertaining to the variation (in
complexity) of this feature between genera and species, there is no justification for a multi-state

character (as states are currently only observational). Therefore, it is coded as absent or present.

Phylogenetic approach

A relaxed clock analysis was implemented using a fossilised birth-death model in the program
Mr Bayes v. 3.2.7a (Ronquist et al., 2012) via CIPRES Science Gateway (Miller et al., 2010).
Some groups were constrained (using prset tologypr=constraints) in order to better fit the
topology of published trees which used molecular data (Ge et al., 2013; Matthee et al., 2004). In
this instance, constraining was justified as the difficulty of producing accurate topologies from
morphological data for lagomorphs is well reported (Kraatz et al., 2021). The fossil taxa were
calibrated by age of fossil occurrence (via fossilworks.org) and a soft upper bound constraint was
placed on the age of the tree (prset treeagepr=offsetexp) based on the molecular estimate of the
age of Mimotona (the oldest taxon) (dos Reis, Donoghue & Yang 2014). A calibration was also
placed on the age of the genera Lepus, Ochotona and Sylvilagus based on the posterior
distribution of the divergence estimates from Matthee (2004) (Table 2). The strategy under
which the species were sampled was set to represent all major lineages (diversity sampling)
(prset samplestrat=diversity). The base of the clock rate was set using an informative prior

derived from a non-clock analysis of the dataset (prset clockratepr=lognorm). The clock model
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for rate variation among lineages was set to a relaxed uncorrelated clock with values sampled
from a gamma distribution (IGR). Six MCMC chains were run twice for 7000000 generations
and sampled every 1000 generations. The first 25% of each run were discarded at the burnin

phase.

Reconstructing ancestral state

Due to poor preservation of the lagomorph posterior cranium during the taphonomic process, it is
difficult to ascertain the presence (or lack thereof) of the intracranial joint in fossil individuals.
Ancestral state reconstruction allows for the combination of observed state data at the tips of a
tree and information regarding the phylogenetic relationships between taxa — resulting in the
ability to predict states of heritable traits (characters) at internal nodes (Holland et al., 2020).
Ancestral state reconstructions were undertaken in the R-language toolkit MBASR (MrBayes
Ancestral States with R) (Heritage 2021; R Studio Team 2020). This toolkit performs ancestral
state reconstruction using the continuous-time Markov model via MrBayes and automates many

of the steps included in packages with similar functions (Heritage 2021).

The consensus tree from the relaxed clock analysis was loaded into MBASR with a file including
the specific trait data examined. The number of samples generated was set at 10000 (having been
compared to other, lower, values). MBASR applies a likelihood filter (the threshold for this filter
is 25% of the likelihood range) and so this value allows enough generations to reach optimum

proposals in terms of likelihoods. Each run reconstructed a single character.

The characters reconstructed were as follows: ch. 95 (facial tilt), ch. 113 (fenestration) and ch.

136 (intracranial joint). Character 113, relating to the state of lateral fenestration of the maxilla,
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is eligible for ordering (as there is good evidence for a progression of states). This was tested and

ordering the states was found to make very little difference to results.

Results and Discussion

Phylogeny

The relaxed-clock phylogenetic reconstruction was derived from morphological data and
includes members of every extant genus of lagomorph (Figure 2). The clade groupings by
previously published phylogenies are not always consistent with one another and our phylogeny
is no exception. Matthee et al., (2004), Ge et al., (2013) and our phylogeny agree that Nesolagus
is closely related to Pronolagus, although Poelagus is also included in this group for Matthee et
al., (2004) and here. Matthee et al., (2004) and our reconstruction agree that Bunolagus,
Oryctolagus, Caprolagus and Pentalagus form a clade. Ge et al., (2013) recovered this clade as
well, but also included Romerolagus (which branches off earlier in Matthee et al., 2004) and
Sylvilagus (which is grouped with Brachylagus in Matthee et al., 2004 and Brachylagus and

Romerolagus in our data) (Figure 3).

The divergence time estimates in our phylogenetic reconstruction roughly match those in
molecular studies, with a key difference being the divergence estimate for the leporid/ochotonid
split. For this, Ge et al., (2013) give a median value of divergence time as 50.3 million years and
Matthee et al., (2004) give 31.7 million years. Our phylogeny gives a median estimate of 27.0
million years. The estimates for the divergence of leporids are consistent within all three
phylogenies (21.0 Mya here, 15.2 Mya for Matthee et al., 2004 and 18.1 Mya for Ge et al.,

2013).
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Clade groupings for extant lagomorphs are notoriously difficult to resolve (using molecular or
morphological data) due to morphological conservatism, the absence of chromosomal
synapomorphies and the saturation of mitochondrial DNA sequences (Matthee et al., 2004).
Given that we used morphological data alone, it was necessary to give the model information
derived from molecular phylogenies. The relevant divergence time estimates in our phylogenetic
reconstruction generally fall within the published ranges, with the exception of the
leporid/ochotonid split in Ge et al., (2013). This was largely aided by the calibration of the age of
the genera Lepus, Ochotona and Sylvilagus. Without these calibrations, the divergence time
estimates are far younger than expected; for example, it places the divergence between leporids
and ochotonids at around 10.9 million years. This reflects the young estimates for clade
divergence that morphological data alone, with a poor sampling of fossil specimens, tends to
produce (Barba-Montoya, Tao & Kumar 2021). By placing a few key calibrations on large extant

genera, we compute a tree with estimations that are concordant with previous studies.

Ancestral state reconstruction

The results from the first reconstructed trait, the angle between the upper diastema and occipital
plane (facial tilting) are inconclusive (Figure 4). That is, that MBASR could not confidently
assert one way or another to the state at key internal nodes such as the last common ancestor of
extant leporids, or the last common ancestor of extant lagomorphs as a whole. Previous work on
leporid facial tilting found that it was strongly homoplastic across leporid evolutionary history
and that there was weak phylogenetic signal in the facial tilt angle (Kraatz & Sherratt 2016;
Kraatz et al., 2015). Furthermore, disaggregating the raw data for these angles reveals a large

amount of intraspecific variation (in some species, up to 20.2° - as in Pronolagus crassicaudatus)
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(Kraatz et al., 2015), suggesting that it is likely a trait driven more by environmental than
evolutionary factors. Specifically, Kraatz et al., (2015) found that in generalised locomotors,
such as Brachylagus idahoensis, there is reduced facial tilt angle in comparison to cursorial and
(to a lesser extent) saltatorial locomotors such as Lepus californicus and Sylvilagus audubonii.
This suggests that perhaps locomotion might be a driver for facial tilt angle, rather than
phylogeny. Due to the lack of significant phylogenetic signal, high homoplasy and the influence
of ecological factors (primarily locomotion), the ancestral state reconstruction did not bear
informative results for facial tilt angle. This trait is therefore not a promising morphological

character for use in phylogenetics.

The second reconstructed trait, fenestration of the rostrum, indicates that the intermediate
fenestration seen in rabbits such as Oryctolagus, Pronolagus and Bunolagus is the likely
ancestral state of leporids and all lagomorphs (Figure 5). Therefore, the advanced and singular
opening states in Lepus and Ochotona are likely derived traits. Whilst fossil lagomorph taxa are
often only represented by teeth or mandibular sections, well preserved members of Palaeolagus
(33.9-20.43 Mya) and Alilepus (13.6 — 1.8 Mya) appear to also feature the intermediate, rabbit-
like, state (Wolniewicz & Fostowicz-Frelik 2021; Wu & Flynn 2017), supporting our results.
Our ancestral state reconstruction also suggests that the development of the advanced form of
fenestration seen in Lepus and some other taxa (such as Sylvilagus and Brachylagus) has evolved
on two separate occasions in the lineages of extant leporids, whereas the single vacuity state seen
in ochotonids likely evolved once (in the common ancestor between Ochotona and Prolagus).
However, in phylogenies reconstructed by Matthee et al., (2004) the genus Lepus is in a clade

with Sylvilagus, Brachylagus and other taxa. If we are to accept their reconstructions as correct,
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then the advanced fenestration in these taxa would have likely evolved just once (in the common

ancestor of Lepus, Brachylagus and Sylvilagus).

Fenestration of the maxilla is considered a diagnostic feature of the leporid cranium and its state
varies between taxa. There are multiple hypotheses as to the function of these fenestrations,
including lightening the rostrum for running speed vs lack of masticatory force transmission
(DuBrul 1950; Moss & Feliciano 1977; Watson et al., 2021). More recently, a study utilitising
both multibody dynamics analysis and finite element analysis suggests that the fenestration is
optimised to reduce mass in the rostrum whilst maintaining structural stability during mastication
(Watson et al., 2021). In this scenario, both primary functional hypotheses (lightening the skull
for locomotion and masticatory force response) could be correct. The ancestral state
reconstruction presented here does not bolster any functional hypothesis, however the presence
of the advanced fenestrations in taxa that run at slower speeds (such as Brachylagus, which
locomotes at a top speed of around 23 km per hour, as opposed to Lepus europaeus, which
reaches speeds of 75 km per hour) suggests that the function is not entirely related to running
speed. This trait also needs more study in order to identify the amount of intraspecific variation
and measure the extent and complexity of the maxillary fenestrations. This trait could be utilised
as a morphological character in further phylogenetic analyses; whilst the original character set
included a character for the presence of fenestration in the maxilla, information regarding the

degree of the fenestration could help to separate extant taxa further.

The third trait reconstructed at internal nodes, the leporid intracranial joint, is shown mapped on
the consensus tree of the relaxed clock analysis (Figure 6). This suggests that the last common
ancestor of all extant leporids likely possessed the joint, whereas the last common ancestor of all

extant lagomorphs likely did not. This outcome was expected, as we predicted that this trait arose
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as leporids became more specialised in morphology, — possibly relating to the transition from
more generalised to more specialised high-speed locomotion (Gambaryan 1974). The ancestral
state reconstruction also suggests that it is likely (although with less certainty) that the last
common ancestor of all extant lagomorphs did not have this trait, an outcome that was also
expected given a close relative of this ancestor, Palaeolagus, was likely a generalist locomotor
and appears to have a posterior cranium that resembles ochotonid morphology (Wolniewicz &
Fostowicz-Frelik 2021). For large-scale phylogenies, where distinguishing between leporids and
ochotonids is necessary, the presence/absence of an intracranial joint could be a useful
morphological character. However, it is rarely preserved in fossil taxa and in the character’s
current state (just presence/absence), it does not provide any means of differentiating between
extant leporid taxa. Future work on the variation of this trait among leporids may allow us to
categorise different degrees of complexity, aiding our ability to use this feature as a useful

character in leporid systematics, and potentially identifying links to locomotion.

Conclusion

This study found that the last common ancestor of extant leporids likely had an intracranial joint,
but the last common ancestor of extant lagomorphs likely did not — indicating that this trait was
potentially driven by changes to locomotory form in the leporids (in particular, as they became
more specialist runners and jumpers). It was also found that the ancestral state of maxillary
fenestration was likely the intermediate rabbit-like form, with the extreme advanced and singular
forms in Lepus and Ochotona representing derived features. As expected, the ancestral state
reconstruction could not resolve states for facial tilting at internal nodes; this is probably due to

the homoplastic nature of this trait (Kraatz et al., 2015). In future work, broader sampling of

Peer] reviewing PDF | (2022:05:73671:0:0:NEW 13 May 2022)



PeerJ

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

fossils (particularly those closer to the leporid/ochotonid split) is necessary to avoid the need to
calibrate clade divergence times. Furthermore, the study of these traits would benefit from a total
evidence approach, combining molecular and morphological characters to ensure the accuracy of

resolved phylogenetic relationships.
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Figure 1

Morphological characters added to the matrix developed by Meng et al. (2003), Asher et
al. (2005) and Rose et al. (2008).

A. the intracranial joint can be seﬂere between the squamosal and the otic complex in
Lepus (right), it is not vis@ in Ochotona (left). The angle of the upper diastema to line of the
occipital plane is illustrated in black. B. the morphological differences in maxillary
fenestration are shown in Ochotona (left), Oryctolagus (middle) and Lepus (right). Ochotona
features a singular vacuity. Oryctolagus has extensive fenestration, but noticeably less

advanced than that seen in Lepus.
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Figure 1: Morphological characters added to the matrix developed by Meng et al. (2003), Asher et al. (2005) and Rose et al. (2008).
A. the intracranial joint can be seen here between the squamosal and the otic complex in Lepus (right), it is not visible in Ocherona (left).
The angle of the upper diastema to line of the occipital plane is illustrated in black. B. the morphological differences in maxillary
fenestration are shown in Ocherona (left), Oryerolagus (middle) and Lepus (right). Ochorona feawres a singular vacuity. Orverolagus has

extensive fenestration, but noticeably less advanced than that seen in Lepiss.
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Figure 2 (on next page)

Our relaxed-clock phylogenetic reconstruction derived from morphological data.

The tree includes at least one member of every extant genus of lagomorph. Fossil taxa are

denoted with “zz".
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Figure 2: Our relaxed-clock phylogenetic reconstruction derived from morphological data. The tree includes at least one member of

every extant genus of lagomorph. Fossil taxa are denoted with “zz”.
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Figure 3

The phylogenetic relationships offered by Matthee et al. (2004) (left), Ge et al. (2015)
(middle) and our phylogeny (right).
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Figure 3: The phylogenetic relationships offered by Matthee et al. (2004) (left), Ge et al. (2015) (middle) and our phylogeny (right).
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Figure 4

Ancestral state reconstruction of leporid facial tilt.

Results from this reconstruction are inconclusive due to the homoplastic nature of this trait.
The orange bracket encompasses all lagomorphs, the blue surrounds leporid lagomorphs and
in green, the ochotonids. Red in the nodal markers refers to an obtuse facial tilt (as in extant

Ochotonids), orange refers to a present intracranial joint (as in extant Leporids).
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Figure 4: Ancestral state reconstruction of leporid facial tilt, Results from this reconstruction are inconclusive due to the homoplastic
nature of this trait. The orange bracket encompasses all lagomorphs, the blue surrounds leporid lagomorphs and in green, the ochotonids.
Red in the nodal markers refers to an obtuse facial tilt (as in extant Ochotonids), orange refers 1o a present intracranial joint (as in extant

Leporids).
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Figure 5

Ancestral state reconstruction of the maxillary fenestration

Rabbit-like, intermediate fenestration is likely ancestral. More extreme morphologies, the
Ochotona single pauci@nd the Lepus advanced fenestration are likely derived traits. The
orange bracket encompasses all lagomorphs, the blue surrounds leporid lagomorphs and in
green, the ochotonids. Red in the nodal markers refers to the single paucity fenestration type
(as in Ochotonids), orange refers to a reduced type (as in Oryctolagus) and yellow refers to

the advanced type (as in Lepus).
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Figure 5: Ancestral state reconstruction of the maxillary fenestration. Rabbit-like. intermediate fenestration is likely ancestral. More
extreme morphologies. the Ochotona single paucity and the Lepus advanced fenestration are likely derived traits. The orange bracket

encompasses all lagomorphs, the blue surrounds leporid lagomorphs and in green, the ochotonids. Red in the nodal markers refers to the
single paucity fenestration type (as in Ochotonids), orange refers to a reduced type (as in Oryerelagus) and yellow refers to the advanced

type (as in Lepus).
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Figure 6

Ancestral state reconstruction of the leporid intracranial joint

The last common ancestor of extant leporids likely did have the intracranial joint, whereas
the last common ancestor of extant lagomorphs likely did not. The orange bracket
encompasses all lagomorphs, the blue surrounds leporid lagomorphs and in green, the
ochotonids. Red in the nodal markers refers to a lack of intracranial joint (as in extant

Ochotonids), orange refers to a present intracranial joint (as in extant Leporids).
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Figure 6: Ancestral state reconstruction of the leporid intracranial joint. The last common ancestor of extant leporids likely did have
the intracranial joint, whereas the last common ancestor of extant lagomorphs likely did not. The orange bracket encompasses all
lagomorphs, the blue surrounds leporid lagomorphs and in green, the ochotonids. Red in the nodal markers refers to a lack of intracranial

joint (as in extant Ochotonids), orange refers to a present intracranial joint (as in extant Leporids).
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Table 1(on next page)

Morphological characters added to the matrix developed by Meng et al. (2003), Asher et
al. (2005) and Rose et al. (2008).

A. the intracranial joint can be seen here between the squamosal and the otic complex in
Lepus (right), it is not visible in Ochotona (left). The angle of the upper diastema to line of the
occipital plane is illustrated in black. B. the morphological differences in maxillary
fenestration are shown in Ochotona (left), Oryctolagus (middle) and Lepus (right). Ochotona
features a singular vacuity. Oryctolagus has extensive fenestration, but noticeably less

advanced than that seen in Lepus.
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Table 1: The genera included in previous datasets (Meng et al. 2004, Asher et al. (2005) and Rose et al. (2008) versus the genera and

species included in the present study. The new dataset adds a member of every extant lagomorph genus (and multiple species for genera that

are polyspecific).
Genera incl. in previous datasets Genera and species incl. in present study
Lepus Lepus californicus
Lepus timidus
Lepus europaeus
Lepus americanus
Oryctolagus Oryctolagus cuniculus
Sylvilagus Sylvilagus bachmanii
Sylvilagus audubonii
Brachylagus idahoensis
Bunolagus monticularis
Caprolagus hispidus
Pentalagus furnessi
Poelagus marjorita
Romerolagus diazi
Pronolagus crassicaudatus
Ochotona Ochotona pallasi
Ochotona princeps
zzMimolagus zzMimolagus
zzGomphos zzGomphos
zzMimotona zzMimotona
zzPalaeolagus zzPalaeolagus
zzProlagus zzProlagus sardus
Tupaia (outgroup for Glires) Tupaia (outgroup for Glires)
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The constraints and calibrations placed on clades

This ensures that the reconstructed topology and divergence time estimates of our tree are

more concordant with published molecular phylogenies.
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1 Table 2: The constraints and calibrations placed on clades so that the reconstructed topology and divergence time estimates of our tree is

2 more concordant with published molecular phylogenies.

Constraint Taxa Divergence calibration
ingroup All taxa bar Tupaia N/A
Lepus L. californicus, L. timidus, L. europaeus, L. 4.03 - 5.90 (Matthee et
americanus al. 2004)
Ochotona O. pallasi, O. princeps 23.31 - 39.26 (Matthee
et al. 2004)
Sylvilagus S. bachmanii, S. audubonii 2.43 - 6.65 (Matthee et
al. 2004)
Leporids All Lepus sp., B. idahoensis, B. monticularis, N/A
C. hispidus, N. timminsi, P. furnessi, P.
marjorita, R. diazi, P. crassicaudatus, O.
cuniculus, S. audubonii, S. bachmanii
Clade one O. pallasi, O. princeps, P. sardus N/A
Clade two N. timminsi, P. marjorita, P. crassicaudatus N/A
Clade_three C. hispidus, O. cuniculus, B. monticularis, P. N/A
furnessi
Clade four R. diazi, B. idahoensis, S. audubonii, S. N/A
bachmanii
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