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ABSTRACT
Background. Intertidal rocky shore surveys along the South African coastline (∼3,000
km) have demonstrated the presence and abundance of the encrusting orange sponge
Hymeniacidon perlevis (Montagu, 1814), a well-known globally distributed species.
After analysing the southern African populations, we gained a better understanding
of the genetic structure of this now-accepted global species. Apart from confirming the
presence of a single population of H. perlevis, we also determined its distribution in
the southern African intertidal rocky shore ecosystem, compared its genetic diversity
to congeners, predict its global distribution via environmental niche modelling, and
discussed possible underlying mechanisms controlling the species’ global distribution.
Methods. We surveyed the South African coastline and sampled sponges at 53 rocky
shore sites spanning over 3,000 km, from Grosse Bucht south of Lüderitz (Namibia)
to Kosi Bay on the east coast of South Africa. DNA sequences of the nuclear rDNA
internal transcribed spacer (ITS1) and the COImitochondrial gene were obtained from
61 samples and compared them to a world-wide sample of other H. perlevis sequences.
Using environmental predictor variables from the global dataset BIO-ORACLE, we
predicted the probability of global occurrence of the species using an ensemble of eight
distribution models.
Results. South African specimens were found to be 99–100% identical to other
populations ofH. perlevis (=H. sinapium) fromotherworld-wide regions. The presence
of a single population of H. perlevis in southern Africa is supported by genetic data,
extending its distribution to a relatively wide geographical range spanning more than
4,000 km along the temperate southern African coast. The predicted global occurrence
by ensemble model matched well with the observed distribution. Surface temperature
mean and range were the most important predictor variables.
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Conclusion. While H. perlevis appears to have been introduced in many parts of the
world, its origins in Europe and southern Africa are unclear.

Subjects Biodiversity, Genetics, Marine Biology, Taxonomy, Zoology
Keywords Porifera, Barcoding, Population structure, Haplotype networks, Rocky intertidal area,
COI, ITS, Southern Africa, Temperate coasts

INTRODUCTION
Hymeniacidon perlevis (Montagu, 1814) is a common sponge in a wide variety of coastal
habitats, occuring up to 3 m above the low tide line down to shallow subtidal habitats
(Gastaldi et al., 2018; Regueiras et al., 2019; Turner, 2020;Harbo et al., 2021; de Voogd et al.,
2021). A recent compilation of genetic and morphological evidence confirmed that the
species has been found in temperate waters of all major ocean basins (Fig. 1; Table S1;
see also Turner, 2020), and it has 18 synonymized names from various locations around
the world (de Voogd et al., 2021). This very prolific encrusting orange sponge was first
described from Devon, southwest England as Spongia perlevis Montagu, 1814. The type
locality has very similar environmental conditions to the west coast of South Africa (Smit
et al., 2013). The original description is very limited, with no figures of the diagnostic
characters (see Montague, 1814, pg. 86).

In southern Africa, Hymeniacidon perlevis were first detected at the turn of the 20th
century. Stephens (1915) described two species, collected during the Scotia expedition in
1904, from Saldanha Bay, False Bay and Hout Bay as Halichondria caruncula (Bowerbank,
1858) and Leucophloeus styliferus Stephens, 1915.Halichondria caruncula (Bowerbank, 1858)
is regarded as a junior synonym ofH. perlevis (Ackers et al., 2007; de Voogd et al., 2021), and
Leucophloeus styliferus Stephens, 1915, is now accepted as Hymeniacidon stylifera (Stephens,
1915) (see de Voogd et al., 2021). Penrith & Kensley (1970a), Penrith & Kensley (1970b),Day
(1969) and Day (1974) reported the presence of H. perlevis in South Africa based on the
published works by Stephenson (1939), Stephenson (1944a), Stephenson (1944b), Stephenson
(1948) and Stephenson & Stephenson (1972). Additionally, Branch et al. (1994), Branch et
al. (2002), Branch et al. (2007), Branch et al. (2010), Branch et al. (2016) and Branch et al.
(2017) listedH. perlevis in their field guides and recorded its distribution as occurring from
Port Nolloth on the west coast to East London on the east coast. Hymeniacidon perlevis
was first described in detail from the west coast of South Africa by Samaai & Gibbons
(2005). During the 2001 Saldanha Bay port survey (A Awad, L Greyling, S Kirkman, L
Botes, B Clark, K Prochazka, T Robinson, N Kruger, L Joyce, 2002, unpublished data:
Port biological baseline surveys: draft report Port of Saldanha, South Africa), the species
was not recorded; no Porifera were included in the geographical analyses of Emanuel et al.
(1992),Awad, Griffiths & Turpie (2002) and Turpie, Beckley & Katua (2000).Hymeniacidon
perlevis was reported by Penrith & Kensley (1970a) in the Lüderitz intertidal zone, and by
Kreiner et al. (2019a), Kreiner et al. (2019b) and Kreiner et al. (2019c) at Grosse Bacht, Diaz
Point, Patrysberg, Mile 4, Badewane and Möwe Bay in Namibia. From Rocky Point to the
Kunene River north of Möwe Bay, the species was not recorded (Penrith & Kensley, 1970b;
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Kensley & Penrith, 1980; Kreiner et al., 2019a; Kreiner et al., 2019b; Kreiner et al., 2019c). In
South Africa H. perlevis is not listed as an introduced species (Robinson et al., 2005; Mead
et al., 2011;Mead et al., 2013; Branch et al., 2017), but the global distribution of the species
has been attributed to maritime traffic (Gastaldi et al., 2018; Schwindt et al., 2020; Turner,
2020; Harbo et al., 2021).

Some sponges that were previously believed to have widespread distributions have
been shown to be comprised of multiple cryptic species (Xavier et al., 2010; de Paula
et al., 2012; Pérez-Portela et al., 2013). In addition, the larvae of Hymeniacidon perlevis are
lecithotrophic with a relatively short planktonic life, resulting in low dispersal capacity
(Maldonado, 2006; Xue, Zhang & Zhang, 2009). Biofouling of historical and modern vessel
hulls and on shells of shellfish that were transferred between aquaculture facilities has been
suggested as a likely mechanism for the transfer and introduction of this species (Schwindt
et al., 2020; Turner, 2020; Harbo et al., 2021), but the origin and possible sequence of the
introductions remain unclear. When dealing with potentially introduced species, reliable
taxonomy is essential. The difficulty in detecting introduced sponge species has implications
that go beyond systematic research, affecting ecological studies andmanagement initiatives.

Hymeniacidon perlevis is recognized as a morphologically uniform species throughout
its distribution (Turner, 2020). However, because the species is geographically widespread
and there is a potential for considerable population structure due to the alleged limited
dispersal capabilities, we were interested in how morphological uniformity aligns with
genetic uniformity.

In the present study, we employed the analysis of two molecular markers, the
mitochondrial cytochrome c oxidase subunit I (COI) and ribosomal ITS subunit to
add to our understanding of the genetic structure and haplotype diversity of this species
within southern Africa and globally and to evaluate the effects of geographic distance and
connectivity in this conspicuous widespread species.

Environmental niche modelling was conducted to investigate the factors that dictate the
distribution and the drivers of genetic structure of H. perlevis globally. While the origin
and processes of spread are speculative at this stage, we discuss the most likely scenarios.

MATERIALS & METHODS
Museum material
Stephens (1915) material, Hymeniacidon caruncula (Bowerbank, 1858), NMSZ
1921.143.1443, from False Bay and Saldanha Bay, and Leucophloeus stylifera Stephens,
1915, Syntype, NMSZ 1921.143.1443, from Saldanha Bay, were acquired on loan for
comparative studies. The specimens are kept in 70% ethanol in the Department of Natural
Sciences, National Museums Collection Centre in Edinburgh, United Kingdom. The
holotype of Hymeniacidon sublittoralis Samaai & Gibbons, 2005, SAM-4903, is preserved
in 70% ethanol and deposited at the Iziko Museums of South Africa.

South African Halichondria caruncula recorded by Stephens (1915), Leucophloeus
styliferus, and H. sublittoralis were examined and compared with the South African and
Namibian specimens of H. perlevis.
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Figure 1 Global occurrence records ofHymeniacidon perlevis based onmorphological andmolecular
data. R, an open source program, was used to produce the map (R Core Team, 2021).

Full-size DOI: 10.7717/peerj.14388/fig-1

Sample collection
Between 2015 and 2019, field surveys were conducted during low tide at 53 intertidal
habitats along the South African coast from Port Nolloth (Benguela Current system,
26◦44′7.05′′S; 15◦5′43.38′′E) to Kosi Bay near the Mozambique border (Agulhas Current
system, 26◦55′46.21′′S; 32◦52′41.23′′E) (Fig. 2; Table S2). Dr. Maya Pfaff collected a sponge
sample from Grosse Bucht south of Lüderitz (Namibia) in 2019 as part of the Department
of Forestry, Fishries and Environment (DFFE) (South Africa) andMinistry of Fisheries and
Marine Resources (Namibia) joint rocky shore monitoring program (Kreiner et al., 2019a;
Kreiner et al., 2019b; Kreiner et al., 2019c), and it was identified as H. perlevis. This sample
was included in this study. We were not able to sample the rocky intertidal area between
Bettys Bay and Knysna (Fig. 2). Sponges were collected from the intertidal rocky shores by
removing a representative piece of the animal. Observations on appearance in life, habitat
type and depth were recorded in situ (Fig. 3). Colour photographs were taken in situ (Fig.
3) and in the laboratory. Upon collection, specimens were stored in 96% ethanol and
processed for histological examinations according to Samaai & Gibbons (2005). Spicule
dimensions are given as the mean length (range) × mean width (range) of 20 spicule
measurements.

Molecular analyses
DNA was extracted from 54 representative tissue samples across the three major
biogeographic provinces using the E.Z.N.A Tissue DNA kit according to themanufacturer’s
protocol (Omega Bio-Tek). A fragment of the mitochondrial cytochrome c oxidase subunit
I (COI) was amplified using primers LCO–1490 (5′—GGT CAA CAA ATC ATA AAG ATA
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Figure 2 Hymeniacidon perlevis range along the southern African coastline. The presence of H. perlevis
is shown by yellow dots, whereas the absence is indicated by black dots. Table S2 lists the locations that
were surveyed. R, an open source program, was used to produce the map (R Core Team, 2021).

Full-size DOI: 10.7717/peerj.14388/fig-2

TTG G—3′) and HCO–2198 (5′–TAA ACT TCA GGG TGA CCA AAA AAT CA–3′)
(Folmer et al., 1994).

Polymerase chain reactions (PCR) were performed in volumes of 25 µl containing 12.5
µl Taq, 0.5 µl of each primer (10 mM), 1 µl of BSA, 5 µl of DNA template and 5.5 µl
H2O. The cycling profile included an initial denaturation step (3 min at 94 ◦C), 40 cycles of
denaturation (30 s at 94 ◦C), annealing (20 s at 45 ◦C) and extension (1 min at 72 ◦C), and a
final extension step (10 min at 72 ◦C). The amplified DNA was purified with a PCR Clean-
Up Kit according to the manufacturer’s protocol. The final DNA product was sequenced
in both directions on an Applied Biosystems 3730xl DNA Analyzer (see Teske, Bader
& Golla, 2015 for Standard protocols), and the obtained chromatogram was edited using
MEGA11:Molecular EvolutionaryGenetics Analysis version 11 (Tamura, Stecher & Kumar,
2021). All the sequences were deposited in GenBank (NCBI; Benson et al., 2018) under the
accession numbers ON062377–ON062402 (see Table S3). No amplification product for
Halichondria caruncula (Bowerbank, 1858) sensu Stephens (1915), Hymeniacidon stylifera
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Figure 3 Images ofHymeniacidon perlevis collected from different intertidal rocky shores along the
South African coastline. (A) Groenrivier mund (photo credit: Prof. George Branch); (B) Moon Bay
(photo credit: Dr Toufiek Samaai); (C) Elands Bay (photo credit: Prof. George Branch); (D) Jacobs Bay
(photo credit: Dr Toufiek Samaai); (E) Springfontein (photo credit: Prof. George Branch); (F) Cape
Peninsula Greenpoint (photo credit: Dr Toufiek Samaai); (G) Stand (photo credit: Dr Toufiek Samaai),
(H) Kommetjie (photo credit: Prof. George Branch); (I) Bettys Bay; (J) Tsitsikamma (photo credit: Dr
Toufiek Samaai); (K) Dwesa (photo credit: Prof. George Branch); Tedania anhalens from (L) Dwesa, (M)
Coffee Bay (photo credit: Dr Toufiek Samaai), (N) Hluleka (photo credit: Prof. George Branch), (O) Port
St Johns (photo credit: Dr Toufiek Samaai) and (P) Sodwana Bay (photo credit: Dr Toufiek Samaai).
Appendix S7: Written permission from George Branch to publish Fig. 3 under the CC BY 4.0 license.

Full-size DOI: 10.7717/peerj.14388/fig-3

(Stephens, 1915) andHymeniacidon sublittoralis Samaai & Gibbons, 2005 from South Africa
could be obtained.

Alignment, phylogenetic analysis, and Haplotype networks
The raw sequence data of the forward and reverse sequences were trimmed by removing
uncertain sites. The forward and reverse sequences were then aligned using ClustalW
(Thompson, Higgins & Gibson, 1994) in MEGA 11 (Tamura, Stecher & Kumar, 2021).
Sequences were blasted in GenBank (Sayers et al., 2019) and the maximum score and
E-values (Altschul et al., 1990) were used to select closely related specimens. The COI data
set was checked for the potential occurrence of nuclear pseudogenes using the genetic code
for invertebrate mitochondria, to detect frame-shift mutations, which would indicate that
these sequences originate from a non–functional gene region, were identified. Sequences
were compared to published data of Hymeniacidon sponges (see Table S3 in Turner, 2020),
and thus sequences were jointly analysed with the Hymeniacidon data set used by Turner
(2020) in MEGA 11 (Tamura, Stecher & Kumar, 2021). This included public sequences
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previously identified as H. sinapium and H. heliophila, which according to Turner (2020)
are part of the single global species complex, H. perlevis (see Appendix S2–S6). The dataset
compiled by Turner (2020), together with the South African sequences, was then used
in the phylogenetic analysis and haplotype network. To see if the South African samples
formed a distinct monophyletic clade in comparison to congeneric samples from other
locations, we constructed a phylogenetic tree in MEGA 11 using Maximum Likelihood
(ML) with the Tamura-3 parameter (T92), which was selected by the inbuilt model
generator. Evolutionary distances were computed employing the Tamura-3 parameter
(Tamura, 1992), and support for individual nodes was based on 1000 nonparametric
bootstrap estimates (Felsenstein, 1985). The T92 distances were also used to compare levels
of genetic differentiation between the sequences generated in this study and the published
Hymeniacidon sequences (see Table S3 in Turner, 2020).

DnaSP 5.091 was used to evaluate haplotype (h) and nucleotide (π) diversities for
individuals collected at the same location (Lourenço et al., 2017). Populations were divided
into six groups according to world-wide presence (Turner, 2020; de Voogd et al., 2021).
These were East Asia, North America (Pacific), North America (Atlantic), South America
(Atlantic), Europe and South Africa. The South African populations were divided into three
groups according to the national bioregional classification (see Sink et al., 2019). These
include the Namaqua, Southern Benguela and Agulhas ecoregions. To determine how
genetic variation is divided between groups, among locations within groups and within
locations, the six and four groups described above were designated a priori following
Lourenço et al. (2017).

A median-joining haplotype network was produced using the minimum spanning
method (Bandelt, Forster & Röhl, 1999) as implemented in Popart (Leigh & Bryant, 2015).
This analysis requires all included sequences to be the same length, so some sequences were
trimmed whilst others were excluded. Alignments in the global dataset were 574 bp at CO1
(n= 115 sequences); the ITS alignment was 539 bp (n= 512). Alignments were longer
when newly collected South African data were analyzed alone: 582 bp at CO1 (n= 29); 798
bp and ITS (n= 11). Sequence alignments were produced in Codon Code v.9 (CodonCode
Corporation).

Ecological niche modelling of H. perlevis distribution
To gain a better perspective on the realized distribution of H. perlevis globally, ensemble
species distribution modelling was applied (Appendix S1).
Occurrence data. For this purpose, occurrence/encounter data from multiple sources were
compiled, including records from theWorld Porifera Database (WPD), GenBank, literature
and South African observations. The location data were checked by Toufiek Samaai and
Thomas Turner and only valid occurrence records were included in this study (Table S1).
Bias, dubious and unverified data were excluded.

Because the data are occurrence/encounter data, background absence (pseudo-absence)
data are required to apply standard correlative distributional models. Pseudo-absences
were generated at random within the studies gridded spatial domain, with the thin layer
of coastal area being globally generated. Given the environmental layers resolution (5 × 5
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nautical mile grid cells), the first two adjacent grid cells were considered. The number of
pseudo-absences generated were determined using the recommendations of Barbet-Massin
et al. (2012), implemented in the R package SSDM (Schmitt et al., 2017), which was used in
this study for ensemble species distribution modeling. Ensemble modeling was performed
both with and without spatial thinning. Given that the encounter data are not globally
uniform, spatial thinning, which is already implemented in the SSDM package, was used
to deal with spatial bias (to reduce spatial bias due to non-random sampling while keeping
most of the information).

Niche modelling. Multiple correlative statistical models are widely used to model the
distributions of many taxa. The majority of these widely used models are already included
in the SSDM package. For the ensemble modeling of the distribution of H. perlevis,
eight correlative statistical models were considered: generalized linear model (GLM),
generalized additive model (GAM), support vector machine (SVM), classification tree
analysis (CTA), generalized boosted model (GBM), random forest (RF), multivariate
adaptive regression spline (MARS), and artificial neural network (ANN). Appendix S1
contains a brief discussion of each of the eight distribution models. These models were
trained on a randomly selected portion of the data (70%) and their prediction performance
was evaluated using the hold-out set. Each model was fitted and evaluated four times to
account for sources of variability due to random selection of training and evaluation sets
as well as random selection of pseudo-absences. When analyzing classification models,
multiple measures of performance can be used. For the purposes of this study, Kappa and
area under the curve (AUC) were used. AUC usually has a value in the range of 0.5 to 1.

Models with AUCs of 0.5 are generally considered random classifiers, while those with
values between 0.7 and 0.8 are considered fair classifiers, and those with values close to 1
are considered excellent classifiers (Kleinbaum & Klein, 2010). The inclusion of individual
distribution models into the ensemble distribution modeling was based on whether the
model had an AUC value greater than 0.7. To generate the ensemble species distribution
map, all models with AUCs greater than 0.7 were pooled by weighting their predicted
probability of occurrence by their AUC. The uncertainty map was also computed primarily
to identify regions of high agreement and low agreement among the models considered,
which correspond to low and high uncertainty regions, respectively. Uncertainty was
computed as cell by cell variance in the predicted probability of occurrence by the models
included in the ensemble. The response curves (partial effects) of each of the variables
considered was generated by predicting the probability of occurrence for the variable of
interest while keeping the remaining variables at their mean. This was done for each of the
eight models considered (Appendix S1).

The intertidal area was delimited by extracting the coastal cells covering a range from−2
to 1 m from the General Bathymetric Chart of the Oceans (GEBCO) gridded bathymetric
data set with a spatial resolution of 30 arc-seconds (http://www.gebco.net/).

Variable importance was computed on the holdout set. The amount of correlation
changes between predicted values before and after permuting (reshuffling) a variable was
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used to measure its importance (expressed in percentage).

Ir = 1−max
(
cor(Pf ,Pv),0

)
where Ir is index of importance of a variable, Cor is correlation coefficient, Pf is prediction
from the full model, Pv is prediction after permuting/reshuffling the variable v . Partial
effect of each of the predictor were computed by predicting the response variable for the
variable of interest while holding the other predictors at their mean.

Environmental variables. BIO-ORACLE was used to download global and readily
available environmental layers. The environmental layers used in this study considered
the minimum, maximum, mean, and range of surface temperature, surface salinity, and
surface current velocity. Given the limitations of the environmental layers resolution (5 ×
5 nm grid) and the fact that we are dealing with intertidal/coastal invertebrates, only grid
cells within 10 km of the coastline were retained. The environmental variables were checked
for multi-collinearity using the variance inflation factor (VIF) before the distribution ofH.
perlevis was modelled.

A VIF value of one indicates an absence of multi-collinearity, but larger values typically
indicate the presence of a problem. Variables with VIF values > 5 are generally considered
to be linearly related, and in the context of regression, their variance of the estimated
parameters will be large, and its parameter will be poorly estimated (Hay-Jahans, 2011).
Variables having VIF greater than 5 were thus excluded from this analysis. The final set
of variables retained were: mean surface temperature, range surface temperature, mean
surface salinity, range surface salinity, and mean surface current velocity. Appendix S1
shows the layers of environmental variables used in the distribution modelling.

The following model was fitted to model occurrence of the sponges.

Model formula
occurrence spongeocc ∼Tmean+Trange+Smean+Srange+Vmean

where spongeocc is the occurrence is of Hymeniacidon perlevis; Tmean and Trange are the
mean and range of coastal surface temperature respectively; Smean and Srange are the mean
and range of coastal surface salinity respectively; Vmean is the mean coastal surface current
velocity.

All the analysis, visualization and report generation were done in R (R Core Team, 2021).
Multiple R packages were utilized for data processing, visualization, analysis, and summary
of results including (Alathea, 2015; Allaire et al., 2021; Henry & Wickham, 2020; Robinson,
Hayes & Couch, 2022;Wickham, Chang & Henry, 2018;Wickham et al., 2021; Xie, 2021).

Material and acquisition
All recently collected voucher samples are housed at the Iziko Museum, Cape Town, South
Africa under museum numbers SAMC-A091444–SAMC-A091463; MB-A094583–MB-
A094599; MB-A094600–MB-A094614 (Table S3). Toufiek Samaai was granted permission
to collect specimens during his various field excursions by the Department of Forestry,
Fisheries, and Environment under Research Permits RES2014/DEA–RES2019/DEA.
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RESULTS
Distribution of Hymeniacidon perlevis along the temperate southern
African intertidal region
Hymeniacidon perlevis was found at 23 of the 53 locations sampled (Fig. 2; Table S2). The
confirmed species range spans from Grosse Bucht, south of Lüderitz, Namibia on the
southern African Atlantic coast to the Dwesa/Cwebe Marine Protected Area in the Agulhas
region of South Africa’s Indian Ocean (east) coast. Kreiner et al. (2019a), Kreiner et al.
(2019b) and Kreiner et al. (2019c) reported the species from Grosse Bucht, Diaz Point,
Patrysberg, Mile 4, Badewane, and Möwe Bay in Namibia, but no samples were available
to confirm the identifications, with the exception of the specimen collected from Grosse
Bucht. The species represents the most conspicuous and common sponge on the intertidal
shores of the temperate bioregion around the tip of southern Africa. The species was
found mainly associated with intertidal rocky shores at locations both associated with
high anthropogenic impact such as Saldanha bay, Table bay and False bay, all areas with
commercial harbours and international shipping traffic, and remote, natural locations
including the Tsitsikamma National Park, South Africa’s oldest Marine Protected Area.

We only found H. perlevis covered by sediment in one location (Strand), with surface
projections extending beyond the sandy layer (Fig. 3G). Hymeniacidon perlevis was also
found in high nutrient concentration areas throughout the Cape Peninsula (De Villiers,
2017; T Samaai, 2017, pers. obs.), in the kelp forest near Bettys Bay at a depth of 15 m,
and on the west coast of South Africa by Stephens (1915) at a depth of 25 m. Although the
species was not sampled between Bettys Bay and Knysna, it is present at various locations
between these areas (Prof. G Branch, pers. comm., 2021).

Genetic analysis
Partial COI sequences were obtained for 29 specimens of H. perlevis (Table S3) with an
alignment length of 691 base pairs. This data set reduced to two haplotypes differing by a
single base pair (Fig. S1). The haplotype network of H. perlevis from South Africa is shown
in Fig. 4. One haplotype was present only in the Namaqua region, while the other was
shared across regions.

BLAST-n results revealed these sequences to be 99–100% identical to sequences
previously identified as H. perlevis and H. sinapium from other regions (for example
Portugal and California; note that H. sinapium is now considered a junior synonym of H.
perlevis). This was further corroborated by phylogenetic reconstruction, with sequences
of H. perlevis from South Africa grouping with those from other regions and H. sinapium
in the maximum likelihood tree (Fig. S2), with weak maximum likelihood support. The
H. perlevis sequences further showed about 97% similarity to H. flavia Sim & Lee, 2003
(EF217333.1, Korea), which is the most closely related outgroup species (Fig. S2) (Park
et al., 2007). A haplotype network of this global sample is shown in Fig. 5. We employed
a COI haplotype network to visualize the southern African specimens in the context of a
global sample of publicly available data. One of the two haplotypes from southern Africa
was among the most common haplotypes globally, also present in samples from Florida,
Brazil, Portugal, Turkey, Korea, and California (Fig. 5).
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Figure 4 Minimum-spanning genotype networks for two loci for South African samples. Samples are
coded by bioregion.

Full-size DOI: 10.7717/peerj.14388/fig-4

Figure 5 Minimum-spanning genotype networks for two loci. Samples are coded by collection location,
regardless of whether they were identified as H. perlevis, H. sinapium, or H. heliophila. Closely related H.
flavia are shown for comparison where available; all data for this species is from Japan and Korea.

Full-size DOI: 10.7717/peerj.14388/fig-5
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In the global (539 bp) ITS alignment, four of the South African samples are identical to
the most common haplotype, found in a sample from Northern California, five samples
from Korea, and a large number of samples from Japan (Fig. 5). The other seven southern
African samples differ from the most common haplotype by a single base pair (0.19%
sequence divergence). Consistent with a previous analysis, the genetic variation within the
sample of H. flavia is similar to the genetic variation in H. perlevis, despite the entire H.
flavia sample being from Japan and Korea alone. When the South African ITS samples are
analyzed alone, a longer alignment is possible (798 bp), and three variable sites are present
(Fig. 4). One of these differentiates samples from Agulhas from the other regions.

Environmental niche modelling
Hymeniacidon perlevis has a very wide geographic distribution ranging from the Northern
Hemisphere to Argentina, as well as South Africa to the middle latitudes of New Zealand.
Visual exploration of occurrence data for H. perlevis are shown in Fig. 1. As can be seen in
Fig. 1, most of the occurrence records are from coastal area around the UK, New Zealand
and South Africa, with the remaining records from different parts of the globe, such as
harbours, mudflats and inlets (Table S1).

Figure 6 depicts the predicted distribution, as well as the probability of occurrence, of
H. perlevis from each of the eight models and the ensemble (Appendix S1). The ensemble
prediction on the raw and thinned data is shown in detail in Fig. 6. The projected likelihood
of occurrencewas not significantly different formodels based on thinning or rawoccurrence
datawhen seen visually. The ensemble producedwith the bestmodels resulted in an accurate
overall description of H. perlevis distribution, including its expanding front (Fig. 6).

Along southern Africa, the niche model predicted a distribution further north into
Namibia and in South America from southern Chile into northern Peru (Fig. 6). In
addition, the prediction indicated that suitable habitat could potentially be found along
southern Australia and the south Island of New Zealand. While the probability of H.
perlevis being present in the Mediterranean and British Columbia shores was high, towards
Northeast America the predicted likelihood decreased. No suitable habitat was detected
along the tropical West African coast, the Indo-Pacific region, the Arabian Peninsula or
India. Mean surface temperature was the most important predictor of the distribution of
H. perlevis globally (Appendix S1), followed by the range of surface temperature. Most of
the models performed reasonably well with AUC mostly above 0.8.

Taxonomy—species description
Systematic information with detailed morphological and spicule descriptions are provided
below. The classification followsMorrow & Cardenas (2015).
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Figure 6 Predicted global distribution for the orange/red encrusting spongeHymeniacidon perlevis
derived by averaging an ensemble of presence-absence algorithms. The thinned and raw data are
shown. See Appendix S1 for report, data and model outputs. R, an open source program, was used to
produce the map (R Core Team, 2021).

Full-size DOI: 10.7717/peerj.14388/fig-6

Phylum Porifera Grant
Class Demospongiae Sollas
Subclass Heteroscleromorpha Cárdenas, Perez &
Boury–Esnault

Order Suberitida Chombard & Boury–Esnault
Family Halichondriidae Gray
Genus Hymeniacidon Bowerbank, 1858

Type species. Hymeniacidon caruncula Bowerbank, 1859: 286 (by subsequent designation;
Bowerbank, 1864: 191) (this is considered a junior synonym of Hymeniacidon perlevis
(Montagu, 1818: 86)).

Hymeniacidon perlevis (Montagu, 1818)
(Fig. 7AC; Table 1; Tables S4 and S5)

Material examined. Table S4
Other material examined. Hymeniacidon perlevis voucher specimens. SAM-H4904 (Ts

305), Jacobs Bay, near Saldanha Bay (32 31′S, 17 30′E), depth 3–5 m, collected by T Samaai,
20 October 1997. Ts 329, Ts 331, Ts 337, Ts 338, Ts 343c, Elands Bay (32 20′S, 18 20′E),
depth 3–6 m, collected by T Samaai, 15 November 1997. Ts 359, Ts 370, Ts 381, Ts 391,
Groenrivier (30 29′S, 17 20′E), depth 3 m. Collected by T Samaai, 20 December 1997.

Hymeniacidon caruncula (Bowerbank, 1858) sensu Stephens (1915). NMSZ
1921.143.1443. Two fragments removed for loan. Station 479, False Bay shore 6th May
1904; Station 482, Saldanha Bay shore, 19 May 1904.

Leucophloeus stylifera Stephens, 1915. Syntype NMSZ 1921.143.1443. Two fragment
removed for loan. Station 482, Saldanha Bay shore, 19th May 1904; Station 483, Entrance
to Saldanha Bay, 45 m, 21 May 1904.

Hymeniacidon sublittoralis Samaai & Gibbons, 2005. Holotype. SAM-4903 (Ts 212),
Vulcan Rock (34 04′S, 18 18′E), depth 27 m, collected by P Coetzee, 24 April 1996.
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Description. A thin or thickly encrusting (Fig. 7A) to cushion-like sponge that varies
greatly in form (Fig. 2). Diameter ranging from 5 cm long× 3 cm long× 4 cm thick to 14.
five cm long × 8 cm wide × 6 cm thick; with processes of 1–4 mm high, 1–1.5 mm wide.
In regions where there is considerably more wave exposure, this species is encrusting with
a smoother surface. In sheltered or somewhat exposed locations, H. perlevis has upright
processes that emerge from a basal mat. Surface variable, may be smooth and tuberculate,
thrown into irregular folds, or covered with digitate processes. Oscules 0.5–1.5 mm in
diameter, dispersed, level with the surface, or raised on low digitate processes. Firm, soft,
fleshy texture that is compact and compressible. Live specimens of H. perlevis have distinct
colour patterns being different shades of orange depending on geographical location (Fig.
2). Though this species can be blood red in other regions, in the current study, intertidal
encrusting sponges of that colour were species of the genus Tedania (Fig. 2) (see also
Samaai & Gibbons, 2005; Ngwakum et al., 2021).

Skeleton. The choanosomal skeleton, especially in the deeper regions, composed of
a confused, disordered mass of styles, not organized into tracts (Fig. 7C). Towards the
surface, tracts become ill-defined and with ascending fibres, ∼200 µm wide, with no
separation between the primary and secondary tracts. The ascending tracts do not branch
at the surface to form spicule brushes and tend to be vertically arranged. Numerous loose
interstitial spicules. Large canals are present. The ectosomal skeleton consists of a dense
tangential layer of spicules, ∼200–500 µm thick (Fig. 7C). Spongin scarce.

Spicules. Megascleres (Fig. 7B; Table 1; Fig. 8): styles smooth, straight, or slightly curved,
thickest centrally, 250 (155–337) × 7 (7) µm, n= 20. Microscleres: absent.

Habitat and distribution. Found on the rocky intertidal areas, shallow subtidal reefs,
mudflats on hard objects, harbours and inlets. Depth range 0–25 m (Table S1).

Status. Species may be native to southern Africa.
DNA barcodes. 691bp fragment of the universal mitochondrial cytochrome c oxidase

subunit 1 gene, primer pair: LCO1490 and HCO2198 (Folmer et al., 1994). GenBank
accession numbers ON062377–ON062402 & MT491492–MT491502 (see Table S3). 539
bp fragment of the ITS gene, Genbank accession numbers MT501787–MT501797 (see
Table S3).

Remarks. The morphological features of H. perlevis and H. caruncula sensu Stevens
(1915) were compared. Hymeniacidon caruncula sensu Stevens (1915) is similar to H.
perlevis. In terms of spicule form, spicule size, external morphology, and colouring (Table
S5), H. sublittoralis and H. stylifera differ from H. perlevis. Hymeniacidon sublittoralis is
a thick, massive, erect, amorphous sponge, with numerous papillate processes that vary
greatly in length. Surface smooth with various ridge-like structures, finely hispid and colour
in situ yellow. Styles are large and thick with heads slightly subtylote, 394 (255–601) × 14
(14) µm (Samaai & Gibbons, 2005).

Hymeniacidon stylifera is easily distinguished fromH. perlevis on spiculation;H. stylifera
differs from H. perlevis by the larger size of the style megascleres, having a smooth surface
and and have a very firm texture (Table S5).

The spicule size range of South African H. perlevis overlaps with specimens fromWales,
Korea and Ireland (Fig. 8). A large spicule size range is found for the South African west
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Figure 7 Hymeniacidon perlevis, (A) in situ; (B) photomicrograph of spicule compliment, styles; (C)
transverse histological section loose wispy tracts and paratangential layer in the ectosome;Hymeniaci-
don caruncula sensu Stephens (1915), (D) in situ; (E) photomicrograph of spicule compliment, styles;
Hymeniacidon styliferus Stephens, 1915, syntype, (F) in situ; (G) photomicrograph of spicule compli-
ment, styles.

Full-size DOI: 10.7717/peerj.14388/fig-7

Table 1 Comparative micrometric data of spicules for voucher specimens ofH. perlevis from South Africa. Micrometric values in µm.

Species Specimen Location Large style Medium style Small style

Hymeniacidon
perlevis

TS305 Jacobs Bay 337× 7 µm 155× 7 µm

TS1163 Knysna 381 (336–437)× 5 µm 270 (224–324)× 2.4 µm 168 (146–190)× 2.4 µm
TS1167 Tsitsikamma 386 (347–420)× 5 µm 274 (246–308)× 2.4 µm 167 (145–207)× 2.4 µm
TS1189 Robberg 359 (336–370)× 5 µm 285 (235–308)× 4.8 µm 157 (140–196)× 4.8 µm
TS2736 Greenpoint 375 (336–420)× 11.2 µm 290 (246–314)× 11.2 µm 162 (140–224)× 5.6 µm
TS2736 Dalebrook 374 (336–420)× 11.2 µm 290 (252–308)× 11.2 µm 163 (140–196)× 5.6 µm
TS2743 Strand 390 (358–427)× 11.2 µm 294 (280–308)× 11.2 µm 187 (168–190)× 5.6 µm
TS2765 Mazeppa 307 (280–336)× 11.2 µm 144 (112–168)× 5.6 µm
TS2935 Groenrivier Mund 416 (364–476)× 11.2 µm 274 (224–336)× 5.6 µm 194 (179–213)× 5.6 µm
TS2963 Rooiklippies 493 (364–431)× 11.2 µm 288 (246–336)× 11.2 µm 198 (190–213)× 5.6 µm
TS3359 Dwesa 378 (358–420)× 5.6 µm 321 (302–336)× 5.6 µm 187 (157–213)× 5.6 µm
TS4860 Haga Haga 375 (336–403)× 5.6 µm 321 (302–336)× 5.6 µm 187 (157–213)× 5.6 µm
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Figure 8 Megasclere spicule lengths for the South African and global species ofHymeniacidon perlevis.
Each point represents the max and min spicule length for a specimen.

Full-size DOI: 10.7717/peerj.14388/fig-8

coast and Wales specimens (see Fig. 8). California and Canada specimens have a smaller
spicule range, with lengths very similar to New Zealand and Argentina (see Fig. 8). No
spicule lengths are available for specimens from Portugal, Spain, France, Brazil, Florida,
China and the Black Sea. The South African specimens conform to all previous descriptions
in terms ofmorphology and spicule complements, as well as in habit (Bergquist, 1970;Ackers
et al., 2007; Erpenbeck & Van Soest, 2002; Harbo et al., 2021).

DISCUSSION
Our genetic analysis confirms that H. perlevis is the most common and widespread sponge
species on the temperate bioregion of southern Africa’s intertidal rocky shores. Our
results add a large extension to the range of this globally distributed species, confirming
it to be the most widely distributed intertidal sponge known (Turner, 2020). Along the
southern African coastline, the species is distributed across two biogeographic provinces,
the cool-temperate west coast, and the warm-temperate south coast (Emanuel et al., 1992;
Samaai, 2006; Sink et al., 2019). South Africa is an ideal region to study the effects of
dispersal barriers and environmental gradients on species distribution (Emanuel et al.,
1992; Turpie, Beckley & Katua, 2000; Awad, Griffiths & Turpie, 2002; Bolton et al., 2004;
Samaai, 2006) and genetic patterns (Teske et al., 2011; Teske, Bader & Golla, 2015; Zeeman
et al., 2020). The west coast of South Africa is permanently affected by the cold waters of the
Benguela upwelling system, whereas the south flowing Agulhas current transports warm
water along the east and south coasts of South Africa (Lutjeharms, Cooper & Roberts, 2000;

Samaai et al. (2022), PeerJ, DOI 10.7717/peerj.14388 16/26

https://peerj.com
https://doi.org/10.7717/peerj.14388/fig-8
http://dx.doi.org/10.7717/peerj.14388


Lutjeharms, 2006; Smit et al., 2013). The region between Cape Point and Cape Agulhas
represents a geographical break for several cool temperate and warm-temperate biota
(Emanuel et al., 1992; A Awad, L Greyling, S Kirkman, L Botes, B Clark, K Prochazka, T
Robinson, N Kruger, L Joyce, 2002, unpublished data: Port biological baseline surveys:
draft report Port of Saldanha, South Africa; Turpie, Beckley & Katua, 2000) and is a driver
of genetic differentiation (Teske et al., 2011). We found no evidence of this break reflected
in the distribution ofH. perlevis around southern Africa. The species occurs along the open
coast and in embayments along both the Atlantic and the Indian Ocean coasts as a single
population that lacks spatial genetic structure and exhibits little genetic variation.

Duran, Pascual & Turon (2004) reported a low level of genetic variation for partial COI
sequences (p= 0.0006) among Crambe crambe sponges separated by distances from 20
to 3000 km, spanning from the western Mediterranean to the Atlantic coast. Despite the
wide geographical coverage throughout the Indo-Pacific, Wörheide (2006) also found low
nucleotide diversity among the sponge Astrosclera willeyana sensu lato (p= 0.00049). Alex
et al. (2012) and Alex (2013), on the other hand, found a much higher genetic diversity for
H. perlevis across a very limited geographic region (500 km) along the Portuguese coastline
(COI, p= 0.00241), suggesting considerable variability in this intertidal sponge species.
Our research found that H. perlevis from southern Africa had low genetic diversity (COI:
0.00017) over a large geographic region (2,500 km), like Crambe crambe and Astrosclera
willeyana sensu lato.We identified only two and four haplotypes for the COI and ITS genes,
respectively, surveyed across the southern African distribution. The COI data presented
here supports the hypothesis that just oneHymeniacidon species is found in southern Africa.
Considering the geographic distance between sampled populations of more than 2,500 km,
the observed mtDNA COI sequence variation is among the lowest for a diploblastic taxon
to date as is the case for Crambe crambe and Astrosclera willeyana sensu lato, adding to the
mounting evidence of general mtDNA conservation in sponges (Duran, Pascual & Turon,
2004;Wörheide, 2006).

The eastern limit of the southern African distribution of H. perlevis, the Dweza/Cebe
MPA, falls into the transition zone between the temperate and sub-tropical biogeographic
provinces. The continental shelf in this region gradually widens from north to south,
deflecting the warm Agulhas Current away from the coast, limiting its influence on coastal
biota. The northernmost breaks in this region have been identified in theCentralWildCoast
(Transkei region in the region of Mbashe) and the southernmost breaks were reported
near Algoa Bay (Teske et al., 2011). The subtropical and tropical Indian Ocean waters to
the northeast of this area may be outside the environmental envelope of H. perlevis. In this
bioregion the species is substituted by Tedania sp., the most conspicuous and common
sponge in the subtropical rocky intertidal.

H. perlevis has a large ecological niche and can survive in intertidal and subtidal habitats
with different substrata (Turner, 2020; Harbo et al., 2021) and is able to withstand large
fluctuations in environmental conditions. As there is no obvious shift in habitat at
the eastern limit of its distribution, sea temperature may limit its distribution. This is
corroborated by the niche modelling, as it identifies sea temperature mean and range as
the best predictor variables for the global distribution of this species. The model results
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broadly reflect the distribution of the species along the temperate coastlines of all major
ocean basins and accurately represent the eastern limit of the South African distribution,
but the actual confirmed distribution of this species cannot be explained by sea surface
temperature (SST) limitations alone.

There is little genetic variation in the molecular markers employed, so the structure
of the haplotype network provides little indication on the historical biogeography of the
species. We concur with several previous authors (Turner, 2020; Harbo et al., 2021) that
H. perlevis’ distribution is best explained by anthropogenic activity. Because larvae have a
very limited chance of long-distance survival due to their short free-swimming phase, the
vectors for this species are likely the transfer of mature adult colonies on ship hulls, shells
and other objects in aquaculture activities (Turner, 2020; Harbo et al., 2021), or larvae
transported in ballast water (Duran, Pascual & Turon, 2004). Due to this species’ brief
larval period, hull fouling, adult fragmentation and resettlement appear to be the most
plausible mechanisms for long-distance invasions (Turner, 2020). Ship traffic between the
two largest distributional nodes of this species, Europe and South Africa, has been going
on for more than 600 years, much longer than between the other far-flung distributional
nodes, and the species’ wide distribution in these locations makes them the most likely
places of origin.

The species was first described in Europe in the early 1800s and in South Africa in
the early 1900s, more than 300 years after regular shipping commenced between the two
areas. In southern Africa, the species occurs in unpopulated remote areas away frommajor
ports on the open coast and in marine protected areas, but multiple introductions with
shipwrecks as well as gradual range extension, as documented in other areas (Turner,
2020) might explain this distributional pattern. Further exploration with more rapidly
evolving markers, such as microsatellites and SNPs, might aid to elucidate the history of
the distribution of H. perlevis.

CONCLUSIONS
Our work builds on a number of previous studies of H. perlevis and confirms that the
species is present and widespread in southern Africa. Environmental niche modelling as
well as the eastern range limit in South Africa, which coincides with the biogeographic break
between temperate and subtropical waters, suggest that sea surface temperature is likely
the most important limiting factor for this highly adaptable global species. Hymeniacidon
perlevis is most likely an exotic species in many parts of its current distribution, introduced
by shipping and other human-mediated activities. The origin of the species remain unclear,
but it most likely originates from Europe or South Africa, where it is widely distributed
across various habitats. Further molecular studies, increased systematic sampling, and
monitoring, is required to clarify the origin of the species, mechanisms of its spread and
its potential for negative impacts in areas of introduction.
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