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A major limiting factor in target discovery for both basic research and therapeutic
intervention is the identification of structural and/or functional RNA elements in genomes
and transcriptomes. This was the impetus for the original ScanFold algorithm, which
provides maps of local RNA structural stability, evidence of sequence-ordered (potentially
evolved) structure, and unique model structures comprised of recurring base pairs with the
greatest structural bias. A key step in quantifying this propensity for ordered structure is
the prediction of secondary structural stability for randomized sequences which, in the
original implementation of ScanFold, is explicitly evaluated. This slow process has limited
the rapid identification of ordered structures in large genomes/transcriptomes, which we
seek to overcome in this current work introducing ScanFold 2.0. In this revised version of
ScanFold, we no longer explicitly evaluate randomized sequence folding energy, but rather
estimate it using a machine learning approach. This can increase prediction speeds for
high randomization numbers by up to 140 times compared to ScanFold 1.0, allowing for
the analysis of large sequences, as well as the use of additional folding algorithms that
may be computationally expensive. In the testing of ScanFold 2.0, we re-evaluate the Zika,
HIV, and SARS-CoV-2 genomes and compare both the consistency of results and the time
of each run to ScanFold 1.0. We also re-evaluate the SARS-CoV-2 genome to assess the
quality of ScanFold 2.0 predictions vs several biochemical structure probing datasets and
compare the results to those of the original ScanFold program.
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13 Abstract

14 A major limiting factor in target discovery for both basic research and therapeutic intervention is 

15 the identification of structural and/or functional RNA elements in genomes and transcriptomes. 

16 This was the impetus for the original ScanFold algorithm, which provides maps of local RNA 

17 structural stability, evidence of sequence-ordered (potentially evolved) structure, and unique 

18 model structures comprised of recurring base pairs with the greatest structural bias. A key step in 

19 quantifying this propensity for ordered structure is the prediction of secondary structural stability 

20 for randomized sequences which, in the original implementation of ScanFold, is explicitly 

21 evaluated. This slow process has limited the rapid identification of ordered structures in large 

22 genomes/transcriptomes, which we seek to overcome in this current work introducing 

23 ScanFold 2.0. In this revised version of ScanFold, we no longer explicitly evaluate 

24 randomized sequence folding energy, but rather estimate it using a machine learning approach. 

25 This can increase prediction speeds for high randomization numbers by up to 140 times 

26 compared to ScanFold 1.0, allowing for the analysis of large sequences, as well as the use of 

27 additional folding algorithms that may be computationally expensive. In the testing of 

28 ScanFold 2.0, we re-evaluate the Zika, HIV, and SARS-CoV-2 genomes and compare both 

29 the consistency of results and the time of each run to ScanFold 1.0. We also re-evaluate the 

30 SARS-CoV-2 genome to assess the quality of ScanFold 2.0 predictions vs several 

31 biochemical structure probing datasets and compare the results to those of the original 

32 ScanFold program.

33

34 Introduction 

35 Interest in RNA has, arguably, never been higher. RNA plays key regulatory roles in all 

36 organisms including human pathogens such as HIV, Zika, and SARS-CoV-2 (Cao et al. 2021; Li 

37 et al. 2018; Watts et al. 2009). Furthermore, since both the viral vector and the most efficacious 

38 preventative modality for COVID-19 both consist of RNA, interest in RNA as both a therapeutic 

39 agent and target is surging (Bhat et al. 2021; Damase et al. 2021). Significantly, in both its 

40 biological function and potential for targeting, RNA secondary structure plays key and diverse 

41 roles (Andrzejewska et al. 2020; Disney 2019; Hargrove 2020; Meyer et al. 2020; Szabat et al. 

42 2020; Wan et al. 2011). For example, in processes such as RNA splicing and posttranscriptional 

43 gene regulation, secondary structures can vary the distances between or accessibility of various 

44 regulatory elements in RNA (Andrzejewska et al. 2020; Jiang & Coller 2012; Li et al. 2014) as 

45 well as provide specific platforms for recognition by regulatory molecules (e.g., proteins and 

46 noncoding RNAs (Law et al. 2006; Sanchez de Groot et al. 2019; Yang et al. 2020)). Secondary 

47 structures are also found within long noncoding RNAs (Andrzejewska et al. 2020; Chillon & 

48 Marcia 2020; McCown et al. 2019; Somarowthu et al. 2015) and in the coding regions of 

49 mRNAs, where there is increasing awareness of their roles in modulating translation and protein 

50 folding (Andrzejewska et al. 2020; Faure et al. 2016; Faure et al. 2017; Mauger et al. 2019; 

51 Mustoe et al. 2018). 

52 Unsurprisingly, there is great interest in gaining additional structure/function knowledge about 

53 RNA (particularly as related to human health) and in therapeutically modulating RNA biology 

54 via its secondary structure. Both tasks require the identification of robust structural models of 

55 RNA folding which, for large genomes/transcriptomes, is an immense challenge. Despite the 
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56 availability of rapid and robust algorithms for RNA secondary structure prediction (Lorenz et al. 

57 2011; Reuter & Mathews 2010; Zuker 2003), novel methods for assessing the phylogenetic 

58 impact/significance of structure (Manfredonia et al. 2020; Rivas et al. 2017; Rivas et al. 2020), 

59 and tremendous advances in approaches for high-throughput probing of RNA secondary 

60 structure (Mitchell et al. 2019; Regulski & Breaker 2008; Smola & Weeks 2018; Strobel et al. 

61 2018; Tomezsko et al. 2021); a major challenge that continues to hamper efforts to understand 

62 and target RNA secondary structure is the determination of which fragments form extremely 

63 stable, and likely functional structure. 

64 Early on, it was noted that functional RNA structures have a sequence-ordered stability bias. 

65 That is to say, the predicted folding free energy of functional/evolved RNA is lower than that of 

66 randomized sequences (Clote et al. 2005; Moss 2018; Qu & Adelson 2012). This bias is 

67 quantified via the thermodynamic z-score, which measures the difference in predicted minimum 

68 free energy of folding for a native RNA vs. randomized sequence (with the same nucleotide 

69 and/or dinucleotide content) and normalizing by the standard deviation. Thus, the z-score 

70 indicates the number of standard deviations more or less stable the native secondary structure is 

71 vs. that predicted by nucleotide content (i.e., negative values indicate significantly ordered 

72 stability) (Andrews et al. 2017; Clote et al. 2005).

73 ScanFold 2.0 (SF2) uses the same approaches as ScanFold 1.0 (SF1) without the need 

74 for explicit MFE calculations of randomized sequences to determine thermodynamic z-scores. 

75 To bypass the computationally expensive explicit z-score calculations, we have implemented a 

76 machine learning approach: Google�s publicly available TensorFlow algorithm (Abadi et al. 

77 2016a; Abadi et al. 2016b). TensorFlow was trained using 20 different sequence features 

78 including: sequence length, GC percentage, CG ratio, AU ratio, and the frequency of 16 different 

79 dinucleotide types. Using these features, both mono- and dinucleotide shuffling models were 

80 generated. SF2 uses these models to estimate the randomized MFEs and standard deviations 

81 needed to calculate thermodynamic z-scores for all windows. This new version of ScanFold 

82 still uses the same algorithm to highlight local structural features, ScanFold-Fold (Andrews 

83 et al. 2020; Andrews et al. 2018), which is now the rate limiting step of the program. This 

84 improvement has led to an increase in computational speeds of at least 10x, and in some cases 

85 increases of over 100x (File S1). This new tool is available for download on GitHub 

86 (https://github.com/moss-lab/ScanFold2.0) or through a webserver hosted at: 

87 https://mosslabtools.bb.iastate.edu/scanfold2.

88

89 Methods

90 TensorFlow training of z-score model

91 An overview of the training process can be seen in Figure 1. A total of 836,377 representative 

92 sequences were generated to be used for training. Sequence lengths were between 60 and 200 nt 

93 (based on typical ScanFold window sizes (Andrews et al. 2020; Andrews et al. 2018)) in 20 nt 

94 increments. To represent as many potential sequence types as possible, dinucleotide frequencies 

95 for all 16 dinucleotide types were set to vary between 0 and 45%, averaging ~6.3% across all 

96 sequences. Native MFEs, mean of 100 randomized MFEs ( ), and their standard deviations (���
97 ) were calculated for all sequences using RNAfold version 2.4.18 (Lorenz et al. 2011). Two �
98 different randomization procedures were used to train the algorithm: mononucleotide and 
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99 dinucleotide shuffling (Andrews et al. 2020; Andrews et al. 2018; Gesell & Washietl 2008). 

100 Twenty different training features were also collected for each sequence including: sequence 

101 length, GC percent, AU ratio, GC ratio, and all 16 dinucleotide frequencies.

102 All 20 features were used during training of and standard deviation ( ) models. The mean ��� �
103 MFE and STD models are Keras sequential, with one preprocessing normalization layer, and two 

104 hidden layers: Rectified Linear Unit (ReLu) and sigmoid. RNAfold is used to calculate MFEs, 

105 while  and standard deviation ( ) models are invoked separately for z-score calculation ��� �
106 (Eq. 1). All training code was run through Google Colab (Bisong 2019) and can be viewed and 

107 run directly in the corresponding python notebook (File S2).

108 � ‒ ����� =
��� ‒ ���� #(1)

109 Updates to ScanFold 2.0 and integration in the webserver

110 To make the use of SF2 more user friendly, it has been incorporated into the Moss Lab Tools 

111 webserver (https://mosslabtools.bb.iastate.edu/scanfold2). Similar to SF1, any sequence longer 

112 than the chosen window size can be uploaded (or pasted) in FASTA format, all parameters can 

113 be set by the user, and the scan can be started by clicking the submit button at the bottom of the 

114 page. Once the prediction is complete the results are output in an Integrative Genomics 

115 Viewer (IGV.js) window (Robinson et al. 2020) and made available for download as a zip file.

116 Testing of ScanFold 2.0 vs ScanFold

117 SF2 was tested to determine its accuracy and speed compared to that of SF1. Testing was 

118 performed on HIV-1, Zika, and SARS-CoV-2 genomes, which had been previously analyzed 

119 using SF1 (Andrews et al. 2020; Andrews et al. 2021; Andrews et al. 2018). To ensure that our 

120 testing was comprehensive we compared SF2 mono- and dinucleotide shuffling results to those 

121 of SF1 mono- and dinucleotide shuffling using 100, 1000, and 10000 randomizations for each 

122 genome. The results of all output CT files (i.e. -2, -1, and No Filter z-scores) from both versions 

123 of ScanFold were compared using an in-house python script, ct_compare.py ((Andrews et al. 

124 2021); https://github.com/moss-lab/SARS-CoV-2). This comparison allowed us to evaluate the 

125 percent of paired nucleotides and the percent similarity or consistency between the output files of 

126 both versions of ScanFold as well as determine the improvements in speed for each run. 

127 Additionally, we were able to compare the outputs from SF1 (mono- vs dinucleotide shuffling 

128 and different number of randomizations) and the outputs of SF2 (mono- vs dinucleotide 

129 shuffling) to themselves to evaluate their performance using different shuffling methods. In total, 

130 13 different comparisons were completed for each genome. All accuracy and speed results can 

131 be found in File S1.

132 ROC Analysis

133 ROC analysis was performed on ScanFold-Fold results for SF1 mono- and dinucleotide 

134 shuffling using 100 and 10000 randomizations as well as SF2 mono- and dinucleotide shuffling 

135 models following a previously establish protocol (Andrews et al. 2021). Briefly, reactivity value 

136 thresholds were sequentially set from the lowest to highest value at 1% intervals (i.e. 0-100% 

137 constrained) for various SHAPE and DMS reactivity datasets generated from SARS-CoV-2 

138 probing experiments (Huston et al. 2021; Lan et al. 2021; Manfredonia et al. 2020; Sun et al. 
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139 2021). The -1 z-score CT files from SF1 and SF2 were then cross referenced to these reactivity 

140 datasets and used to find the true positive rate (TPR) and false positive rates (FPR) for each 

141 comparison. In this analysis, the TPR and FPR are represented by equations 2 and 3 below:

142                                                                         ��� =
��

(�� + ��)
#(2)

143       ��� =
��

(�� + ��)
#(3)

144                                        

145 The true positive (TP) is defined as being paired in the given CT file and paired at the defined 

146 reactivity threshold, the false negative (FN) is paired in the CT file and unpaired at the reactivity 

147 threshold. The false positive (FP) is unpaired in the CT file and paired at the reactivity threshold, 

148 and the true negative (TN) is unpaired in the CT file and unpaired at the given reactivity 

149 threshold. When the threshold is set to 0%, TPR and FPR will be equal to zero, and when the 

150 reactivity threshold is set to 100%, TPR and FPR will be equal to one. If a given RNA secondary 

151 structure model is truly random, when compared to increasing reactivity thresholds from a 

152 probing data set, then the TPR and FPR should increase proportionately yielding a linear trend in 

153 the plot. However, if the RNA secondary structure model agrees with the reactivity data set, the 

154 TPR should initially rise faster than the FPR, creating a larger area under the curve (AUC) and 

155 producing a curve on the plot. In this way, we can quantitatively assess and compare each 

156 model's ability to fit the data via their respective AUCs. All the ROC and AUC analysis can be 

157 found in File S3.

158

159 Results and Discussion

160 Comparing time and accuracy of ScanFold 2.0 vs ScanFold 1.0

161 SF2 requires significantly less time than SF1 using only 100 randomizations, with increases in 

162 speed being even greater when compared to SF1 using 1000 and 10000 explicitly shuffled RNA 

163 sequences for z-score calculations. In both cases, increasing sequence length does increase the 

164 time needed, but this effect is seen to a lesser degree in SF2. When comparing the times, SF1 

165 using 100 randomizations with mononucleotide shuffling takes 8.70 hrs, 1.02 hrs, and 1.75 hrs to 

166 complete all predictions for SARS, HIV, and Zika respectively (Table 1). SF2 on the other hand 

167 reduces these times to 2.64 hrs, 0.27 hrs, and 0.35 hrs for SARS, HIV, and Zika respectively 

168 (Table 2). This decrease in time for SF2 is greater for higher randomization numbers and 

169 dinucleotide shuffling (Table 1 and Table 2). For SF2, the scanning step is now the fastest step 

170 in the process, taking only 0.27 hrs, 0.07 hrs, and 0.09 hrs for SARS, HIV, and Zika respectively 

171 (Table 2). Importantly, increased speed does not come at the cost of reduced accuracy. 

172 Gross comparisons of the percent of predicted pairs by SF1 and SF2 using 100, 1000, and 10000 

173 randomizations with mononucleotide shuffling displays an average difference of 2.00% (0.03% 

174 to 4.5%) between all z-score cutoffs across the three genomes analyzed, regardless of the number 

175 of randomizations. HIV-1 is the most consistent between versions, displaying less than a 1.25% 

176 difference in -2 z-score pairs, 3.2% difference in -1 z-score pairs, and 0.5% difference in all pairs 

177 (no filter) across all randomizations (File S1). In a similar analysis, it is also seen that the percent 

178 similarity or consistency of paired and unpaired nucleotides between SF1 and SF2 using 
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179 mononucleotide shuffling is quite high, with the average difference being only 4.01% (1.11% to 

180 6.29%) between all z-score cutoffs across the three genomes analyzed (File S1). Here, HIV-1 

181 shows some of the best results with only the no filter cutoff reaching a 6.24% difference, and z-

182 score cutoffs of -2 and -1 being only 1.42% and 4.7% different, respectively (Fig. 2). 

183 The same analyses were carried out between SF1 and SF2 using dinucleotide shuffling. 

184 Comparing the percent of predicted paired nucleotides using 100, 1000, and 10000 

185 randomizations with dinucleotide shuffling displays an average difference of 5.26% (0.57% to 

186 10.26%) between all z-score cutoffs across the three genomes analyzed. HIV-1 showed the least 

187 variance with a 4.38% difference in -2 z-score pairs, an 8.72% difference in -1 z-score pairs, and 

188 a 1.85% difference in all (no filter) pairs across all randomizations (File S1). The percent 

189 similarity or consistency in the paired and unpaired nucleotides between SF1 and SF2 using 

190 dinucleotide shuffling is again quite high, especially for structures within the significant z-score 

191 cutoffs of -2 and -1, with the average difference being 10.42% (4.71% to 20.64%) between all z-

192 score cutoffs across the three genomes analyzed (File S1). Here, HIV-1 shows some of the best 

193 results with only the no filter cutoff reaching a 20.64% difference, and z-score cutoffs of -2 and -

194 1 being only 4.82% and 10.16% different respectively (Fig. 2). Notably, when comparing the 

195 predictions to biochemical probing data all approaches showed consistency with experimental 

196 results (Fig. 3).

197 Mono vs Di nucleotide shuffling of ScanFold 2.0 

198 When comparing SF1 and SF2 results for mononucleotide shuffling there is an average 

199 difference in percent paired of 2.00% (0.03% to 4.5%) and in the majority of cases SF2 is 

200 predicting more pairs than SF1. For all results other than HIV and SARS all pairs (no filter), SF2 

201 consistently predicts more pairs than SF1. When comparing SF1 and SF2 results for dinucleotide 

202 shuffling, there is an average difference of 5.26% (0.57% to 10.26%) and similar to 

203 mononucleotide shuffling, all results other than Zika no filter (all pairs), show that SF2 is always 

204 predicting slightly more pairs. These small differences serve as evidence that SF1 and SF2 are 

205 producing almost an identical number of pairs when the same shuffling method is used (File S1). 

206 When comparing the results of SF1 mononucleotide shuffling to SF1 dinucleotide shuffling, on 

207 average mononucleotide shuffling finds more pairs than dinucleotide shuffling, but this does not 

208 always hold true�as is the case with all iterations of Zika results for all pairs (no filter; Fig. S1). 

209 The smallest difference in SF1 results is seen in Zika all pairs where dinucleotide shuffling finds 

210 0.72% more pairs than mononucleotide, and the largest difference is seen in Zika -1 z-score pairs 

211 where mononucleotide shuffling predicts 8.65% more pairs than dinucleotide (Table S1 and Fig. 

212 S1). SF2 comparisons show a split between which shuffling method predicts more pairs. In the 

213 case of Zika, the same trend seen for SF1 holds true for SF2, with mononucleotide shuffling 

214 finding more pairs than dinucleotide shuffling for all cutoffs other than all pairs. For HIV, SF2 

215 dinucleotide shuffling finds more pairs than mononucleotide shuffling at all z-score cutoffs, but 

216 for SARS dinucleotide shuffling finds more pairs than mononucleotide shuffling only at the -2 z-

217 score cutoff. Here, the smallest difference in SF2 is seen in the SARS results for all pairs where 

218 mononucleotide shuffling finds 0.36% more pairs than dinucleotide, and the largest difference is 

219 seen in Zika results for -1 z-score pairs where mononucleotide shuffling finds 3.13% more pairs 

220 than dinucleotide (Table S1 and Fig. S1). These small variations between the shuffling methods 

221 provide further evidence that SF1 and SF2 are performing similarly in identifying ordered 

222 structure, and that the shuffling technique used does not influence the results to a high degree.
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223 As additional evidence that the shuffling method does not have a large impact on results, we 

224 analyzed the percent consistency in pairing between SF1 and SF2 using 100, 1000, and 10000 

225 randomizations with both shuffling methods. Here, we observe that SF2 mono- and dinucleotide 

226 results are generally consistent (within 5-10%) with that of SF1 mono- and dinucleotide results 

227 across all three genomes, with HIV demonstrating the most consistency (Figure 2). The general 

228 trend among the three genomes shows the more stringent -2 and -1 z-score predictions are 

229 always within 10-12% consistency of each other regardless of shuffling or randomization, while 

230 the no filter pairings often show more variation (File S1). All comparisons seem to show no 

231 significant benefit of using dinucleotide over mononucleotide shuffling as the percent 

232 consistency between these methods in both SF1 and SF2 predictions are on average 7.53% 

233 different (1.85% to 18.27%) and when looking at just SF2 using both methods, predictions are on 

234 average 4.79% different (1.96% to 9%) (File S1). The differences associated with SF1 and SF2 

235 mononucleotide and dinucleotide shuffling can most likely be equated to the differences in z-

236 scores (Figure S2 and File S4). The box and whisker plot in Figure S2 shows that for SF2, the 

237 average z-scores are consistently lower for both shuffling methods compared to that of SF1, and 

238 the differences in z-scores between the two shuffling methods is also much smaller for SF2 

239 (average difference of -0.019) compared to that of SF1 (average difference of -0.363) (Table S2 

240 and File S4). The lower overall z-score of SF2 is potentially causing the differences in percent 

241 paired and percent similarity or consistency that is seen between the shuffling methods when 

242 comparing SF1 and SF2. Regardless of the differences in percent paired, percent similarity or 

243 consistency, and z-score the results of mononucleotide and dinucleotide shuffling for SF2 are 

244 similar to SF1 as shown by the agreement of biochemical probing data (Fig. 3).

245 ROC Analysis of SARS-CoV-2

246 As another layer of validation, we followed an established protocol (Andrews et al. 2021) to 

247 perform a receiver operator characteristic (ROC) analysis on the SARS genome predictions. We 

248 compared SF1 and SF2 results using 100-10000 randomizations with both shuffling methods to 

249 six different SHAPE and DMS biochemical probing datasets (Huston et al. 2021; Lan et al. 

250 2021; Manfredonia et al. 2020; Sun et al. 2021). Here, the effect of increasing the stringency of 

251 reactivity cutoffs, which considers whether a site is to be paired in the model, provides a measure 

252 of the consistency of probing data compared to ScanFold models (see Material and Methods 

253 and (Andrews et al. 2021)). We initially compared the SF1 results using both shuffling methods 

254 with 100 and 10000 randomizations and the SF2 results using both shuffling methods to the Lan 

255 et al. in vitro DMS data. The ROC analysis showed that all SF1 and SF2 results clustered into 

256 the same curve with almost identical area under the curve (AUC) values (Figure 3A). The ROC 

257 analysis of SF1 and SF2 results using 100 randomizations and both shuffling methods was 

258 repeated on all six probing datasets. SF2 predictions match the curves of both the previous 

259 analysis and all SF1 results obtained in this study (Figure 3B). After calculating the area under 

260 the curve (AUC) for each set of results, all were found to be above 0.5, indicating global 

261 consistency of the data with SF1 and SF2 results. AUC values for SF2 ranged from a minimum 

262 value of 0.629 for comparison of SF2 dinucleotide to in vivo SHAPE dataset (Huston et al.) to a 

263 maximum value of 0.780 for comparison of SF2 mononucleotide to in vivo DMS dataset 

264 (Lan et al.). No large differences were observed when comparing any of the AUC values 

265 between SF1 or SF2 and the respective datasets. These findings indicate that, similar to SF1, SF2 

266 is detecting the most robust local elements that do not vary between experimental conditions.

267
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268 Conclusion

269 SF2 produces effectively indistinguishable results to that of SF1 in a fraction of the time. Based 

270 on our results, we see that SF2 using the dinucleotide shuffling model tends to produce results 

271 more similar to mononucleotide than SF1; however, both SF1 and SF2 results are generally 

272 similar to each other. ROC analysis using several SHAPE and DMS datasets against SF1 and 

273 SF2 predictions also suggests that, regardless of the model, SF2 detects robust structural 

274 elements that persist between experimental conditions. Here, we have demonstrated that the 

275 improved SF2 algorithm performs similarly to, but in a fraction of the time as SF1. We hope that 

276 this improved speed can provide the RNA community with a fast, accurate, and user-friendly 

277 tool that will help in finding potentially functional structures across any gene or transcript of 

278 interest and drive forward RNA research.

279
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Figure 1
Schematic of ScanFold 2.0 training procedure.

Representative sequences were generated for a range of lengths (between 60 and 200 nt)
and dinucleotide frequencies. These sequences were shuffled and analyzed using RNAfold to
determine their MFEs, mean MFEs and respective standard deviations. Mean MFEs and
standard deviations were then combined with 18 sequence composition features to comprise
all 20 training features. These 20 features were used to generate mean MFE and standard
deviation models.
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Figure 2
SF1 and SF2 comparisons of HIV results.

Comparison of SF1 and SF2 percent similarity in paired and unpaired nucleotides using mono
and dinucleotide shuffling with 100, 1000, and 10000 randomizations. A) HIV percent
similarity in -2 z-score results. B) HIV percent similarity in -1 z-score results. All comparison
were done using SF1 results as the reference and SF2 results as the target for comparison.
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Figure 3
ROC analysis of SF1 and SF2 results.

ROC analysis of six different in vivo and in vitro SHAPE and DMS biochemical probing dataset
of the SARS-CoV-2 genome. A) Plot of the initial ROC analysis curve with the AUC for SF1
using mono and dinucleotide shuffling at 100 and 10000 randomization and SF2 results using
mono and dinucleotide shuffling for Lan et al. DMS in vivo dataset. SF1 mononucleotide with
100 randomizations in blue (AUC = 0.776), SF1 mononucleotide with 10000 randomizations
in orange (AUC = 0.773), SF1 dinucleotide with 100 randomizations in gray (AUC = 0.759),
SF1 dinucleotide with 10000 randomizations in yellow (AUC = 0.758), SF2 mononucleotide in
black (AUC = 0.780), and SF1 dinucleotide in green (AUC = 0.773). B) Plot of the ROC
analysis with the AUC for SF1 using mono and dinucleotide shuffling at 100 randomizations
and SF2 results using mono and dinucleotide shuffling for all probing datasets. All SF1 and
SF2 results for Lan et al. DMS in vivo in blue (AUC = 0.759 – 0.780), Manfredonia et al. DMS
in vitro in yellow (AUC = 0.722 – 0.741), Sun et al. SHAPE in vivo in green (AUC = 0.725 –
0.748), Manfredonia et al. SHAPE in vitro in orange (AUC = 0.677 – 0.691), Manfredonia et al.

SHAPE in vivo in gray (AUC = 0.660 – 0.678), and Huston et al. SHAPE in vivo in black (AUC =
0.622 – 0.633).
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Table 1(on next page)

Time required for SF1 runs using different shuffling methods and number of
randomizations to finish.

The time required to finish runs for both versions of ScanFold were evaluated using different
shuffling methods and number of randomizations. All times are reported in hours.
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1

2

Total Time 100 Rnds 

(hrs)

Total Time 1000 Rnds 

(hrs)

Total Time 10000 Rnds 

(hrs)

SARS SF1 Mono 8.70 21.28 164.17

HIV SF1 Mono 1.02 4.58 32.85

ZIKA SF1 Mono 1.75 4.15 36.55

SARS SF1 Di 7.50 22.07 134.00

HIV SF1 Di 0.95 4.48 35.58

ZIKA SF1 Di 1.25 4.67 38.53
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Table 2(on next page)

Time required for each step of SF2 to run, total SF2 run time, and increase in SF2
speeds compared to SF1.

The time required to finish SF2 scanning step, folding step, and both steps were evaluated
using different shuffling methods. Increase in speed was calculated by dividing SF1 total run
time for each shuffling technique at each number of randomizations by SF2 total run time. All
times are reported in hours.
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1

2

3

Scan 

Time

Fold 

Time

Total 

Time

Speed Increase 

100 Rnds

Speed Increase 

1000 Rnds

Speed Increase 

10000 Rnds

SARS SF2 Mono 0.27 2.37 2.64 3.303 8.06x 62.19x

HIV-1 SF2 Mono 0.07 0.20 0.27 3.78x 16.96x 121.67x

ZIKA SF2 Mono 0.09 0.27 0.35 5.00x 11.86x 104.43x

SARS SF2 Di 0.33 1.67 2.00 3.75x 11.04x 67.00x

HIV SF2 Di 0.07 0.17 0.24 3.96x 18.67x 148.25x

ZIKA SF2 Di 0.09 0.23 0.32 3.91x 14.59x 120.41x
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