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ABSTRACT
The requirement for high quality/non-degraded RNA is essential for an array of
molecular biology analyses. When analysing the integrity of rRNA from the barnacle
Lepas anatifera (Phylum Arthropoda, Subphylum Crustacea), atypical or sub-
optimal rRNA profiles that were apparently degraded were observed on a bioanalyser
electropherogram. It was subsequently discovered that the rRNA was not degraded,
but arose due to a ‘gap deletion’ (also referred to as ‘hidden break’) in the 28S rRNA.
An apparent excision at this site caused the 28S rRNA to fragment under heat-
denaturing conditions and migrate along with the 18S rRNA, superficially presenting
a ‘degraded’ appearance. Examination of the literature showed similar observations
in a small number of older studies in insects; however, reading across multiple
disciplines suggests that this is a wider issue that occurs across the Animalia and
beyond. The current study shows that the 28S rRNA anomaly goes far beyond insects
within the Arthropoda and is widespread within this phylum. We confirm that the
anomaly is associated with thermal conversion because gap-deletion patterns were
observed in heat-denatured samples but not in gels with formaldehyde-denaturing.

Subjects Aquaculture, Fisheries and Fish Science, Genomics, Marine Biology, Taxonomy,
Zoology
Keywords Hidden break, Denaturing, Taxonomy, Gap deletion, Degraded rNA, Bioanalyser

INTRODUCTION
Anomalies in the gel migration of the 28S subunit rRNA in denatured samples have

mostly appeared in the older literature (Applebaum, Ebstein & Wyatt, 1966; Ishikawa &

Newburgh, 1972; Fujiwara & Ishikawa, 1986). More recent studies have also mentioned

anomalies observed during routine RNA extraction and quality control steps using

both automated (Winnebeck, Millar & Warman, 2010; Asai et al., 2014) and traditional

(Macharia, Ombura & Aroko, 2015) electrophoresis methods. The Agilent bioanalyser is

the gold standard for RNA quality analysis prior to deep sequencing and gene expression

experiments. This method generates an electropherogram showing an RNA profile with

peaks representing the various subunit components, as well as an RNA integrity number

(RIN). This analysis is routinely carried out following RNA denaturation using a heating

step (Krupp, 2005). An alternative to the bioanalyser is using an electrophoresis denaturing

gel to confirm the integrity of the RNA sample. This also requires a heating step to prevent

secondary structure formation. Several denaturing reagents are commonly used for this

including methyl mercury hydroxide, urea, guanidine thiocyanate, formamide, DMSO and
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formaldehyde, with the latter being used most frequently (Masek et al., 2005). The problem

that arises is that, for some groups of organisms, accurate analysis of the RNA quality is

impossible unless non-heat-denaturing steps are followed.

In most animals, RNA denaturation generates 28S and 18S rRNA fragments (∼4,000

and ∼2,000 nucleotides (nt) respectively), which migrate separately on the denaturing

gel. It is widely accepted that, in intact rRNA, the 28S and 18S peak ratios must be close to

2:1 (Skrypina et al., 2003). But this is not the case for all groups: in the 1970s, studies on

the 28S rRNA in insects found that heat-denaturing RNA for several minutes resulted in

just a single band, explained by a splitting of the 28S rRNA into two fragments ‘α’ and ‘β’

(Ishikawa & Newburgh, 1972; Ishikawa, 1976) with this split likely occurring in the variable

D7a region cleavage site (Gillespie et al., 2006). At the cleavage site, heat-denaturing the

hydrogen bonds holding α and β fragments together, causes these to migrate together with

the 18S fragment because all three fragments (18S, α, and β) are similar in size and form a

single band on RNA gels, approximately at the 18S position. State-of-the-art RNA profile

analysis using bioanalyser electropherograms can also display a ‘degraded’ appearance in

RNA due to the presence of a single peak ∼ at the 18S position, as previously described by

Winnebeck, Millar & Warman (2010).

Very often, the anomalous RNA profile described above has been discovered by accident

during quality control steps and this phenomenon has not been subjected to detailed

study, with some notable exceptions (Fujiwara & Ishikawa, 1986; Ogino et al., 1990; Sun et

al., 2012). This phenomenon has mostly been described as a ‘hidden break’ (Ishikawa &

Newburgh, 1972; Ishikawa, 1977; Fujiwara & Ishikawa, 1986; Ogino et al., 1990; Winnebeck,

Millar & Warman, 2010; Macharia, Ombura & Aroko, 2015), but may more correctly

be termed a ‘gap deletion’ because the cleavage is actually due to the excision of a short

sequence from the rRNA precursors (Ware et al., 1983; Sun et al., 2012). Several authors

have wondered why this observation is limited to insects (Ogino et al., 1990; Winnebeck,

Millar & Warman, 2010) and have recommended further study (Sun et al., 2012). Others

have suggested that the gap deletion occurs more widely—e.g., in most protostomes

(Fujiwara & Ishikawa, 1986); however, there are exceptions of individual species within

a phylum lacking the deletion: e.g., Caenorhabditis elegans in Phylum Nematoda (Zarlenga

& Dame, 1992) and aphids in class Insecta (Ogino et al., 1990).

Clearly, this question has both practical and theoretical relevance since more knowledge

will save researchers a lot of time during optimisation and quality control of RNA

extractions in a variety of animal groups. It could also provide important information

about the maturation of rRNAs, molecules that are fundamentally important in the field of

evolution and systematics, as well as being associated with certain genetic diseases (Henras

et al., 2015). The present study came about during routine RNA extractions steps in stalked

barnacles whilst investigating bioadhesive genes (Jonker et al., 2012; Jonker et al., 2014).

This study is the first documentation of a gap deletion in non-insect arthropods including

stalked barnacles (Crustacea), spiders (Chelicerata) and centipedes (Myriapoda). In

addition, we review the prevalence of this gap deletion in groups of animals beyond the

arthropods, as well as in non-animal organisms.
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Figure 1 Species analysed for the gap deletion. (A) Spider Grammostola porteri; (B) Centipede Scolopen-
dra subspinipes; and C) Barnacle Lepas anatifera.

MATERIALS AND METHODS
Tissue samples were obtained from Chilean rose tarantula Grammostola porteri (Che-

licerata) and giant Asian centipede Scolopendra subspinipes (Myriapoda). Both of these

organisms are not easily obtained and so we were limited to one individual specimen for

each (n = 1); however, RNA was extracted from three replicate tissue samples from each

individual. For barnacles (Crustacea), three species in different taxonomic orders were

sampled, this time with tissues from three individuals of each species (n = 3). Specimens

were instantly killed and frozen by immersion in liquid nitrogen. Immediately afterwards,

specimens were left to thaw for a few minutes before being dissected. Approximately

2 cm3 of tissue was excised from the muscle mass surrounding the fovea on the lateral

parts of the cephalothorax of Grammostola porteri and divided into three samples for

analysis. Approximately 1 cm3 of tissue was recovered from the deep oblique and lateral

longitudinal muscles of Scolopendra subspinipes and then divided into three samples.

Approximately 1 cm3 of prosoma and peduncle tissues were dissected from each of

three individuals of Lepas anatifera (Fig. 1), Dosima fascicularis and Pollicipes pollicipes

barnacles. Tissues from all specimens were snap-frozen in liquid nitrogen, and stored

at −80 ◦C.

Tissues were homogenized using the IKA® ULTRA-TURRAX T18 homogeniser in

1 ml RLT lysis buffer with 10 ul beta-mercaptoethanol (QIAGEN RNeasy Mini Kit;

Qiagen, Hilden Germany). Next, total RNA was extracted with QIAGEN RNeasy Mini

Kit including DNase I treatment (QIAGEN DNase I, RNase-free), according to the

manufacturer’s instructions. For the analyses of quality and integrity, RNA (100–200 ng)

was electrophoretically separated with an Agilent 2100 Bioanalyser using an RNA 6000

Nano Chip Kit according to manufacturer’s instructions. Each sample was heat-denatured

at 70 ◦C for 3 min prior to separation. Aliquots from the same RNA samples without

heat-denaturation were also run together with heat-denatured samples on the same

Bioanalyser chip.

Samples were also run on a formaldehyde-denaturing RNA gel. One gram of agarose

was added to 90 ml of nuclease free water and transferred to a 50 ◦C water bath until

equilibrated. In a fume hood, 10 ml of NorthernMax® 10X Gel Buffer (Thermo Fisher
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Scientific, Inc., Waltham, Massachusetts, USA) was added to the agarose gel solution and

mixed. The gel was poured to a thickness of 0.6 cm and allowed to set. The gel was run

at 60 V using 1X NorthernMax® MOPS Running Buffer (Thermo Fisher Scientific, Inc.,

Waltham, Massachusetts, USA) for 90 min. Aliquots from the same RNA stock were run

in both heat-denatured (70 ◦C for 3 min) and non-heated form, along with RiboRuler

High Range RNA Ladder (Thermo Fisher Scientific, Inc., Waltham, Massachusetts, USA).

The procedure was also carried out on a stronger denaturing gel (2X), i.e., 20 ml of

NorthernMax® 10X Gel Buffer was added to 1 g of agarose and 80 ml of nuclease free

water and this was run as before with the respective RNA samples.

Deep sequencing by RNA-seq of Lepas anatifera RNA was carried out as part of a

parallel study (SD McCarthy et al., 2015, unpublished data). Transcriptome analysis

for this species was carried out on an Illumina Hi-Seq 2000 sequencing platform by

Source BioScience LifeSciences, UK. Sequence alignments of 28S rDNA gene sequences

were carried out using the Lepas anatifera 28S gene sequence from the transcriptome

study, along with all available sequences from GenBank database. The GenBank accession

numbers for sequences were: Scolopendra subspinipes (HQ402538.1), Dosima fascicularis

(KF781345.1) and Pollicipes pollicipes (EU370441.1). The online tools Clustal Omega

(http://www.ebi.ac.uk/Tools/msa/clustalo/) and T-COFFEE Multiple Sequence Alignment

Server (http://tcoffee.crg.cat/apps/tcoffee/index.html) were used to align sequences and

search for common motifs.

RESULTS AND DISCUSSION
The results showed evidence of a gap deletion in 28S rRNA of all five of the Arthropod

species investigated. Bioanalyser electropherograms clearly showed no 28S rRNA peak

(i.e., a ‘degraded’ profile) in heat-denatured samples in all cases (Fig. 2). These species were

deliberately chosen to represent the different clades of arthropod ‘classes’ (Rota-Stabelli

et al., 2011) i.e., Crustacea (barnacle), Chelicerata (spider) and Myriapoda (centipede).

A gap deletion was previously described in the Hexapoda (insects) (Fujiwara & Ishikawa,

1986; Ishikawa & Newburgh, 1972), which is also within the Phylum Arthropoda. Thus,

clear evidence of the deletion exists throughout the Phylum Arthropoda. The fact that

the pattern was seen in all three species of barnacle in different taxonomic orders—i.e.,

Lepas anatifera and Dosima fascicularis (Order Lepadiformes) as well as Pollicipes pollicipes

(Order Scalpelliformes—Jonker et al., 2014)—indicates that the gap deletion may be

prevalent throughout this group rather than being restricted to individual species.

In all groups that displayed the rRNA gap deletion, heat-denaturation affected the 28S

rRNA so that this resembled the 18S rRNA in size and therefore appeared with 18S as

a single peak on the bioanalyser, or as a single band on a gel (Fig. 3). Superficially, this

appeared like degraded RNA; however, this was not the case because bioanalyser-generated

RNA Integrity Numbers (RINs) were high (>8.0) for aliquots from the same sample

stock when analysed in a non-heat-denatured state (Fig. 2). The effect of a denaturing

gel alone (without heating) did not affect the RNA in the same way as samples run on

denaturing gels did not show gap deletions (Fig. 3; lanes 2–6). This remained the case even
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Figure 2 Electropherogram traces for 100–200 ng of total RNA applied to an RNA Nano Chip were
generated on the Agilent 2100 Bioanalyser. RNA that appears ‘degraded’ after heat-denaturation and
fails to provide a RNA Integrity Number (RIN) can generate high RINs in non-heat-denatured aliquots
from the same RNA stock. RIN numbers are shown in each case for (A) Spider Grammostola porteri; (B)
Centipede Scolopendra subspinipes; (C) Stalked barnacle, Order Lepadiformes, Lepas anatifera; D. Stalked
barnacle, Order Lepadiformes, Dosima fascicularis E. Stalked barnacle, Order Scalpelliformes, Pollicipes
pollicipes.
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Figure 3 rRNA migration patterns on denaturing gel. Non-heat-denatured samples (lanes 2–6) and de-
naturing gel with heat-denatured samples (3 mins at 70 ◦C) (lanes 8–12) using (A) 1X NorthernMax® de-
naturing Gel Buffer and (B) 2X NorthernMax® denaturing Gel Buffer. Extra bands in non-heat-
denatured samples are likely to be due to secondary structures. RNA samples are from spider (lanes 2
& 8), centipede (lanes 3 & 9) and stalked barnacles (lanes 4–6 & lanes 10–12).

when denaturant concentration was doubled. Therefore, the gap deletion profile certainly

arises due to thermal conversion of the 28S rRNA. Bioanalyser protocols recommend

heat-denaturation of RNA prior to analysis (Krupp, 2005), but based on our findings,

heating the RNA samples may best be avoided for correct interpretation of RNA quality

in certain groups. In non-heat-denatured samples, a band appeared just below 6,000 nt

following electrophoresis. This band did not appear on heat-denatured samples from the

same sample stock, indicating that this artefact is almost certainly secondary structure

formation, which is prevented by the heating step (Fig. 3).

The Agilent 2100 Bioanalyser is an established method for determining RNA quality

and integrity for the purpose of downstream transcriptomic analysis. But several authors

have remarked on a degree of puzzlement in interpreting bioanalyser electropherograms

where gap deletions are involved (Winnebeck, Millar & Warman, 2010) and new

groups containing gap deletions are appearing all the time (e.g., Asai et al., 2014). This

demonstrates how gap deletion profiles in rRNA (i) are relatively unknown in the literature

(ii) have unknown prevalence across groups of different organisms and (iii) can present as

a problem during routine RNA extraction and quality control protocols and can waste a lot

of time. Thus, we undertook a literature review to find how widespread the gap deletion

pattern actually is, especially since there are exceptions within some groups (see Table 1).

The literature to date has either suggested that the gap deletion (or hidden break) is very

narrowly focussed e.g., within ‘insects’ (Winnebeck, Millar & Warman, 2010), or that it is

nearly ubiquitous. According to a review by Ishikawa (1977), almost all the protostome

animals possess the hidden break, whereas all the deuterostome animals do not (see Table 2

in Ishikawa, 1977). Table 1 updates the information provided by Ishikawa (1977) drawing

on information across the biological domains. Non-protostome animals including sponges
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Table 1 Prevalence of gap deletion in the LSU rRNA molecule across taxa including Bacteria and Eukaryota domains.

Gap LSU rRNA Phylum Clade Reference

Higher plants
(angiosperms)

Yes 25S n/a n/a Fujiwara & Ishikawa (1986)

No Krupp (2005)

Actinobacillus Yes 23S Proteobacteria Gamma-
proteobacteria

Haraszthy et al. (1992)

Actimomycetemcomitans
*Escherichia coli Yes 23S Ishikawa & Newburgh (1972)
*Escherichia coli No 23S Proteobacteria Gamma-

proteobacteria
Krupp (2005)

Tetrahymena pyriformis Yes 26S Ciliophora Oligo-
hymenophorea

Eckert et al. (1978)

Acanthamoeba castellanii Yes 26S Protozoa Amoebozoa Stevens & Pachler (1972)

Haliclona indistincta No 28S Porifera Demospongiae This study

(Fig. S2)

Halichondria japonica No 28S Porifera Demospongiae Ishikawa (1975a)
*Actinia equina Yes/No 28S Cnidaria Anthozoa Ishikawa (1975b)

Dugesia japonica Yes 28S Platyhelminthes Tricladida Sun et al. (2012)

Schistosoma mansoni Yes 28S Platyhelminthes Trematoda Van Keulen et al. (1991)

Caenorhabditis elegans No 28S Nematoda Chromadorea Zarlenga & Dame (1992); Krupp (2005)

Trichinella spiralis Yes 28S Nematoda Adenophorea Zarlenga & Dame (1992)

Grammostola porteri Yes 28S Arthropoda Chelicerata This study

Artemia parthenogenetica Yes 28S Arthropoda Crustacea Sun et al. (2012)

Dosima fascicularis Yes 28S Arthropoda Crustacea This study

Lepas anatifera Yes 28S Arthropoda Crustacea This study

Pollicipes pollicipes Yes 28S Arthropoda Crustacea This study

Apis mellifera Yes 28S Arthropoda Hexapoda Winnebeck, Millar & Warman (2010)

Bombyx mori Yes 28S Arthropoda Hexapoda Fujiwara & Ishikawa (1986)

Thrips tabacai No 28S Arthropoda Hexapoda Macharia, Ombura & Aroko (2015)

Scolopendra subspinipes Yes 28S Arthropoda Myriapoda This study

Xenopus laevis No 28S Chordata Amphibia Ware et al. (1983)

Avian/mammal No 28S Chordata Aves/Mammalia Krupp (2005)
**Ctenomys sp. Yes 28S Chordata Mammalia Melen et al. (1999)

Notes.
* Presence of denaturing induced gap deletion not well established (conflicting evidence).

** Exception in the Deuterostomia.

(Phylum Porifera) and some members of the Phylum Cnidaria appear to lack the gap

deletion; similarly, unpublished observations in our laboratory showed no gap deletion

in sponge rRNA (Haliclona indistincta) (Fig. S2). Meanwhile, protostomia such as the

platyhelminths Schistosoma mansoni (Van Keulen et al., 1991) and Dugesia japonica (Sun et

al., 2012) contained the gap deletion, as did the Arthropoda. There is apparently one case

of a gap deletion in mammalian/deuterostome RNA (Melen et al., 1999; Table 1), but since

this deletion is not in the same position on the molecule as in other groups, it does not lead

to the ‘degraded’ appearance which is the focus of the present study. Still the suggestion of

a less obvious deletion hints that deletions in deuterostomes may be more prevalent than
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current studies suggest. The gap deletion is therefore almost ubiquitous in protostome

groups and its prevalence is scattered across other animal clades. It should be noted that

there are also some exceptional groups of protostomes lacking the gap deletion; e.g., within

the insects, the aphids lack the deletion (Ishikawa, 1977) as do certain Nematoda (Table 1).

Further afield, within Eukaryota the gap appears to be found in some single celled or-

ganisms and even higher plants (Applebaum, Ebstein & Wyatt, 1966; Eckert et al., 1978; Fu-

jiwara & Ishikawa, 1986). For example, gap deletions may be found in ciliophore (Tetrahy-

mena spp.) and amoeboid LSU rRNA (Eckert et al., 1978; Ishikawa & Newburgh, 1972).

It may even occur in LSU rRNAs across several biological domains. Within the bacteria,

the proteobacterium Actinobacillus actinomycetemcomitans may also display a gap deletion

(Haraszthy et al., 1992), though evidence in Escherichia coli is more ambiguous (Table 1).

Gould (1967) and Ishikawa & Newburgh (1972) were the first to suggest thermo-

conversion of rRNA in insects and our results support this observation, as gap deletions

were seen in heat-denatured arthropod samples, whereas non-heat-denaturing methods

alone (denaturing gels) did not have this effect (Fig. 3). Experiments involving urea-

denaturation may have used heat simultaneously and these are difficult to interpret in

this context (Ishikawa & Newburgh, 1972; Summer, Gramer & Droge, 2009; Sun et al.,

2012). However, our results suggest that formaldehyde denaturation did not have a gap

deletion effect, even at higher concentration (Fig. 3B). A normal RNA migration pattern

will only be revealed in these circumstances by skipping the heat-denaturation step in both

Bioanalyser and electrophoresis gel analyses (Fig. 4). Doing this allows a normal migration

profile to be observed and concerns about RNA degradation may be allayed, although the

appearance of large fragments associated with secondary RNA structures may present on

gels in these instances. Figure 4 outlines our recommended procedure when dealing with

RNA in taxa containing gap deletions.

The mechanism for the ‘hidden break’ (=gap deletion) was proposed initially by

Ishikawa & Newburgh (1972) as disruption of the covalent phospho-ester bonds conferring

secondary structure to the RNA during denaturation, leading to dissociation of the large

rRNA molecule into two smaller sub-units. These authors also proposed the above came

about due to the melting of hydrogen bonds, as H-bond strength is proportional to the

strength of chemical changes under denaturing conditions. A later study by Fujiwara

& Ishikawa (1986) suggested that it is the AU-rich D7a expansion segment of the 28S

molecule that is the site responsible for the gap deletion. In the bee Apis mellifera, this

cleavage site is located in the D7a hairpin loop around position 1,350 nt. The majority of

the D7a heterogeneity is located at the distal region of helix D7a-3, where the sequences are

highly variable in length and base composition (Gillespie, Yoder & Wharton, 2005). Here

the double bonded AU pairing is weaker than the triple bonded GC association through

their H-bonds and also through base-stacking interactions (Mallatt & Chittenden, 2014;

Yakovchuk, Protozanova & Frank-Kamenetskii, 2006). Thus, GC-rich sequence tracts in

the D7a expansion segment are associated with the groups lacking the gap processing

(Fujiwara & Ishikawa, 1986). Recently, Sun et al. (2012) examined the predicted secondary

structure of the pre-processed molecule and also the primary (AU-rich) sequence at the
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Figure 4 The steps involved in determining RNA quality in a species containing a ‘gap deletion’. These include Arthropoda, most protostome
animals and a scattering of other groups (-see Table 1). The schematic displays the problem with taking routine approaches in taxa with gap deletions
because standard protocols specify heat-denaturation of the rRNA prior to Bioanalyser analysis. The latter measures migration and intensity of LSUs
and RNA Integrity Numbers (RINs). Heat-denaturation prevents visualisation of the 28S peak in Bioanalyser electropherograms in the affected
taxa, so that RNA appears ‘degraded’ and a RIN cannot be generated. The solution is to run non-heat-denatured rRNA during Bioanalyser analysis.
Denaturing formaldehyde gel electrophoresis of rRNA does not appear to bring about the gap deletion and RNA subunits appear normally on these
gels.

gap site. During the maturation of the rRNA, the UAAU-rich sequence (located about 10

bases upstream of the 5′ end of 28S-β segment of 28S rRNA molecule) is where cleavage

occurs by a ‘late enzyme dependent cleavage event’ to expose the loop (in stem and loop

structure). Furthermore, in aphids the absence of the gap deletion can be explained by

an absence of the UAAU-rich sequence necessary for gap processing (Ogino et al., 1990).

From transcriptome analysis, we have obtained the 28S rRNA gene sequence for Lepas

anatifera (Fig. 5A; currently in GenBank submission process). We have located the AU-rich

region in the Lepas LSU, as well as the specific UAAU sequence which occurs upstream of

a conserved motif 5′-CGAAAGGG-3′ (Fig. 5B) (Fujiwara & Ishikawa, 1986; Van Keulen

et al., 1991; Gillespie, Yoder & Wharton, 2005). The UAAU stretch of rRNA starting at
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Figure 5 28S gene sequence analysis. (A) 28S sequence for Lepas anatifera from Illumina Hi-Seq 2000 platform; (B) The AU rich stretch of rRNA
where the UAAU sequence at position 1,781 nt is likely responsible for splitting the rRNA into ∼1,780 nt and ∼2,000 nt fragments which migrate
together on a heat-denaturing gel. The CGAAAGGG sequence at the 3′ end of the AU rich region (highlighted in red) is highly conserved in all 28S
rRNAs; (C) Sequence alignment for 28S rDNA of centipede and barnacles upstream of the TAAT (UAAU) cleavage site (yellow highlight). The 28S
rDNA sequence for spider Grammostola porteri is not available.
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position 1,781 nt in Lepas is likely responsible for splitting the rRNA into two fragments

of ∼1,780 nt and ∼2,000 nt, which migrate together on a heat-denaturing gel due to their

similar size. On the Agilent bioanalyser output (Fig. 2) we observed a double-headed peak

for heat-denatured samples of the centipede and barnacles, which is likely due to the small

difference in fragment size following cleavage. This UAAU sequence was present across the

three barnacle species tested (Fig. 5C). While complete 28S rDNA across all four species

with available sequence data was highly conserved (Fig. S1), the LSU sequence is not yet

available for the Grammostola spider species.

The gap deletion is not thought to cause any functional problem for mature rRNA

because unless denatured, the subunits remain bound together at the normal loop (Sun

et al., 2012). But many researchers extracting RNA may experience practical concerns

about apparent degradation: a Bioanalyser analysis of heat-denatured RNA is likely to

yield an output reading such as ‘RIN number not applicable (N/A)’ due to complete

absence of a detectable 28S fragment. In fact, these may be extractions of high quality

and the sample just requires analysis in its non-heated form to yield a RIN. The present

study adds to the knowledge about which organism groups display the ‘degraded’ RNA

appearance on analysis. Researcher awareness of the 28s rRNA cleavage activated during

the heat-denaturing process will eliminate unnecessary troubleshooting in the pursuit of

high quality RNA profiles and RINs.
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