
Submitted 6 August 2015
Accepted 3 November 2015
Published 17 December 2015

Corresponding author
Heidi M. Luter, h.luter@aims.gov.au

Academic editor
Hauke Smidt

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.1435

Copyright
2015 Luter et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Biogeographic variation in the microbiome
of the ecologically important sponge,
Carteriospongia foliascens
Heidi M. Luter1, Stefanie Widder2, Emmanuelle S. Botté3,
Muhammad Abdul Wahab4, Stephen Whalan5, Lucas Moitinho-Silva6,
Torsten Thomas6 and Nicole S. Webster3

1NAMRA and the Research Institute for the Environment & Livelihoods, Charles Darwin University, Darwin,
Northern Territory, Australia

2CUBE, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
3Australian Institute of Marine Science, Townsville, Queensland, Australia
4Australian Institute of Marine Science, Crawley Western Australia, Australia
5Marine Ecology Research Centre, School of Environment, Science and Engineering,
Southern Cross University, Lismore, New South Wales, Australia

6Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences,
University of New South Wales, Sydney, New South Wales, Australia

ABSTRACT
Sponges are well known for hosting dense and diverse microbial communities,
but how these associations vary with biogeography and environment is less
clear. Here we compared the microbiome of an ecologically important sponge
species, Carteriospongia foliascens, over a large geographic area and identified
environmental factors likely responsible for driving microbial community differences
between inshore and offshore locations using co-occurrence networks (NWs). The
microbiome of C. foliascens exhibited exceptionally high microbial richness, with
more than 9,000 OTUs identified at 97% sequence similarity. A large biogeographic
signal was evident at the OTU level despite similar phyla level diversity being
observed across all geographic locations. The C. foliascens bacterial community
was primarily comprised of Gammaproteobacteria (34.2% ± 3.4%) and Cyanobacteria
(32.2% ± 3.5%), with lower abundances of Alphaproteobacteria, Bacteroidetes,
unidentified Proteobacteria, Actinobacteria, Acidobacteria and Deltaproteobacteria.
Co-occurrence NWs revealed a consistent increase in the proportion of Cyanobacteria
over Bacteroidetes between turbid inshore and oligotrophic offshore locations,
suggesting that the specialist microbiome of C. foliascens is driven by environmental
factors.

Subjects Marine Biology, Microbiology
Keywords Sponge-associated microbial community, Carteriospongia foliascens, Co-occurrence
networks (NWs), Biogeography

INTRODUCTION
Sponges are a diverse and significant component of benthic habitats worldwide (Bell et al.,
2013), contributing to benthic-pelagic coupling through their filtering capacity (Reiswig,
1974), undertaking reef bioerosion and consolidation (Bell, 2008) and making a major
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contribution to recycling nutrients and energy for other reef organisms (De Goeij et al.,
2013). On the Great Barrier Reef (GBR), phototrophic Dictyoceratid sponges are common
and conspicuous taxa (Wilkinson & Cheshire, 1989; Duckworth et al., 2008), with species of
Carteriospongia, Phyllospongia and Strepsichordaia comprising up to 80% of total sponge
biomass on mid- and outer-shelf reefs (Wilkinson, 1988). These species provide habitats
for a wide range of reef taxa and contribute to primary production via their productive
symbioses with cyanobacteria (Wilkinson, 1983;Webster et al., 2013).

Sponges are known to host dense and diverse microbial communities (see Taylor et al.,
2007; Webster et al., 2010; Lee et al., 2011; Schmitt, Hentschel & Taylor, 2012 and references
cited within), yet little is known about how the associations vary with biogeography and
environment. The most extensive biogeographical study to date examined 32 sponge
species from eight geographic locations revealing a minimal core bacterial community
and a large species-specific community (Schmitt, et al., 2012), a pattern subsequently
confirmed in other species (Schmitt, Hentschel & Taylor, 2012). In addition, a recent study
comparing two distinct color morphs of Petrosia ficiformis reported that biogeography,
rather than cyanobacterial symbionts, was responsible for the variability observed in the
microbial community between color morphs (Burgsdorf et al., 2014). Most experimental
studies assessing how sponge microbial communities respond to different environmental
conditions have demonstrated host-specific microbial responses to temperature, nutrients
and sediments (Webster et al., 2011; Luter, Whalan & Webster, 2012; Simister et al., 2012a;
Simister et al., 2012b; Fan et al., 2013; Pita et al., 2013; Luter, Gibb & Webster, 2014).
Responses from these types of environmental conditions range from sponges maintaining
highly conserved microbial communities, irrespective of ambient conditions, through
to highly sensitive communities that shift composition and function in response to the
changing environment. Similarly, in the few studies that have undertaken in situ analysis
of microbial communities in sponges under varying irradiance or pCO2 levels, different
species hosted either stable or variable microbial communities in the face of the altered
environmental conditions (Morrow et al., 2014; Freeman et al., 2015).

Next generation sequencing technologies have greatly expanded our understanding of
microbial community composition in a wide range of different systems (Lynch & Neufeld,
2015). Moreover, 16S rRNA gene datasets have also been used to infer correlation networks
to shed light on possible interactions between microbial species, especially within complex
communities. These statistical co-occurrence patterns can be used as a filter for functionality
(in the case of ecological interactions) and offer insights into canalizing environmental
conditions (e.g., environmental gradients) that explain the co-presence of two taxa, which
is of particular interest for mechanistically-driven studies (Berry & Widder, 2014; Widder
et al., 2014).

This study aimed to determine biogeographic variation in the microbial community
of the ecologically important sponge, Carteriospongia foliascens, and subsequently use
community co-occurrence networks to identify potential shifts in key taxa between
inshore and offshore environments. Increased agriculture of coastal Australian land since
European settlement (Kroon, Kuhnert & Henderson, 2012), and associated land run-off
to coastal waters, has been a significant contributor to turbidity of the inshore GBR
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(Furnas, 2003). As previous sponge symbiosis studies have demonstrated reduced
chlorophyll a concentrations under low light conditions (Becerro & Paul, 2004; Erwin &
Thacker, 2008), we hypothesized that site characteristics reflecting light levels would drive
differences in sponge microbial communities between inshore and offshore environments.
In particular,Cyanobacteriawere expected to be adversely affected by the increased turbidity
and reduced light levels of inshore environments, potentially being replaced by taxa that
are more efficient consumers of dissolved organic matter (DOM) (Pereira, 2010).

MATERIALS & METHODS
Sample collections
Individuals of C. foliascens were collected from multiple locations around tropical Eastern
and Western Australia as part of a wider phylogenetic study on foliose keratose sponges,
see (Abdul Wahab et al., 2014b). The present study focused on 72 individuals identified
as Evolutionary Significant Unit (ESU) I (Abdul Wahab et al., 2014b) from the following
locations: Davies Reef (n= 15), Green Island (n= 13), Fantome Island (n= 14), Orpheus
Island (n= 15), Torres Strait (Masig Island, n= 7), Scott Reef (n= 3) and the Dampier
Archipelago (n= 5). Tissue samples were preserved in 100% ethanol and stored at−20 ◦C
prior to molecular analysis. Samples were collected under the Great Barrier Reef Marine
Park Authority Permit #G12/35236.1.

DNA extraction, sequencing & processing
Genomic DNA was extracted using the PowerSoil htp 96-well DNA Isolation Kit (MoBio
Laboratories, Inc.), following the manufacturer’s protocol. The 16S rRNA genes were
amplified by PCR and sequenced as part of the Earth Microbiome Project (EMP) (Gilbert,
Jansson & Knight, 2014) on the Illumina platform using the bacterial primers 515F/860R
and standard protocols (Caporaso et al., 2012).

Quality-filtered, demultiplexed fastq sequences provided by the EMP were processed
using Mothur v.1.31.2 (Schloss et al., 2009). Sequences were filtered using the following
parameters: average quality score = 30, window size = 5 bases, maximum ambiguity
= 0 and maximum number of homopolymers = 8, and trimmed to 100 bp. Unique
sequences were aligned against a trimmed SILVA database (v102, trimmed to the
V4 region) and chimeric sequences identified by UCHIME (Edgar et al., 2011) were
removed. Classified sequences were grouped into operational taxonomic units (OTU) at
97% sequence similarity using the furthest neighbor clustering method. Representative
sequences were classified based on the SILVA database, using a minimum cutoff of 60%.
Singletons, i.e., OTUs formed by one sequence across all samples, were removed. Processed
sequences and meta-data are available via the following portal (http://qiita.microbio.me/)
under study number 1740. Rank abundance plots were created using BiodiversityR
2.5-2 (Kindt & Coe, 2005) and diversity metrics using rarefied data (n = 7,370
sequences) were created using vegan 2.3-0 (Oksanen et al., 2015), both packages in R.
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Data analysis
Principal coordinate analysis (PCO)was used to visually compareC . foliascens communities
and PERMANOVA, using 9,999 permutations, was used to test differences in community
structure between the different geographic locations. PRIMER/PERMANOVA’s Mantel-
type test, RELATE, was used to compare similarity matrices and hierarchal clustering of
sample locations was achieved using CLUSTER analysis. Similarity Percentage (SIMPER)
analysis was used to determine the OTUs that contribute to the differences in community
structure between Eastern Australian samples from locations classified as either inshore
(Green, Fantome and Orpheus Islands) or offshore (Davies Reef). OTUs from the SIMPER
analysis were visualized using Cytoscape v3.2.1 (www.cytoscape.org) (Shannon et al., 2003).
All statistical analyses were based on Bray-Curtis distances of standardized (by sample)
square root transformed data and performed using PRIMER 6/PERMANOVA+ v1.0.2
(Plymouth, UK).

Sequences from the 30 most abundant OTUs were aligned using the SINA web aligner
(Pruesse, Peplies & Glöckner, 2012). Maximum likelihood analysis and tree construction
were performed in MEGA v6.06 (Tamura et al., 2013), using the Kimura 2-parameter
model with a gamma distribution. Tree reliability was tested by computing 1,000 bootstrap
replicates starting with a neighbor-joining tree and using the nearest-neighbor interchange
(NNI) tree search option.

Co-occurrence networks
OTU abundance data were split into offshore and inshore samples and further processed
independently. We inferred co-occurrence networks (NWs) using the sparCC algorithm
(Friedman & Alm, 2012) and considered a robust co-occurrence event, if sparCC
correlation > |0.6| and p-value ≤ 0.03. Subsequently, we performed a False Discovered
Rate (FDR) correction according to Benjamini & Hochberg, (1995). To determine the
fragmentation pattern of the co-occurrence community, we further simplified the NWs
and removed anti-correlation edges and nodes with degree k > 15, which are likely artifacts
of the pairwise correlation algorithms. Fragmentation, f , was calculated according to
f = log(CL)/log(N ), where CL is the number of topological clusters in the graph and, N ,
the number of nodes (Widder et al., 2014). NWs were visualized in Cytoscape ( Fig. S2 ).

For evaluating a shift in predominant taxa between geographical locations, we used
the set of all OTUs present in either the inshore NW or the offshore NW. The ratio
between Cyanobacteria/Bacteroidetes within this set was calculated using the mean relative
abundances of taxa belonging to either of the two phyla. Inference and analyses were
performed in R (R Core Team, 2015).

RESULTS AND DISCUSSION
Overall community composition
As part of a global sponge microbiome initiative, forming part of the EMP, the microbial
communities of 72 C. foliascens individuals collected from multiple locations around
tropical Eastern and Western Australia were sequenced (Fig. 1 and Table S1). A total
of 9,401 OTUs, spanning 15 bacterial phyla, were identified across all individuals at 97
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Figure 1 Collection site map.Map of Australia showing the sampling sites for this study. Due to the
close proximity of Fantome and Orpheus Island (<10 km apart), both islands are represented by a single
Palm Islands symbol. GPS coordinates for each site can be found in Table S1.

% sequence similarity. These OTUs comprised 1,382,146 sequences, with an average
of 19,196.47 (±7,972.81 1 S.D.) per sample. Representative sequences averaged 98.98
bp (±0.17 1 S.D.) in length. C. foliascens hosts exceptional bacterial richness, exceeding
the number of unique OTUs reported for 20 other sponge species also sequenced as
part of the EMP (Easson & Thacker, 2014). However, it is important to note that direct
comparison of OTU richness between studies is often confounded by biases introduced
in the laboratory and computational processing steps. For instance, whilst C. foliascens
has exceptionally high OTU level diversity compared to other reported sponge species,
Easson and colleagues used a minimum threshold of 500 reads (compared to a threshold
of 2 reads in the current study), likely contributing to the higher apparent diversity in
C. foliascens.

PCO revealed considerable microbial variation at the OTU level according to host
geography, with 24.3% of the total variation in community composition explained in the
first two factors (Fig. 2). Distinct groupings within the ordination plot, based on geographic
location, were evident. For example, to the right of the ordination plot there was a general
grouping of GBR communities (excluding Torres St). The community composition of
samples from the inshore Fantome and Orpheus Islands (separated by <10 km) were
tightly grouped, with the communities at these two locations being separate from GBR
communities at Green Island and Davies Reef (Fig. 2). Despite the patterns depicted in the
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Figure 2 PCOwith OTU vectors. PCO based on the Bray Curtis similarity of the OTUs derived from Illumina sequencing of C. foliascens individu-
als from each location. Phyla with a Spearman Rank correlation greater than 0.8 are overlaid on the plot as vectors, with the number of correspond-
ing OTUs listed in parentheses and identified in Table S3.

ordination, particularly for Fantome and Orpheus Islands, the overall level of similarity
(as determined by CLUSTER analysis) in microbial composition at the OTU level was
20% and all locations were significantly different (PERMANOVA, Pseudo-F6,65 = 5.57,
p= 0.001). In fact, a significant correlation between geographic distance and community
composition was identified through a comparison of the two matrices (RELATE; Rho
= 0.771, P = 0.015). In addition, there was a significant difference in species diversity
(PERMANOVA, Pseudo-F6,65= 5.87, p= 0.0002) and richness (PERMANOVA, Pseudo-
F6,65= 7.20, p= 0.0001) estimates between locations, with Inverse Simpson values ranging
from 9 to 17 and averaged estimated richness (Chao1) ranging from 3,544 to 5,751 OTUs
(Table S2).

OTUs assigned to Alphaprotobacteria, Bacteroidetes, Gammaproteobacteria and
unclassified Proteobacteria contributed most to the ordination, with a spearman rank
correlation greater than 0.8 (Fig. 2). Notably, community differences in samples from
Torres Strait were driven by a higher abundance of two Alphaproteobacteria OTUs (Fig. 2
and Table S2), which share 97% sequence similarity with an uncultured bacterial clone
from an alkaline lake in Mexico (JN825343). Samples from communities more indicative
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Table 1 Number of OTUs per phyla. Breakdown of the number of OTUs identified (97% similarity) per
phyla, class for Proteobacteria.

No of OTUs
Acidobacteria 25
Actinobacteria 328
Bacteroidetes 481
Cyanobacteria 931
Alphaproteobacteria 984
Deltaproteobacteria 50
Gammaproteobacteria 4,039
Unidentified Proteobacteria 1,179
Unclassified Bacteria 1,384

of inshore water conditions (e.g., Fantome & Orpheus Islands) revealed higher abundances
of OTU2505 and OTU109 (Fig. 2 and Table S3). Both of these Bacteroidetes OTUs share
100% sequence similarity to other sponge-derived microbial sequences, including a C.
foliascens clone previously collected from Orpheus Island (Webster et al., 2013).

Taxonomic analysis revealed the community of C. foliascens from all locations is
primarily comprised of Gammaproteobacteria (4,127 OTUs, relative abundance 34.2
% ± 3.4%) and Cyanobacteria (941 OTUs, 32.2% ± 3.5%), with lower abundances
of Alphaproteobacteria, Bacteroidetes, unidentified Proteobacteria, Actinobacteria,
Acidobacteria,Deltaproteobacteria and unclassified bacteria also present (Fig. 3A). Although
the latter phyla displayed lower relative abundances, they still comprised a high number
of OTUs (Table 1). Five additional phyla were also identified; however, they comprised
<1% of the overall community composition. Although different sequencing platforms
preclude a direct comparison between studies, it is interesting to note that C. foliascens
from the Red Sea hosts a similar phyla level diversity but much lower OTU level diversity
than the GBR C. foliascens (Gao et al., 2014a). While samples possessed similar phyla-level
diversity, sharing 60% similarity at the phyla-level vs. 20% at the OTU-level (percentages
from CLUSTER analysis), the relative abundances of OTUs in some phyla varied between
locations (Fig. 3A). For instance, samples from Fantome and Orpheus Islands have the
highest relative abundance of Bacteroidetes, whereas Cyanobacteria are more abundant
in samples from Torres Strait and Scott Reef (both 42%). Similar patterns of phyla-level
similarity and OTU-level disparity have previously been reported for other sponge species
(Simister et al., 2013; Luter, Gibb & Webster, 2014).

When considering the 30 most abundant OTUs, which comprised 68% of the total
OTU abundance (Fig. S1), the phyla-level diversity decreased with only members of
Cyanobacteria, Gammaproteobacteria, Alphaproteobacteria, Bacteroidetes, unidentified
Proteobacteria and unclassified bacteria represented (Fig. 3B). Interestingly, together OTUs
affiliated to Gammaproteobacteria comprised 43% of the most abundant OTUs, yet no
single OTU contains a large number of reads from any location. In contrast, Cyanobacteria
OTUs comprised only 10% of the most abundant OTUs, yet a single cyanobacterial OTU
(Otu5304) dominated communities from all locations, with the exception of Torres Strait,
where Cyanobacteria Otu115 was more abundant (Fig. 3B). Notably, all Cyanobacteria
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Figure 3 Phyla-level bar chart and OTU tree. (A) Relative abundance of each bacterial phyla, plus class for Proteobacteria, for C. foliascens individ-
uals from each study location. The plot was constructed using operational taxonomic units (OTUs) that represented greater than 1% of the overall
community, which accounted for 87% of the total relative abundance. (B) Relative abundance plot constructed using the 30 most abundant OTUs,
with circle size corresponding to the relative abundance in each sample. Maximum likelihood tree of the OTUs (left), with bootstrap (1,000 repli-
cates) percentages greater than 50% indicated. Samples were clustered by location using the Cluster analysis in PRIMER/PERMANOVA (top).

OTUs share high sequence similarity with clones (Otu5304 [98%] and Otu2788 [97%]:
KP792324 98 & Otu115 [98%]: KJ008094) from the sponge-specific clade Synechococcus
spongiarum (Steindler et al., 2005; Gao et al., 2014b). Clear groupings by sample location
are also evident when looking at the most abundant OTUs, and consistent with the total
dataset, Fantome and Orpheus Island samples share the greatest similarity (80%). A
significant correlation was identified between distance matrices from the total dataset and
the 30 most abundant OTUs (RELATE; Rho = 0.939, P = 0.001), further supporting the
consistency between the two datasets.

Inshore vs. offshore community comparison
Due to the established water quality gradient across the central GBR (Fabricius et al.,
2014), comparisons between inshore and offshore locations were undertaken using
samples from Eastern Australia only. Similarity percentage (SIMPER) analysis revealed
the average similarity between inshore and offshore communities was 32.4%, with
Gammaproteobacteria accounting for nearly half of the OTUs responsible for the
community differences (46.6% of the overall dissimilarity) (Fig. 4). Specifically, the
following OTUs were the primary drivers of dissimilarity between inshore and offshore
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Figure 4 Inshore vs. offshore cytoscape network. Cytoscape network created from the 30 OTUs (97%
similarity) driving the difference between Inshore and Offshore communities identified in SIMPER analy-
sis. The width of the line represents the relative abundance of the OTU in each location.

locations (accounting for 2.65% total dissimilarity): OTU12154 (Gammaproteobacteria),
which was completely absent from inshore samples, OTU669 (Alphaproteobacteria),
which was more abundant in offshore samples, and OTU5304 (Cyanobacteria) and
OTU2505 (Bacteroidetes), which were both more abundant in inshore samples (Fig. 4
and Table S4). Unexpectedly, amongst the top 30 OTUs driving differences observed
between inshore and offshore samples, the two Cyanobacteria OTUs were more abundant
in samples from inshore locations (Fig. 4). For instance, these OTUs comprised 88
% of the total cyanobacterial relative abundance of inshore samples vs. 81% of the
cyanobacterial relative abundance of offshore samples. The environmental stability of
sponge microbial associations varies greatly between species and environmental conditions
(Cleary et al., 2013;Cárdenas et al., 2014). For instance, the giant barrel spongeXestospongia
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muta maintained a stable microbial community between 10–100 m (Olson & Gao, 2013),
indicating a remarkable stability despite the reduction in light required for phototrophy. In
contrast, in the present study we saw a 7% increase in cyanobacterial abundance in inshore
samples indicating that the microbiome of C. folisacens is more environmentally sensitive
than that of X. muta. Given that light is one of the most important factors influencing
phototrophic sponge distributions (Wilkinson & Trott, 1985), sponges like C . foliascens are
more commonly found between 0–2 m on turbid inshore reefs (Abdul Wahab et al., 2014a)
compared to 10–30 m in less turbid environments on mid-shelf reefs (Wilkinson & Evans,
1989). Whilst depth differences between the two environments may also contribute to
observed differences in community structure, samples collected from 10 m at the inshore
Green Island site also contained higher abundances of the two Cyanobacteria OTUs than
offshore Davies Reef samples collected at equivalent depths.

Co-occurrence networks
To test our hypothesis that opposing environmental conditions related to turbidity and
light (based on established studies: Fabricius et al., 2014; Furnas, 2003) induce a shift
in the sponge microbiome between inshore and offshore locations, we inferred two
co-occurrence NWs for each of these locations and identified OTUs present and with
significant co-occurrence relationships for the two habitats. We hypothesize that exclusive
taxa are acclimated to these habitats. Both NWs show comparable size (NI = 93, EI = 98;
NO = 133, EO = 396 where N =Nodes and E = Edges), but when comparing their
fragmentation (e.g., the relative fraction of disconnected compartments within a NW) we
find that the inshore NW is more fragmented (f = 0.61) than the offshore counterpart
(f = 0.52). As inshore conditions are characterized by strong changes in the environment
due to run-off events and variable turbidity (Fabricius et al., 2014), these results are in
qualitative agreement with earlier work, showing that physical disturbance contributes to
community fragmentation (Widder et al., 2014). A statistically significant co-occurrence
of taxa can be motivated by specific interactions between the organisms or similar habitat
preferences (Faust & Raes, 2012; Berry & Widder, 2014). Thus, by overlapping the inferred
NWswe selected ecologicallymeaningful correlation patterns in both locations i.e., patterns
that are either common or unique to each location. In Fig. 5A we depict the Venn diagram
of OTUs present in the inferred NWs, where the union consists of generalists, which define
OTUs that were present in both locations and specialists that represent OTUs present in
either inshore or offshore locations. From the union of OTUs, we extracted the abundance
of Cyanobacteria and Bacteroidetes and calculated their ratios in both environments. As
expected, we found a significantly higher prevalence of Cyanobacteria over Bacteroidetes
in oligotrophic, light-rich offshore locations (CI/BI = 0.25, CO/BO = 1.48, ANOVA,
p< 0.0001) supporting our hypothesis that the community structure of the specialized
sponge microbiome is biased by environmental conditions. In Fig. 5B we show the
abundance boxplots for all OTUs affiliated to these two phyla at inshore and offshore
locations. The increasing trend ofCyanobacteria offshore also holds if we inspect bothOTUs
specific for either location or OTUs prevalent in both locations. However, Bacteroidetes
always dominate in mean relative abundance over Cyanobacteria irrespective of whether
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Figure 5 Co-occurrence outputs. (A) Venn Diagram of OTUs present in two co-occurrence networks
inferred for sponge microbiome at inshore (IN) and offshore (OFF) sampling locations. The number of
specialist (51, 91) and generalist taxa (42) are shown. (B) Abundance boxplot of co-occurring taxa affili-
ated to the phyla Cyanobacteria (C) and Bacteroidetes (B) for inshore (I) and offshore (O) locations. Mean
relative abundances (log-scale) are indicated by green diamonds.

they were classified as specialists or generalists. Bacteroidetes found in the environment are
known for their involvement in degrading DOM (Thomas et al., 2011) with both laboratory
and in situ studies demonstrating the degradation of cellulose and chitin, components of
DOM (Kirchman, 2002). Therefore, the highest mean relative abundances of this group
in sponges collected from inshore locations, where nutrients are likely abundant, are
consistent with one of the proposed physiologies for Bacteroidetes. However, it must be
noted that not all marine Bacteroidetes are known to degrade particulate matter, with some
utilizing proteorhodopsin to gain energy from light (Fernández-Gómez et al., 2013).

CONCLUSIONS
Here we reveal that the ecologically important sponge C . foliascens is an important
reservoir of unique microbial diversity as it harbors at least 9,401 microbial OTUs that
vary significantly amongst geographic locations. Whilst high resolution sampling and
environmental metadata collection are required to unequivocally define the environmental
drivers of community shifts and explore temporal dynamics of the microbial communities,
our finding that the ratio of Cyanobacteria to Bacteroidetes increases for sponges in
oligotrophic offshore environments suggests that the composition of the C . foliascens
microbiome is driven by environmental gradients including light. In addition, our analyses
highlight the value of correlation approaches, such as community co-occurrence networks,
for generating ecological predictions about the stability of microbe-microbe interactions
under different environmental conditions.
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