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ABSTRACT
Background. Differential gene expression analysis using RNA sequencing technology
(RNA-Seq) has become the most popular technique in transcriptome research.
Although many R packages have been developed to analyze differentially expressed
genes (DEGs), several evaluations have shown that no single DEG analysis method
outperforms all others. The validity of DEG identification could be increased by
using multiple methods and producing the consensus results. However, DEG analysis
methods are complex and most of them require prior knowledge of a programming
language or command-line shell. Users who do not have this knowledge need to invest
time and effort to acquire it.
Methods. We developed a novel web application called ‘‘bestDEG’’ to automatically
analyze DEGs with different tools and compare the results. A differential expression
(DE) analysis pipeline was created combining the edgeR, DESeq2, NOISeq, and EBSeq
packages; selected because they use different statistical methods to identify DEGs.
bestDEG was evaluated on human datasets from the MicroArray Quality Control
(MAQC) project.
Results. The performance of the bestDEG web application with the human datasets
showed excellent results, and the consensusmethod outperformed the otherDE analysis
methods in terms of precision (94.71%) and specificity (97.01%). bestDEG is a rapid
and efficient tool to analyze DEGs.With bestDEG, users can select DE analysis methods
and parameters in the user-friendly web interface. bestDEG also provides a Venn
diagram and a table of results. Moreover, the consensus method of this tool can
maximize the precision or minimize the false discovery rate (FDR), which reduces
the cost of gene expression validation by minimizing wet-lab experiments.

Subjects Bioinformatics, Molecular Biology
Keywords Differentially expressed genes, DEGs, RNA-Seq data, EdgeR, DESeq2, NOISeq, EBSeq,
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INTRODUCTION
The transcriptome is the set of all RNA transcripts in a cell (Wang, Gerstein & Snyder,
2009). Understanding the transcriptome is essential for interpreting gene structure,
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expression, and regulation, as well as for understanding development and disease. RNA
sequencing technology (RNA-Seq), a powerful high-throughput DNA sequencing method,
has providedmillions of short sequence reads for mapping and quantifying transcriptomes.
Differential gene expression analysis using RNA-Seq has become the most popular
technique in transcriptome research. Analysis of differentially expressed genes (DEGs)
is used in many research areas. In the health and life sciences, analysis of DEGs has been
used in identifying cancer biomarkers related to clinical manifestations of the disease
(Parvathareddy et al., 2021), in identifying genes potentially responsive to drought in crops
(Li et al., 2022), and in identifying genes responsible for reproduction in economically
important animals (Thepsuwan et al., 2021;Wang et al., 2022). Differential gene expression
analysis involves applying statistical tests to gene/transcript expression data and evaluating
significant differences in gene expression between two or more experimental conditions.
The three main steps in identifying DEGs are read mapping, statistical treatment, and DEG
searching. Before read mapping can be started, the RNA-Seq dataset must be validated
(Yodsawat et al., 2021). RNA-seq expression data can be analyzed by a number of different
statistical procedures. The program edgeR (Robinson, McCarthy & Smyth, 2010) uses
a negative binomial procedure, EB-Seq (Leng et al., 2013) uses an empirical Bayesian
procedure, NOISeq (Tarazona et al., 2011) deploys a nonparametric test, and DESeq2
(Love, Huber & Anders, 2014) uses a combination of statistical procedures to first estimate
mean–variance dependence and then applies a negative binomial procedure to reduce
‘‘noise’’ in the expression data.

Most tools for differential gene expression analysis are available as R packages. Users
can follow the instructions to reproduce or analyze their own data. However, several
evaluations of RNA-seq data analysis methods have shown that there is no single method
that outperforms all others (Costa-Silva, Domingues & Lopes, 2017; Nguyen et al., 2018;
Rotllant et al., 2018; Waardenberg & Field, 2019), and each method (program) commonly
produces some false positive results. Also, the number of false positive predictions from the
current gene expression analysis methods adds costs for validation by wet-lab experiments.
An alternative strategy is to use multiple methods and generate—the consensus results to
increase the accuracy of DEG identification, but this strategy presents its own difficulty.
RNA-seq analysis methods are complex and most of them require knowledge of a
programming language or command line shell. Users who do not have this knowledgemust
invest time and effort to acquire the knowledge for more than one program. In response,
software developers and bioinformaticians have attempted to develop more user-friendly
software. The most suitable strategy has proved to be the development of a web application
that hosts the analysis software.

In this article, we present the bestDEG web application, a new R Shiny web application
that identifies DEGs. Shiny is an R-based framework for web application developers. The
bestDEG web application analyses the data by several methods and automatically compares
the results of each method to improve the accuracy of the predictions.
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MATERIALS & METHODS
The development of the differential expression analysis pipeline
Most of the tools used for differential expression (DE) analysis have been developed in the
R language. In this research, four existing DE analysis packages were used to construct a
DE analysis pipeline: edgeR, DESeq2, NOISeq, and EBSeq. These packages were selected
because they use different statistical methods to identify DEGs in sequencing data. edgeR
uses the canonical negative binomial distribution; DESeq2 estimates the variance-mean
dependence before treating the count data with the negative binomial distribution; NOISeq
identifies DEGs based on a nonparametric test; and EBSeq uses an empirical Bayesian
approach to model features observed in RNA-Seq data.

The input for the pipeline development was the dataset from the pasilla package
(http://bioconductor.org/packages/pasilla/). The dataset was compiled from a study of the
effects of RNAi knockdown of the splicing factor pasilla on a Drosophila melanogaster
cell culture (Brooks et al., 2011). The details of the dataset generation can be found in
the pasilla package document. The dataset consists of a read counts table and a sample
information table. The read counts table was generated from Raw RNA-Seq reads, which
must be previously checked for quality control (Yodsawat et al., 2021). The read counts
table contains the transcript names in the first column. The following columns contain
the total number of reads assigned to these transcripts in different samples. The sample
name should start with the experimental condition followed by the number of replicates.
An example of a read counts table from the pasilla dataset can be found in Table 1. The
sample information table lists the name of each sample and the associated experimental
condition. The first column stores the names of the samples with the replicate number.
The sample names of the sample information table must match the sample names of the
read counts table and be listed in the same order. The name of the experimental condition
appears in the second column. This column can identify only two values and must be
headed ‘‘condition’’. An example of a sample information table from the pasilla dataset
can be found in Table 2.

The script for obtaining the dataset was taken from the DESeq2 package documentation.
The dataset was exported in two tab-separated values (TSV) files. The read counts
table file was named ‘‘cts.tsv’’ and the sample information table file was named
‘‘coldata.tsv’’. The R script to generate and export a dataset can be found on GitHub
(https://github.com/unitsa-sangket/bestDEG).

The bestDEG pipeline is the main analysis script in the Shiny web application. Before
creating the bestDEG pipeline script, all DEG pipelines adapted from its documentation
were converted to R functions and saved to a file. The function file is then later used
in the bestDEG pipeline by the source function. To create the R function, the global
R variables were used as function arguments. The pipeline script for DEG analysis
(without the global R variable code) was then inserted into the function body. The
return function is used to return the DEG analysis results to the function and was
placed at the end of the function body. The last variable in each DEG analysis pipeline is
used as the return variable. All DEG analysis function files were stored in the directory
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Table 1 The first 10 lines of the read counts table from the dataset of the pasilla package.

Transcript_name Treated1 Treated2 Treated3 Untreated1 Untreated2 Untreated3 Untreated4

FBgn0000003 0 0 1 0 0 0 0
FBgn0000008 140 88 70 92 161 76 70
FBgn0000014 4 0 0 5 1 0 0
FBgn0000015 1 0 0 0 2 1 2
FBgn0000017 6205 3072 3334 4664 8714 3564 3150
FBgn0000018 722 299 308 583 761 245 310
FBgn0000022 0 0 0 0 1 0 0
FBgn0000024 10 7 5 10 11 3 3
FBgn0000028 0 1 1 0 1 0 0
FBgn0000032 1698 696 757 1446 1713 615 672

Table 2 The sample information table of the dataset from the pasilla package shown in Table 1.

sample_name condition

treated1 treated
treated2 treated
treated3 treated
untreated1 untreated
untreated2 untreated
untreated3 untreated
untreated4 untreated

named ‘‘R’’. The R script of the DEG analysis functions was made available on GitHub
(https://github.com/unitsa-sangket/bestDEG).

An overview of the bestDEG pipeline process is presented in Fig. 1. To create the
bestDEG pipeline script, the global R variables, read counts, sample information, and the
DEG functions are defined at the beginning of the script. A global R variable is stored in
the list called input. The read counts and sample information tables are stored in the list
named internal. Each list is named to match the variable used in the server-side script of
the Shiny web application. The R functions used to analyze DEGs are called from the file,
using the function source along with the local parameter to avoid a conflict environment.
Next, the order of the columns in the read counts table is changed to match the order of
the row names in the sample information table. Then, the desired differential expression
analysis methods are checked. If a DEG method is checked, the DEG function of that
package is used. If not, the DEG function is skipped and another DEG function is searched.
Next, the DEG regulatory status column is added to all DEG results. The newly added
column contains three values: up, down, and zero_value. ‘‘Up’’ means that the log2 fold
change is greater than zero. ‘‘Down’’ means that the log2 fold change is less than zero.
‘‘Zero_value’’ means that the log2 fold change is equal to zero. The consensus method
generated intersection results of multiple method selected by a user. Then, the set of
intersection genes (or consensus genes) is determined using the Venn function from the
gplots package. The final intersection table is created to summarize the bestDEG result in a
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Figure 1 The program flowchart illustrates the process of the bestDEG pipeline.
Full-size DOI: 10.7717/peerj.14344/fig-1

table format. To create the final table, log2 fold change, FDR, and DEG regulatory status are
selected from each DEG result using a list of intersection genes. The names of intersection
genes are added in the first column. If a gene had an inconsistent DEG regulatory status in
the DEG methods, the regulatory status of that gene is marked as ‘‘Inconsistent’’, and the
DEG regulatory status is appended to the final table. Next, the log2 fold change from all
DEG methods is used to calculate the mean and standard deviation, and then added to the
final table. Finally, the FDR and probability value from each DEG method are appended
to the last column. The final intersection table displays only those genes whose absolute
value of log2 fold change was greater than the threshold (The log2 fold change >= cut-off
signified up-regulation while log2 fold change <= -(cut-off) showed down-regulation.)
and whose FDR value was less than the threshold. The R script of the bestDEG pipeline is
available on GitHub.

The implementation of the web application
The bestDEGweb application was developed in the R programming language and the Shiny
package was used to create the web application. The RStudio software was the integrated
development environment (IDE) used during development. The renv package was used
to manage the package environment. The R code that automatically installs the required
R package was stored in the ‘‘required_package_install.R’’ file. The code for the bestDEG
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web application was stored in several files. The file named ‘‘ui.R’’ stored the UI code that
handles all the UI elements of the application. The file named ‘‘server.R’’ was used to store
the server code that controls various behaviors, functions, and pipelines of the application.
The bestDEG pipeline was embedded in the server code. The R functions for each DE
analysis method were stored in the directory named ‘‘R’’. In addition, the file ‘‘global.R’’
was created to specify the global object that will be loaded into the global environment
when the application is started. The R script of the bestDEG web application has been
published on the bestDEG GitHub, and the bestDEG web application is freely available at:
https://unitsa.shinyapps.io/bestDEG.

Evaluation of the web application
To evaluate the performance of the bestDEG web application, we used two datasets from
a previous study (Costa-Silva, Domingues & Lopes, 2017) that had been taken from the
MicroArray Quality Control (MAQC) project (Canales et al., 2006; Shi et al., 2006). Two
types of RNA samplewere used in this project: theHumanBrainReference (HBR) (Ambion;
Thermo Fisher Scientific,Waltham,MA, USA) and the Universal Human Reference (UHR)
(Stratagene; Agilent Technologies, Santa Clara, CA, USA). Samples were analyzed using
RNA sequencing and qRT-PCR. A next-generation sequencing dataset was generated using
the Genome Analyzer II sequencing system (Illumina, San Diego, CA, USA). The qRT-PCR
dataset was analyzed using TaqMan Gene Expression Assays (Applied Biosystems; Thermo
FisherScientific, Waltham, MA, USA). The qRT-PCR dataset was used as the gold standard
for evaluating the results of the DEG analysis.

To prepare the RNA sequencing datasets for analysis, Bioconda software (Grüning et
al., 2018) was used to manage the software environment and installation. Raw datasets
were retrieved from the Sequence Read Archive (SRA) database on the National Center for
Biotechnology Information (NCBI) website under accession number SRA010153. Samples
that used the PhiX control were selected. The accession list for each sample was used
to retrieve raw data in FASTQ format using the SRA Toolkit software (version 2.10.9)
(https://github.com/ncbi/sra-tools). The human reference genome (GRCh38.p13) and gene
annotation in GTF format were downloaded from the Ensembl database (Ensembl Release
102 - November 2020) (http://nov2020.archive.ensembl.org/Homo_sapiens/Info/Index).
Prior to further analysis, raw sequencing data were quality checked with the FastQC
software (version 0.11.9) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc) and
then merged into a single HTML file with the MultiQC software (version 1.9) (Ewels et
al., 2016). STAR (version 2.7.7a) (Dobin et al., 2013) was used to map reads to the human
reference genome, and the HTSeq software (version 0.13.5) was used to count the number
of reads that mapped to each gene. The read counts of each sample (HBR and UHR) were
merged into a single file using an in-house R script, and the sample information file was
also created using an in-house R script. Finally, the read counts and sample information
files were input into the bestDEG web application for analysis with default settings.

To prepare the qRT-PCR dataset for analysis with an in-house R script, the qRT-PCR
data were retrieved from the Gene Expression Omnibus (GEO) database under accession
number GSE5350 and platform GPL4097. The dataset was analyzed for DEGs using
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the GEO2R Web tool (https://www.ncbi.nlm.nih.gov/geo/geo2r/). The UHR sample was
considered a control and DEG analysis was performed using default parameters. Next,
the gene symbol identifiers from the GEO2R result were converted to Ensembl Gene ID
using db2db in the bioDBnet web tool (Mudunuri et al., 2009) with default settings. Before
uploading the data to bioDBnet, records with empty, redundant, and invalid gene symbol
formats were removed and extracted into a list of gene symbols. After we obtained the
result from bioDBnet, gene ID that contained a hyphen symbol or multiple records was
removed. The remaining Ensembl gene ID was merged with the previous GEO2R result.
Records that did not contain the Ensembl Gene ID were filtered out. Finally, DE was
identified by applying the log2 fold change and p-value threshold to the GEO2R result. If
the gene expression was more than or equal to the absolute value of 2 and the p-value was
less than or equal to 0.05, the gene was considered a DEG. The datasets marked DEG were
labeled ‘‘DEG’’ and ‘‘Up’’ or ‘‘Down’’ in the last columns.

To assess performance, the human RNA-Seq dataset (HBR and UHR) was analyzed
using the bestDEGweb application. The DEGs were identified based on absolute log2FC >2
for upregulated genes and log2FC <−2 for downregulated genes with FDR <0.01 (Zheng et
al., 2020; Teng et al., 2020;Methot et al., 2021;Vignesh et al., 2021). The obtained consensus
result and the result obtained from each DE analysis package were used to evaluate the
performance statistics. The DEG results from the qRT-PCR dataset were used as the
gold standard for comparison with the DEG results from the human RNA-Seq dataset.
The performance statistics of the consensus method and individual DE analysis methods
were calculated using the R package ‘‘caret’’ and compared. To calculate the performance
statistics, a confusion matrix was created, which was a table with two dimensions (‘‘Actual’’
and ‘‘Predicted’’), each with two classes (‘‘Positive’’ and ‘‘Negative’’). Each value in the
confusion matrix indicated the number of true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN).

In this study, the positive class was a gene identified as a DEG, and the negative class was
a gene identified as not a DEG. A true positive (TP) was the number of genes identified as
DEGs in both the predicted and actual data. False positive (FP) was the number of genes
identified as DEGs in the predicted data but not in the actual data. False negative (FN) was
the number of genes that were not identified as DEGs in the predicted data but were DEGs
in the actual data. True negative (TN) was the number of genes identified as not DEGs in
both predicted and actual data.

The performance measurement statistics used in this study were described as follows:
sensitivity (also recall or the true positive rate) was the ratio between true positive and the
sum of true positive and false negative; specificity (also selectivity or the true negative rate)
was the ratio between true negative and the sum of true negative and false positive; and
precision (or the positive predicted value) was the ratio between true positive and the sum
of true positive and false positive.

RESULTS
The HTML report of fastqc showed a summary of the modules which were run,
and a quick evaluation of the results of the module was entirely normal (green tick)
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(https://dnacore.missouri.edu/PDF/FastQC_Manual.pdf). The DEG result of the human
RNA-Seq dataset from the bestDEG web application is shown in Fig. 2. The performance
assessment result is shown in Table 1. The number of DEGs identified from the bestDEG
web application for the human RNA-Seq dataset were 5,188 DEGs for edgeR, 8,661 for
DESeq2, 8,009 for NOISeq, 5,363 for EBSeq, and 4,662 for the consensus. For specificity
and precision, the consensus method outperformed the other DEG analysis methods. For
sensitivity, the DESeq2 method outperformed the other DEG methods.

DISCUSSION
None of the five methods employed in this analysis outperformed the others (Table 3).
However, the consensus method increased the precision and specificity of the results. To
reduce the cost of gene expression validation by minimizing wet-lab experiments, the
number of correct positive predictions (TP) must be maximized, or the false discovery rate
(FDR) minimized. Therefore, precision is the most important value to consider because
precision is calculated by dividing the number of correctly predicted DEGs (TP) by the
sum of all predicted DEGs (TP + FP).

To summarize the advantages of the unique features of the bestDEG web application, we
present a comparison of existing software packages developed for multi-method analysis of
DE from RNA-Seq data. iDEP (Ge, Son & Yao, 2018) is a web application developed for DE
and pathway analysis from RNA-Seq data. This application was developed, like bestDEG, in
Shiny but implements DESeq2, limma-voom, and limma-trend methods for DE analysis.
However, there are no options to compare outputs and generate consensus DEG results.
IDEAMEX (Jiménez-Jacinto, Sanchez-Flores & Vega-Alvarado, 2019) is another web server
tool for integrated RNA-Seq data analysis. Nevertheless, this tool does not specify the
up- or down-regulated genes. Users have to specify the up- or down-regulated genes
by themselves. Also, there is no consensus result for only up- or down-regulated genes
from IDEAMEX. consensusDE (Waardenberg & Field, 2019) is an R package that identifies
DEGs by combining results from multiple DE analysis methods and includes an option
to integrate RUV to improve DE stability. However, users need prior knowledge of R
programming and must install R and the associated R package on their own computer.
In comparison, the bestDEG web application was developed as a simple and easy-to-use
software to perform DE analysis in three simple steps: (1) upload the read counts and
sample information, (2) select the DEG method or methods and parameters, and (3) click
the Submit button. Users can access the application through the web browser and do not
need to install any software or have any programming knowledge to use the application.
The bestDEG application implements four DE analysis tools that use different statistical
methods to analyze DE in RNA-Seq data. It then automatically generates a consensus DEG
result, a plot, a graph and a table that are displayed on the user interface and users can
download all their results from the web application.
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Figure 2 The DEG results of human RNA-Seq dataset from the bestDEG web application.
Full-size DOI: 10.7717/peerj.14344/fig-2

Table 3 The performance of the consensus result from bestDEG was assessed by comparison with the
four individual DE analysis methods available in bestDEG.

DEGmethod Sensitivity (%) Specificity (%) Precision (%)

Consensus 70.4188 97.0178 94.7183
DESeq2 86.1256 95.6262 93.7321
edgeR 79.8429 96.4214 94.4272
NOISeq 84.8167 95.2286 93.1034
EBSeq 71.9895 96.4214 93.8566

Notes.
*The bold values indicate that the precision and specificity of consensus method are higher than other methods.

CONCLUSIONS
The bestDEG web application automates the identification of DEGs and optimizes the
analysis of differential gene expression in RNA-Seq datasets. bestDEG not only performs
differential expression analysis using four methods based on different statistical approaches
but also combines the outputs to produce a consensus result. The application allows users to
select the desired DE analysis method/s and parameters in the user-friendly web interface.
It also provides a Venn diagram and a table of results. In addition, users can download the
results of all the DE analysis methods selected and the Venn diagram. The performance of
the bestDEG application was evaluated on the gold standard dataset and showed excellent
results, especially in the precision and specificity of the consensus method. In addition, the
consensus results reported by bestDEG could improve the quality of prediction, which is
important for further analysis and validation of gene expression.
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