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ABSTRACT
Deep learning is a class of machine learning techniques capable of creating internal
representation of data without explicit preprogramming. Hence, in addition to
practical applications, it is of interest to analyze what features of biological data may
be learned by such models. Here, we describe PredPair, a deep learning neural
network trained to predict base pairs in RNA structure from sequence alone, without
any incorporated prior knowledge, such as the stacking energies or possible spatial
structures. PredPair learned the Watson-Crick and wobble base-pairing rules and
created an internal representation of the stacking energies and helices. Application to
independent experimental (DMS-Seq) data on nucleotide accessibility in mRNA
showed that the nucleotides predicted as paired indeed tend to be involved in the
RNA structure. The performance of the constructed model was comparable with the
state-of-the-art method based on the thermodynamic approach, but with a higher
false positives rate. On the other hand, it successfully predicted pseudoknots. t-SNE
clusters of embeddings of RNA sequences created by PredPair tend to contain
embeddings from particular Rfam families, supporting the predictions of PredPair
being in line with biological classification.
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INTRODUCTION
Deep learning holds an important place in the toolbox of bioinformatics methods, applied
to, e.g., analysis of medical images (Giger, 2018; McCallum et al., 2019), classification of
cancer subtypes (Courtiol et al., 2019; Minnoye et al., 2019), annotation of bacterial genes
(Clauwaert, Menschaert & Waegeman, 2019), prediction of antibiotics (Stokes et al., 2020),
prediction of ribosome stalling sites (Zhang et al., 2017), etc. Moreover, deep learning
models can serve as a source of biologically meaningful insights. Basset, a convolutional
neural network that predicts cell type-specific open/closed chromatin state given DNA
sequence learned known and novel transcription factor-binding motifs (Kelley, Snoek &
Rinn, 2016). DeepBind, a tool for determining sequence specificities of DNA- and
RNA-binding proteins, captures local interactions in biological sequences (Alipanahi et al.,
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2015). These and other examples show that deep learning models can find short-distance
interactions and reveal new, unknown motifs. However, the question of whether these
models can capture non-local interactions was open until the first articles presenting
neural networks predicting RNA structure appeared.

RNA secondary structure without pseudoknots can be predicted with a reasonable
accuracy by minimizing the free energy ΔG using dynamic programming, as suggested by
Zuker (Zuker & Stiegler, 1981). The crucial, experimentally determined parameters of the
Zuker algorithm are the stacking energies of adjacent base pairs (that implicitly account for
the energy of formation of the Watson–Crick and wobble pairs) and the destabilizing
contribution of various types of loops. The prediction quality of the Zuker and similar
algorithms is about 60–80%, measured by sensitivity and positive predictive value (PPV)
(Singh et al., 2019). Sensitivity is a fraction of base pairs in the known structure that were
predicted, and PPV is a fraction of correctly predicted base pairs. However, the
performance of the algorithm deteriorates as the RNA length increases—predictions for
sequences shorter than 800 nucleotides have the average sensitivity of 74% and PPV of
66% (Mathews, 2004) while, for instance, the average sensitivities for full-length small and
large subunit rRNAs are 47% and 56% respectively (Bellaousov & Mathews, 2010).

Another concern about energy-minimization approaches is that the globally minimal-
energy structure is not necessarily the correct one, as the actual state may correspond to a
suboptimal structure with a comparable free energy. Such structure may be stabilized by
interaction with small molecules, as in riboswitches (Vitreschak et al., 2004), tertiary
interactions (Martick & Scott, 2006), and form co-transcriptionally (Lai, Proctor &
Meyer, 2013). In addition, the free energy minimization is an NP-complete problem if
pseudoknots are allowed (Lyngsø & Pedersen, 2000), and is highly sensitive to small
changes in the energy parameters, in particular, those of loops (Crowther et al., 2017).
Homology-based approaches proved to be useful (Zhao et al., 2021) but may not be applied
to single sequences.

Deep learning-based techniques aim to overcome the described issues. Two major types
of neural networks applied in biology are convolutional neural networks (CNNs), initially
developed for image recognition, and recurrent neural networks (RNNs), typically used for
language processing and speech recognition. The Attention mechanism is also popular for
tasks where capturing context-dependent features is desired.

CNNs use a convolution operator to process the data coming in the form of arrays
(LeCun et al., 1989). A convolutional layer consists of a set of learnable filters. Each filter
convolves across the width and height of the input array, producing a two-dimensional
activation map. Being stacked along the depth dimension, the maps from different filters
give the output with the generalized features of the processed input. RNNs have internal
states which retain information coming as a sequence of inputs. In particular, long short-
term memory (LSTM) allow the network to learn long-term dependencies. A LSTM unit
contains a memory cell and input, output, and forget gates regulating whether the received
information should be retained and passed further, or should be reset (Hochreiter &
Schmidhuber, 1997). The Attention mechanism may be applied to search for positions in
the input with the most relevant information; this information is added as a context vector
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to the output at each time step, so that the layers processing the Attention output are
informed about the importance of input features (Vaswani et al., 2017). Weights defining
the importance can be visualized and provide insights into the features used by the
network for the prediction.

The first neural networks predicting the RNA structure, SPOT-RNA and DMfold, were
both RNNs but differed in details of architecture and training. In SPOT-RNA, a RNN was
enforced with pre-training on RNA spatial structures (Singh et al., 2019). DMfold does not
use structural data but combines deep learning and dynamic programming, the latter
implementing the base pair maximization principle (Wang et al., 2019). A recently
published algorithm MXfold2 (Sato, Akiyama & Sakakibara, 2021) combines a neural
network and the thermodynamic regularization. Folding scores predicted by MXfold2 are
strongly correlated with actual free energy; however, without the thermodynamic
regularization the correlation is lost.

Notably, none of these papers discuss the features used by the neural networks for the
prediction. The analysis of features created by deep learning models is known as the
representation learning (Goodfellow, Bengio & Courville, 2016). The aim is to reveal the
internal logic of the neural networks’ decisions and thus design better models. In an
attempt to understand what is learnable in this setting, we created a neural network trained
on RNA sequences only, ignorant about any additional information like thermodynamic
parameters, spatial organization, or base pair maximization principle, and analyzed the
biological meaning of the network predictions and its internal representations. While this
network based on a data-driven approach naturally performs worse than specialized
models relying on prior information about the domain, the learned features proved to be
biologically meaningful, demonstrating that this approach may in general contribute to
understanding of the underlying phenomena.

MATERIALS AND METHODS
Model architecture
Two parallel convolutional layers first processed the input with 64 filters and the kernel
size of 10. The convolved input and the original input were then transformed by the
Attention layer (Vaswani et al., 2017). The result of the Attention and the original input
was concatenated and processed by the bidirectional LSTM with 16 neurons (Hochreiter &
Schmidhuber, 1997). The LSTM output is conveyed to two dense layers of 16 and eight
neurons and then to a dense neuron wrapped into the TimeDistributed layer. The latter
had L2 regularization for both kernel and bias terms with the learning rate of 0.1.
The Softmax activation was used in the output neuron to normalize its input value to the
range [0, 1] and to sum the output values to 1. To adjust learning, we used the Adam
optimizer (Kingma & Ba, 2017). The loss function was categorical cross-entropy, and the
performance was estimated using an accuracy metric.

Additionally, we made preliminary tests on artificially generated random sequences
containing 7-nucleotide-long complementary stretches. PredPair, weights, and data are
available via the link: https://github.com/octolis/PredPair.
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Dataset and training
We used RNA sequences from seed alignments of 2,147 Rfam families (Kalvari et al.,
2018). This set did not include families having less than 20% of paired nucleotides.
We used one-hot encoding to process the data for the neural network. For each sequence,
we generated a set of “question samples” and “answer samples”: in the question sample one
and only one position was marked, and the only pairing for the question was marked in the
answer sample. To include this structural information in the encoding, we added the fifth
dimension to the vector containing ‘2’ for the query position in the “question sample” or
the correct pairing in the “answer sample” and ‘1’ for all remaining positions. This
procedure led to 857,307 pairs of “questions” and “answers” that were organized in batches
each representing one particular sequence. The dataset was split into the train, validation,
and test sets in the ratio of 0.6, 0.2, and 0.2, respectively. The split on train, validation, and
test was performed in so that all members of one Rfam family were assigned to one set.

Symmetrization of the base-pairing certainty matrix
By design, the answer of the network sums to 1 for each row, which represents the
probabilities of nucleotides to be paired with the query nucleotide. It means that the
base-pairing certainty matrixM is mostly asymmetric andM(i,j) ≠M(j,i). This asymmetry
contradicts the notion of “being paired” (if i is paired to j, then jmust be paired to i).M(i,j)
is the probability that nucleotide i will select nucleotide j out of possible variants. M(j,i) is
the probability that nucleotide j, in its turn, will select nucleotide i from all its variants.
As these events are not independent, it would be incorrect to multiply the probabilities,
and we take the minimum instead. Hence, we defined the score matrix S such that S(i,j) =
S(j,i) = min (M(i,j), M(j,i)) to force M to be symmetric. As we only need to compare the
values in one row, there is no need to introduce a scaling coefficient to force the sum of
elements in each row to be 1.

Moreover, as shown further in the section of the Results devoted to the description of
the model and data used, the true partners are more likely to be the best bidirectional hits
for each other. So, the absolute value of the minimum provides an additional information
on whether the nucleotide is likely to be paired.

Feature importance analysis
To assess the importance of each nucleotide in the prediction of base-pairings, we used a
gradient-based measure (Vanilla Gradient) of how the change in the input values affect the
answer (Simonyan, Vedaldi & Zisserman, 2014). The Vanilla Gradient is an algorithm for
the construction of saliency maps. It calculates the gradient of the loss function for the
output class with respect to the input data, yielding a heatmap of the size of the input
features. The values of the heatmap reflect the importance of each input feature for the
prediction. Here, gradient-based saliency maps were computed using TensorFlow
GradientTape (a class for the recording of operations for automatic differentiation). Each
resulting feature importance matrix was symmetrized as described above for the
base-pairing certainty matrix.
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Comparison with DMS-seq data
We downloaded the genome of the reference strain E. coli MG1655 (NC000913.2) and
selected all coding sequences on the plus chain. To eliminate pseudogenes, we excluded
sequences annotated other than “CDS”, and those with the length not divisible by three.
We predicted the pairings using PredPair and selected pairs of nucleotides which were the
best bidirectional hits for each other. To obtain the experimental data to compare the
predictions with, we downloaded data on the accessibility of nucleotides (DMS-Seq) for
this strain from GEO (accession GSM2055260; Burkhardt et al., 2017). All coding
sequences that had coverage more than 15 reads per nucleotide in the DMS-Seq data were
used. The values of accessibility in the DMS-Seq data were split to deciles separately for
each gene, sorted from the least accessible to the most accessible. The predictions by
PredPair were mapped to the deciles by calculating how many nucleotides predicted as
bidirectionally paired belonged to each decile in the DMS-seq data; the results were plotted
as a histogram. The same procedure was performed with RNAplfold and SPOT-RNA tools
for comparison.

Comparison with RNAplfold and SPOT-RNA
RNAplfold is a tool for prediction of base pair probabilities averaged within a window size
(Lorenz et al., 2011). This program uses the Zuker algorithm for prediction. We took all the
sequences from the test dataset and predicted their base-pairings using RNAplfold with the
following parameters: cutoff (lower threshold value of the probability) 0.0, window length
equal to the length of the longest sequence. Then we calculated a confusion matrix for this
prediction with the Rfam secondary structure annotation taken as the ground truth and
used the confusion matrix to plot the precision–recall curve. The procedure for
constructing the curve was as follows. We set a certain threshold value for a certainty of the
prediction. With a fixed threshold value, we calculated the matrix of True Positives (Tp),
False Positives (Fp), and False Negatives (Fn), and used them to calculate the
precision = Tp/(Tp + Fp) and recall = Tp/(Tp + Fn). The obtained values represented a
single dot for the precision–recall curve. This procedure was repeated 200 times with
different threshold values and provided the data to plot the curve. The same procedure
with the Rfam secondary structure annotation as the ground truth was used to obtain the
precision-recall curve for PredPair and SPOT-RNA predictions. The calculated values for
precision and recall were also used to calculate F1 scores for individual sequences for all
three methods.

RNA sequence embeddings
RNA sequence embeddings were created by taking activations of a batch of “question”
sequences (representing one particular RFAM sequence) after the biLSTM layer and
averaging them along the sequence. This procedure generated a vector of length 32 for
each sequence. For each family, 100 sequences were randomly sampled for clustering.
t-SNE was performed by using the class sklearn.manifold.TSNE from the Python library
scikit-learn (version 0.23) with default parameters (number of components of 2, perplexity
of 30.0, learning_rate of 200.0, number of iterations of 1,000).The description of the
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parameters is available via the link https://scikit-learn.org/0.23/modules/generated/
sklearn.manifold.TSNE.html.

RESULTS
Model and data
Our approach is based on the standard assumption that an RNA sequence is necessary and
sufficient for the RNA folding. Hence if we train a neural network to predict the position of
a pair for a given nucleotide, the network prediction will be based on features hidden in the
RNA sequence (Fig. 1). As input, we use one-hot encoded RNA sequence with one marked
nucleotide, and we expect the network to predict the position of a pair for the marked
nucleotide. So, the input is a matrix (L, 5) where L is the sequence length, and the
dimensionality five includes one-hot encoded RNA of the form (L, 4) and an additional
vector of length L for the mark. The marks are based on the known secondary structure
taken from Rfam seed alignments (Kalvari et al., 2018). Only nucleotides involved in
pairings are marked: during the training, we do not ask the network to decide about
unpaired positions. We put marks for each pair (i, j) in both directions, so each pair
generates two inputs, one with marked position i (expecting to predict position j), and vice
versa. Thus, the total number of input matrices equals to the number of positions involved
in canonical and wobble pairing over the entire dataset.

The network outputs a vector of length L that assigns a value from 0 to 1 to each
position. We call this value the certainty (of the prediction), and here and below prediction
simply means the position of the output vector with the highest certainty (Fig. 1, upper
right corner). Stacking all output vectors for a given RNA sequence, we obtain a matrix
which we refer to as the base-pairing certainty matrix.

As RNA secondary structure is determined by the sequence, but involves distant,
complex relationships, we tested several architectures, finally settling on an architecture
containing CNN as a feature extractor processing input in a layered manner, capturing
complex relationships (Khan et al., 2020), LSTM for sequential data processing that
spreads the input information along the sequence (Jurtz et al., 2017), and Attention to

Figure 1 Problem setup. PredPair, a neural network (center) takes as input RNA sequence with one nucleotide marked by ‘2’ (left, dark grey) and
predicts a position where the pair of the marked nucleotide is located (right, dark grey). The marks are based on known RNA secondary structure
(light grey box on the left). The main layers of PredPair are shown over the black box in the middle: CNN, convolutional neural network; Attention,
Attention layer; BiLSTM, bidirectional long short-term memory layer. Full-size DOI: 10.7717/peerj.14335/fig-1
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integrate the input and establish and visualize the relationships between its parts (Vaswani
et al., 2017) (Fig. 2).

To ensure this combination of neural network layers can catch distant interactions in
sequential data, we made preliminary tests on less complex data, artificially generated
random sequences containing seven-nucleotide-long complementary stretches. These tests
showed that this architecture can capture long-distance complementary interactions and
identify pairs in RNA, as prediction accuracy was close to 100% (data not shown).

To train, test, and evaluate PredPair, we used the largest possible dataset of RNAs from
all known Rfam families (Kalvari et al., 2018). The dataset consisted of RNA sequences
from seed alignments of all families in the Rfam database. The train/validation/test split
was 60/20/20: sequences from 1,311 Rfam families in the train set, sequences from 412
families in the validation set, and sequences from 424 families in the test set. Splitting by
Rfam families aimed to exclude the homology between training and test set sequences and
hence, data leakage (Jones, 2019).

To evaluate the PredPair performance, we calculated top-1 and top-2 accuracies (that is,
how often a correct answer corresponds, respectively, to one or two highest values of the
output vector). The top-1 accuracy was 0.58, and the top-2 accuracy, 0.70.

Some erroneously predicted positions had rather high certainty values. However, these
errors were not symmetrical: if a certain position i had an erroneously predicted pair jerr,
the highest-scoring pair for jerr was often not i. This contrasts with the majority of correct
predictions that were reciprocal: if position j was predicted to pair with position i, the
prediction for j was likely to be i (Fig. 3).

Figure 2 The network’s architecture. Conv1D, one-dimensional convolution layer; Attention,
Attention layer; Concat, Concatenation layer; biLSTM 16, 16 bidirectional LSTM neurons; Dense 16 and
Dense 8, 16 and 8 dense neurons with ReLU activation function; TimeDistributed, TimeDistributed
wrapper with ReLU activation; Flatten, flatten function; Softmax, Softmax layer.

Full-size DOI: 10.7717/peerj.14335/fig-2
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As correct pairs are predicted reciprocally more often than incorrect ones, the closeness
of the values in the cells of the base pair certainty matrix for each pair may be considered as
the level of confidence in the prediction. After transformation of the base pair certainty
matrix to contain the minimum of (i, j) and (j, i) certainty values for each pair of
symmetric positions, the top-1 accuracy of PredPair on the test set increased to 0.63.

To benchmark PredPair, we compared the result with the widely used method
RNAplfold (Lorenz et al., 2011) and deep learning based tool SPOT-RNA(Singh et al.,
2019). In RNAplfold, Zuker’s algorithm is implemented to predict the probabilities of
base pairs in a given RNA molecule. We compared the Precision-Recall metric and
distributions of F1 scores for individual sequences for PredPair, RNAplfold, and SPOT-
RNA (Fig. 4). For this comparison, the pairs of known Rfam structures were considered as
a positive set, whereas the remaining pairs were assigned to the negative set. PredPair did
not outperform RNAplfold and SPOT-RNA mainly due to lower sensitivity and higher
false positives rate. The Precision-Recall curve of SPOT-RNA suggests that this method at
some range of thresholds is more precise than PredPair and RNAplfold, yet misses true
positives (Fig. 4A). However, the distributions of F1 scores indicates that the trade-off
between precision and recall is comparable for PredPair and SPOT-RNA (Fig. 4B). As our
aim was to find biologically meaningful features learned by the network, we considered the
comparison results to be sufficiently good to warrant further analysis of the predictions.

The model’s predictions are consistent with experimental data
As no coding sequences were used for training PredPair, we used the data on nucleotide
accessibility of mRNAs in E. coli to validate the results on independent experimental data

Figure 3 Paired positions tend to be predicted symmetrically. (A) Distributions of the fraction of reciprocally predicted nucleotides for actually
paired nucleotides (blue) and erroneously predicted pairs (orange). (B) Distribution of fractions of reciprocally predicted nucleotides out of actually
paired (horizontal axis) and unpaired nucleotides (vertical axis) for individual sequences (dots). Full-size DOI: 10.7717/peerj.14335/fig-3
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obtained using the DMS-seq technique (Burkhardt et al., 2017). Dimethyl sulphate (DMS)
reacts with unpaired adenines and cytosines and hence reveals the accessibility of these
nucleotides. PredPair, in its turn, assigns values reflecting a certainty of being paired with
the marked nucleotide, thus, predicts possibly non-accessible positions. We hypothesized
that positions of nucleotides least accessible by DMS-seq should often be predicted as
paired by PredPair.

We asked PredPair to predict pairings in mRNA sequences from the DMS-Seq
experiment (GEO accession: GSM2055260, Burkhardt et al., 2017) and selected pairs of
nucleotides which were the best bidirectional hits for each other. We sorted nucleotides in
the experimental data by decrease of their measured accessibility and mapped positions of
predicted paired nucleotides on the resulting deciles. The same procedure was performed
with RNAplfold and SPOT-RNA. The distribution of predicted nucleotides over deciles of
positions in the experimental data shows a clear trend: nucleotides predicted to be paired
tend to be less accessible in the experiment (Fig. 5). PredPair (A), RNAplfold (B) and
SPOT-RNA (C) exhibit the tendency to predict nucleotides involved in secondary
structure in experiment as paired. The tendency for PredPair is more pronounced than
for RNAplfold (p value of 6.8 × 10−58 for the Mann-Whitney test). The difference
between PredPair and SPOT-RNA distributions is significant (p = 3.5 × 10−14 for the
Mann-Whitney test); given high precision with relatively lower recall of SPOT-RNA, it is

Figure 4 Performance quality. (A) Precision-recall curves for RNAplfold (blue), PredPair (orange), and SPOT-RNA (green) generated from the
confusion matrices calculated with different thresholds for predictions to be accepted as true ones (see Methods for details). The curves were
obtained on the test set data. (B) Distribution of F1-scores for RNAfold (blue), PredPair (orange), and SPOT-RNA (green) calculated from the
precision and recall values. Full-size DOI: 10.7717/peerj.14335/fig-4
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not surprising, as fewer false positives together with more false negatives shift the
distribution.

Some examples
We visualized predictions for several RNAs from the test set and compared them with the
actual structure from the Rfam database and the prediction of RNAfold (Lorenz et al.,
2011). As PredPair identifies base-pairing partners, we focus on the diagonal patterns of
the matrices corresponding to known elements of the structure. Figure 6 shows the
comparison for the DUF2693-FD RNAmotif (Rfam accession: RF02926). This motif has a
central loop surrounded by two hairpins and a stem (Fig. 6A). PredPair has successfully
captured this structure: the certainty values for correct pairs are higher than for
erroneously predicted ones (Fig. 6C). Here, RNAfold assigned higher probabilities to other
basepairings, although captured the correct ones as suboptimal (Fig. 6B).

Figure 7 shows a similar comparison for a viral upstream pseudoknot domain (Rfam
accession: RF01105). PredPair produced high certainty predictions not only of base pairs
in the regular hairpin but also for pairs interacting in the pseudoknot. This finding is
somewhat unexpected, as pseudoknotted structures comprise only a small fraction of the
training dataset. We have not applied RNAfold here as it cannot predict pseudoknots.
Interestingly, on pseudoknots (not present in the training set), the top-1 accuracy of
PredPair was 0.78, that is, even higher than on average.

Features learned by PredPair
To assess the importance of particular nucleotides for PredPair predictions, we performed
the gradient-based analysis as described in Methods. As a result, for each structure we
obtained a matrix of importance values for each pair of positions and compared it with the
certainty matrix (Fig. 8). The most important positions are concentrated close to (1) the
query nucleotide and (2) its partner.

Figure 5 Comparison of predicted and experimental structure in mRNAs. Comparison of predicted and experimental structure in mRNAs.
The distribution of nucleotides predicted as paired by PredPair (best bidirectional hit), (A), RNAplfold (B), and SPOT-RNA (C) over the deciles of
positions in the DMS-Seq data. Full-size DOI: 10.7717/peerj.14335/fig-5
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The importance measure tends to be larger for paired positions than for non-paired
ones. This is consistent with the previously described symmetry: correct predictions tend
to be reciprocal while incorrect predictions do not, and the same tendency is true for the
importance measure. The confidence of the net in its answer, i.e., the symmetrized
base-pairing certainty matrix values (Fig. 9A) and the importance values (Fig. 9B) differ
from the respective values for randomly selected nucleotides.

To determine whether PredPair managed to learn any energy-related features, we
calculated the prediction frequencies of various pairs and adjacent pairs of stacked pairs.
Indeed, PredPair predicts G-C pairs more often than A-U pairs, and A-U pairs more often
than wobble G-U pairs (Fig. 10A). All remaining pairs are extremely rare. Moreover,
PredPair tends to predict adjacent, stacking base pairs with less free energy more often
than the ones with higher free energy: frequencies of stacked base pairs are negatively
correlated with known stacking energies in Kcal/mol with Spearman r of –0.67 and p-value
of 8.9 × 10−6 (Fig. 10B).

Figure 6 Comparison of the DUF2693-FD RNA motif structures. (A) The structure from the RNAcentral database (RNAcentral Consortium,
2021). (B) The base-pairing probability matrix predicted using RNAfold. (C) The heatmap representing all base pairs predicted by PredPair.
Black rectangles mark base pairs from the Rfam structure. Color represents the certainty of the prediction with the scale given aside. The matrix has
not been symmetrized, so for each row, the sum of all values of the row is 1 (see Methods for details) Full-size DOI: 10.7717/peerj.14335/fig-6
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PredPair contains the Attention layer that should catch context-dependent features
(Vaswani et al., 2017). Of five neurons in the Attention layer, four have higher weights at
positions with specific nucleotides (A, T, G, C), and the fifth one tends to have higher

Figure 8 Matrices of importance values for Bacillus subtilis subsp. subtilis str. 168, Bacillaceae-1 RNA (Rfam accession: RF01690). (A) The
heatmap representing all base pairs predicted by PredPair. (B) The heatmap representing the importance of positions for the prediction (see the text
for details). Full-size DOI: 10.7717/peerj.14335/fig-8

Figure 7 Viral upstream pseudoknot domain structure. (A) Rfam accession: RF01105. (B) The
heatmap representing all base pairs predicted by PredPair. Notation as in Fig. 6; positions forming the
pseudoknot are framed in blue. Full-size DOI: 10.7717/peerj.14335/fig-7
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Figure 9 Prediction confidence and feature importance for paired (blue) and random (orange) nucleotides. (A) The distributions of the
symmetrized certainty matrix value. (B) The distribution of logarithm of position importance for pairs having nonzero importance. The number of
zeros is higher for random pairs (data not shown). In both cases, the distributions differ significantly (Mann-Whitney p-value < 10−40).

Full-size DOI: 10.7717/peerj.14335/fig-9

Figure 10 Frequencies of predicted pairs and stacked pairs of base pairs. Predictions were made for E.coli coding gene sequences. (A) Relative
frequencies of base pairs. (B) Frequencies of stacked base pairs (vertical axis) and the stacking energies taken from (Gorodkin & Hofacker, 2011)
(horizontal axis); each dot is a pair of stacked base pairs. Full-size DOI: 10.7717/peerj.14335/fig-10
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weights for nucleotides complementary to the query one (data not shown). This
corresponds to the design of one-hot encoded input vectors of the form (L, 5). Vectors 1–4
contained information about the encoded letter, and the corresponding neurons 1–4 have

Figure 11 t-SNE clustering of RNA embeddings. (A) t-SNE plot for embeddings of 54 Rfam families created with PredPair. Due to restrictions in
coloring, 54 Rfam families were randomly split into six groups assigned with four numbered shapes of the marker (the numbers are at the beginning
of the Rfam families title in the legend). (B) t-SNE plot for embeddings of twelve sets of artificially generated sequences that may fold into 12 types of
secondary structures (see the text for details of the generation of random sequences). Due to restrictions in coloring, dots representing sets 11 and 12
differ in shape. Full-size DOI: 10.7717/peerj.14335/fig-11
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higher weights for the respective nucleotides. Vector 5 contained the mark for the
prediction of the pair, and indeed neuron five in the Attention layer accumulated weights
at the positions of complementary nucleotides. These observations suggest that the
Attention layer might not be a source of more complex features; at least, not in the present
form.

To further analyze the internal representations learned by PredPair, we used it to create
embeddings of RNA sequences. We selected 100 sequences from each of 54 Rfam families
and created the embeddings from the sequences by averaging the activation weights from
the biLSTM layer. Then, we clustered these embeddings using t-SNE and found that the
sequences tend to cluster by the Rfam family, as shown in Fig. 11A.

The clustering could be explained in two ways. It may reflect either sequence similarity
within Rfam families or structural features derived from the RNA secondary structure.
To distinguish between these possibilities, we designed the following experiment. We
generated random sequences such that they could adopt a given secondary structure and
did it for several existing secondary structures. If the network has indeed learned the
complex structural features, we could expect the embeddings created from the random
sequences to form t-SNE clusters as did the embeddings of the real sequences. If not, the
embeddings are likely not to be the source of information about RNA secondary structure.

We selected twelve random secondary structures of length 140 from Rfam. For each
structure, we generated 100 RNA sequences that can potentially fold into this structure: for
positions paired in the structure we generated nucleotides that can base pair. Selection of
nucleotides was random but weighted on the frequencies of nucleotides, nucleotide pairs,
and pairs of dinucleotides. The frequencies were calculated from the Rfam data. These
1,200 sequences were transformed into the embeddings using PredPair and clustered with
t-SNE. t-SNE did not show any clustering for the artificial sequences (Fig. 11B), so the
embeddings are likely not to be a source of information about the RNA secondary
structure.

DISCUSSION AND CONCLUSIONS
We aimed to access the ability of neural networks to find non-local interactions by
sequence alone. Hence, we designed a neural network and training setup so as to minimize
the input information and to avoid external, fixed parameters. The network knew only the
sequence and, for training, the base pair partner for the query nucleotide. We did not
provide data on other elements of the secondary structure, let alone 3D structures, nor did
we incorporate information about allowed base-pairing or stacking energies. Still, PredPair
learned the Watson-Crick and wobble base-pairing rules, developed an internal
representation of the stacking energies, and showed the ability to adequately predict
pseudoknots.

While the performance of PredPair is comparable with that of RNAplfold, it is
understandably worse due to lower sensitivity and higher false positives rate, natural for an
algorithm that has absolutely no ad hoc information. As PredPair is not an end-to-end
model for the RNA structure prediction, we cannot compare it with published deep
learning-based methods. However, the comparison of the predictions with the
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experimental data provides an argument for the adequacy of PredPair predictions. Indeed,
this comparison to the nucleotides’ accessibility shows a clear tendency for the nucleotides
predicted as paired to be less accessible in the natural RNAs. Notably, these results were
obtained with mRNAs, the type of sequences that were not used in training and were
completely new for PredPair.

The PredPair architecture allowed us to create embeddings—abstract representations—
of RNA sequences. The t-SNE clusters of embeddings of sequences from the test set
corresponded to Rfam families of these RNAs. However, as shown by the analysis of
embeddings of random, structured sequences, there is a possibility that PredPair caught
sequence, rather than structural patterns of Rfam families. Still, as there were no data
leakage due to homology, and PredPair performed well when applied to independent
DMS-seq data, PredPair did not simply learnt a set of sequence patterns. At that, while the
information about the sequence patterns, complementarity, and tendency of complementary
nucleotides to assemble into long stretches could be sufficient in a simple setup of finding a
pair for a given nucleotide, more complex structural patterns could be learned by a
network trained to solve more sophisticated tasks.
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