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Using multi-species time series data has long been of interest for estimating inter-speciûc
interactions with vector autoregressive models (VAR) and state space VAR models
(VARSS); these methods are also described in the ecological literature as multivariate
autoregressive models (MAR, MARSS). To date, most studies have used these approaches
on relatively small food webs where the total number of interactions to be estimated is
relatively small. However, as the number of species or functional groups increases, the
length of the time series must also increase to provide enough degrees of freedom with
which to estimate the pairwise interactions. To address this issue, we use Bayesian
methods to explore the potential beneûts of using regularized priors , such as Laplace and
regularized horseshoe, on estimating interspeciûc interactions with VAR and VARSS
models. We ûrst perform a large-scale simulation study, examining the performance of
alternative priors across various levels of observation error. Results from these simulations
show that for sparse matrices, the regularized horseshoe prior minimizes the bias and
variance across all inter-speciûc interactions. We then apply the Bayesian VAR model with
regularized priors to a output from a large marine food web model (37 species) from the
west coast of the USA. Results from this analysis indicate that regularization improves
predictive performance of the VAR model, while still identifying important inter-speciûc
interactions.
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33 Abstract

34 Using multi-species time series data has long been of interest for estimating inter-

35 specific interactions with vector autoregressive models (VAR) and state space VAR models 

36 (VARSS); these methods are also described in the ecological literature as multivariate 

37 autoregressive models (MAR, MARSS). To date, most studies have used these approaches 

38 on relatively small food webs where the total number of interactions to be estimated is 

39 relatively small. However, as the number of species or functional groups increases, the 

40 length of the time series must also increase to provide enough degrees of freedom with 

41 which to estimate the pairwise interactions. To address this issue, we use Bayesian 

42 methods to explore the potential benefits of using regularized priors , such as Laplace and 

43 regularized horseshoe, on estimating interspecific interactions with VAR and VARSS 

44 models. We first perform a large-scale simulation study, examining the performance of 

45 alternative priors across various levels of observation error. Results from these simulations 

46 show that for sparse matrices, the regularized horseshoe prior minimizes the bias and 

47 variance across all inter-specific interactions. We then apply the Bayesian VAR model with 

48 regularized priors to a output from a large marine food web model (37 species) from the 

49 west coast of the USA. Results from this analysis indicate that regularization improves 

50 predictive performance of the VAR model, while still identifying important inter-specific 

51 interactions. 

52
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56 Introduction

57 Across a wide range of statistical tools � ranging from simple linear regression to 

58 complicated spatiotemporal models � a fundamental question in ecology, fisheries, and 

59 related fields is identifying a subset of important predictor variables from a larger set of 

60 potential explanatory variables. These types of statistical analyses are often constrained by 

61 the "small n, large p" problem (West, 2003). For example, in basic linear regression 

62 analyses, the number of estimated parameters p cannot exceed the sample size n, because 

63 the degrees of freedom (n - p) is constrained to be greater than 0 (Zar, 1999). Furthermore, 

64 as p approaches n, the ability to estimate parameter uncertainty also diminishes. Similar 

65 constraints exist for hierarchical or mixed effects models, but calculating degrees of 

66 freedom becomes more complex (Spiegelhalter et al., 2002; Bolker et al., 2009). 

67 Like other fields, ecology has recently undergone a "big data" revolution (Howe et 

68 al., 2008; Hampton et al., 2013b). Movement towards managing entire ecosystems rather 

69 than single species has spurred large-scale monitoring efforts and efforts to synthesize 

70 multiple associated data streams (Harvey et al., 2018).  Simultaneously, greater ecosystem 

71 complexity has been incorporated in simulation models used for natural resource 

72 management (Sitch et al., 2003; Fulton, Smith & Johnson, 2003; Crowder & Norse, 2008). 

73 Regardless of whether inference is being made from observational data or simulation 

74 results, statistical models fit to these data may be challenged by the sample size. A classic 

75 example of a family of ecological models that has been limited by large streams of data are 

76 vector autoregressive (VAR) models (Hampton et al., 2013a). Ecologists use these models 

77 to estimate species interactions from observed multivariate time series (Ives et al., 2003; 

78 Holmes, Ward & Wills, 2012), and a general challenge of their use is that the number of 
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79 pairwise interactions in a community grows proportionately to the square of the number of 

80 species (Ovaskainen et al., 2017).

81 A number of dimension reduction approaches have been used in ecology and related 

82 fields to reduce many potential predictor variables to a subset of variables with high 

83 explanatory and predictive power. Popular examples include stepwise regression (Hocking, 

84 1976) or all-subsets regression (Miller, 2002), and both are widely available in several R 

85 packages (R Core Team, 2021); examples include 'step' in stats, 'stepAIC' in MASS (Venables 

86 & Ripley, 2002), 'dredge' in MuMIn (BartoE, 2020), and 'regsubsets' in leaps (Miller, 2020). 

87 Both stepwise and all subsets regression have widely documented shortcomings, including 

88 violating assumptions about multiple hypothesis testing (Whittingham et al., 2006; Mundry 

89 & Nunn, 2009) and the potential to identify spurious correlations (Olden & Jackson, 2000; 

90 Anderson et al., 2001), but they continue to be widely used. 

91 In statistics, machine learning, and related fields, penalized regression has been 

92 used as an alternative technique to reduce model complexity (Hoerl & Kennard, 1970; 

93 Tibshirani, 1996; O�Hara & Sillanpää, 2009). Penalized regression consists of finding the 

94 combination of parameters that minimizes the objective function ý(ÿ) = 3ÿÿ = 1(ýÿ 2 ý(ÿ)ÿ)2

95 , where  and  are the ith observed and estimated data points, respectively;  + ÿ ýÿ ý(ÿ)ÿ ÿ
96 represents the regression coefficients; and  is a penalty term. For ordinary least squares ÿ
97 regression, , and reduces to the traditional sum of squares. Many choices for P ÿ = 0 ý(ÿ) 

98 exist, and are similar in that the further regression coefficients deviate from 0, the greater 

99 the penalty.  One form known as ridge regression applies a quadratic or 'L2' penalty, ÿ =  ÿ
100 , where  is a shrinkage parameter that controls the degree of regularization (Hoerl 3ÿÿ = 1ÿ2ÿ ÿ
101 & Kennard, 1970). A second approach, known as lasso regression (least absolute shrinkage 
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102 and selection operator), involves applying a 'L1' penalty of . For both ridge ÿ =  ÿ3ÿÿ = 1
|ÿÿ|

103 and lasso methods, as  increases in magnitude, the penalty for the regression coefficients ÿ
104 departing from zero also increases (Tibshirani, 1996). With many sparse coefficients, the 

105 advantage of using lasso regression is that absolute penalties of small values are greater 

106 than quadratic penalties, implemented in ridge regression (Wu & Lange, 2008). Thus, while 

107 lasso regression penalizes coefficients to zero, ridge regression doesn�t penalize 

108 coefficients to exactly zero. 

109 By placing a greater penalty on model complexity compared to standard ordinary 

110 least squares (OLS) regression, a subset of estimated coefficients in penalized regression 

111 become fixed at 0. This yields models that have better predictive accuracy than OLS 

112 estimates (Tibshirani, 1996). A challenge in implementing penalized regression techniques 

113 is that the regularization parameter  needs to be chosen or estimated. Routines for ÿ
114 comparing values of  can be compared via cross-validation with bootstrapped datasets. ÿ
115 Like stepwise or all subsets regression, these methods are available in several R packages; 

116 examples include 'lars' to implement least angle regression (Efron et al., 2004), 'elasticnet' 

117 to implement a hybrid L1/L2 penalization (Zou & Hastie, 2005), 'penalized' (Goeman, 

118 Meijer & Chaturvedi, 2018), and 'glmnet' (Friedman, Hastie & Tibshirani, 2010). Several 

119 applications of these methods exist in the context of VAR models (e.g. BigVAR, Nicholson, 

120 Matteson & Bien, 2019), though these have generally been developed in a maximum 

121 likelihood setting. 

122 In addition to the maximum likelihood approaches, Bayesian lasso methods have 

123 been developed that treat the regularization parameter  as an estimated hyper-parameter; ÿ
124 by integrating over values of  via Markov Chain Monte Carlo (MCMC), robust coefficient ÿ
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125 estimates that are marginalized over values of  can be generated (Kyung et al. 2010). ÿ
126 Mechanistically, this involves specifying double-exponential or Laplace priors on 

127 regression coefficients (Park & Casella, 2008; O�Hara & Sillanpää, 2009). Alternative 

128 Bayesian priors to the lasso include mixture or "spike-slab" priors (Miller 2002; reviewed 

129 by O'Hara & Sillanpaa 2009). Spike-slab priors on potentially sparse coefficients model the 

130 prior variance as a mixture of a wide distribution with high variance (the "slab") and a 

131 narrow distribution with small variance (the "spike" near zero). The contribution of each 

132 component can either be fixed a priori or estimated; challenges in implementing this type 

133 of shrinkage prior is that data-specific tuning is often required to ensure mixing between 

134 the two distributions, and results may be sensitive to the choice of tuning parameters 

135 (O'Hara & Sillanpaa 2009). Because of computational challenges with the spike-slab, 

136 alternatives continuous priors such as the horseshoe prior have been a focus of recent 

137 development (Carvalho, Polson & Scott, 2010). Because of their flexibility and scalability 

138 (Piironen & Vehtari, 2017), these approaches have been incorporated into a number of 

139 software packages and are becoming widespread. 

140 The objectives of our paper are to extend regularizing priors to Bayesian VAR 

141 models for ecological applications and develop software to implement these methods. We 

142 explore a range of potential priors for off-diagonal coefficients; examples include 

143 regularized normal and Student-t distributions, and a regularized horseshoe prior. The 

144 sensitivity of model estimates to the choice of prior is evaluated using simulated data for 

145 models with and without observation error. As a case study, we compare the performance 

146 of these Bayesian regularization techniques to a high dimensional VAR model explaining 

147 the dynamics of 37 marine species from the California Current in the North East Pacific 
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148 Ocean. All code for these models is deployed as a publicly available 'varlasso' R package, 

149 https://github.com/atsa-es/varlasso (Ward, Marshall & Scheuerell, 2022).

150

151 Methods

152 Vector autoregressive state space models

153 Vector autoregressive (VAR) models have been widely used in fisheries and related 

154 fields (these approaches are also known as multivariate autoregressive or MAR models). In 

155 the ecological literature, these are also referred to as the discrete time multivariate 

156 Gompertz models (Mutshinda, O�Hara & Woiwod, 2009). The VAR model consists of a 

157 process equation, , where  is an m × 1 vector of log-abundances for ýý + ÿ = ýxý + ÿ + ýý ýý
158 species at time t,  is an m × 1 vector of species-specific growth rates or trends,  ÿ ý
159 represents a m × m matrix of community interactions (element  describes the per-capita ýÿ,ÿ
160 effect of species j on species i), and  represents an m × 1 vector of random environmental ýý
161 effects at time t (Ives et al., 2003; Scheef et al., 2012). We assume environmental 

162 stochasticity is multivariate normal, such that , and Q may be a diagonal ýý~MVN(ÿ,ý)

163 variance-covariance matrix (species have independent dynamics) or include correlation 

164 between species. The basic VAR model can be modified to also incorporate and observation 

165 error model (yielding a state-space, or VARSS model). The observation equation relates the 

166 true states of nature at time t ( ) to the observed data ( ), , where ýý ÿý ÿý = ýý + ÿý ÿý~MVN(ÿ,

167 , and R represents the variance-covariance matrix of observation errors (Holmes, Ward ý)

168 & Wills, 2012). In addition to partitioning the total variance into process and observation 

169 errors, the VARSS model is flexible in that it is better suited for datasets with lots of missing 
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170 values. In contrast, only abundance estimates that are adjacent in time contribute to the 

171 likelihood for the simpler VAR model (Ives et al., 2003). 

172

173 Simulated data

174 We simulated datasets using estimated interactions from a simplified lake food web 

175 with 4 species groups described by (Ives et al., 2003). The interaction matrix for the low-

176 planktivory system from Ives et al. (2003) is typical of many ecological applications in that 

177 (1) interspecific interactions (off-diagonal elements) are generally weaker than 

178 intraspecific interactions (density dependence, diagonal elements) and (2) a relatively 

179 large number of elements are 0 (8 of 16, Table S1). 

180 We treated process errors as independent and identically distributed, such that , ý = ÿ 2ýÿýý
181 with  fixed at 0.2. For simulations focused on VAR models, observation error was not ÿýÿý
182 included. Observation error was added for VARSS simulations, with observation errors also 

183 assumed to be independent and identically distributed, such that, . To explore ý = ÿ 2ýÿýý
184 several ratios of , we varied  across three levels (0.05, 0.1, 0.2). For each ÿýÿý:ÿýÿýý ÿýÿý
185 combination of observation and process variance, we used 200 replicate datasets, each 

186 consisting of 40 timesteps. To ensure time series were approximately stationary, we 

187 performed a 'burn-in' of 200 timesteps for each, retaining the last 40 data points.  

188

189 Priors

190 To compare the effects of regularizing priors, we applied three estimation models to 

191 each of our simulated datasets, varying only the prior formulations for the off-diagonal 
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192 elements of the B matrix. Each estimation model assigned  priors to ýÿ,ÿ~ýýÿÿÿý(0.7,1)
193 diagonal elements of B (representing intraspecific interactions) and truncated 

194  priors to the observation and process standard deviations ( , ). We ýýÿÿÿý(0.0, 0.5) ÿýÿý ÿýÿý
195 assumed that both process and observation errors were uncorrelated across taxa, so that ý
196  and .= ÿ 2ýÿýý ý = ÿ 2ýÿýý
197 Our three alternative formulations for priors on the off-diagonal elements of B were:

198 (1) Normal distribution

199 We implemented normal priors on off-diagonal elements to represent the status quo for 

200 Bayesian VAR models (Mutshinda et al., 2019). In this approach,  and ýÿ,ÿ~ýýÿÿÿý(0.0, ÿý)

201  is assumed known. A slight deviation from Normal priors is to use Student-t priors, ÿý
202 which can generate similar distributions to the Normal with large degrees of freedom ( ), ý
203 but also place more density on extreme values. In contrast to the unpooled approach where 

204  are estimated independently, a partial pooling approach may be used with either the ýÿ,ÿ
205 Normal or Student-t distribution to shrink estimates toward a common mean (in this case, 

206 0). Partial pooling can be implemented by assigning a hyper-prior to . We include ÿý
207 support for the Student-t distribution and partial pooling in our `varlasso` R package, but 

208 they are not included in our simulation analyses.

209 (2) Laplace distribution

210 As a second prior, we used a Laplace or double exponential prior (O�Hara & Sillanpää, 

211 2009; Casella et al., 2010) (Fig. 1). Relative to the Normal distribution, the Laplace can 

212 place greater density near 0, and is controlled by a single parameter that controls the 
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213 variance, . An equivalent parameterization is as a mixture,  ýÿ,ÿ~ÿÿýýÿýÿ(0.0, ÿ) ý~ýýý( 1

2ÿ2)

214 where  (Ding & Blitzstein, 2018).ýÿ,ÿ~ýýÿÿÿý(0.0, ý)

215 (3) Regularized horseshoe prior

216 As our third prior, we implement regularized horseshoe priors (Piironen & Vehtari, 2017) 

217 (Fig. 1). We use the same implementation as rstanarm and brms (Bürkner, 2017; Goodrich 

218 et al., 2020), so that priors on off-diagonal elements of  are . The ý ýÿ,ÿ~ýýÿÿÿý(0.0, ÿ2ÿ 2ÿ,ÿ)
219 hyperparameter  is assigned a  where  is a global scale ÿ ÿ~ÿýÿýÿÿý 2 ý(ý = 3,0,ý) ý
220 parameter and  controls the regularization for the effect of species j on species i in the B ÿ 2ÿ,ÿ
221 matrix. The degree of regularization is allowed to be unique by modeling it as , ÿ 2ÿ,ÿ =

ý2ÿ 2ÿ,ÿý2
+ ÿ2ÿ 2ÿ,ÿ

222 and  are treated as parameters with priors . The width of the slab ÿ 2ÿ,ÿ ÿ 2ÿ,ÿ~ÿÿÿý/ÿ(0,1)
223 (allowing for large B coefficients) is assigned a prior , ý2~ýÿÿÿÿÿÿÿ(ý =

ýýýÿÿ
2 ,ý =

ý 2ýýÿÿýýýÿÿ
2 )

224 where  is the degrees of freedom and  is the scale of the slab. ýýýÿÿ ý 2ýýÿÿ
225

226 Hyperparameters

227 We carefully selected hyperparameters for each of the three prior formulations, to 

228 ensure that the priors would have the same target standard deviation. Starting with the 

229 regularized horseshoe prior, we followed the advice of (Piironen & Vehtari, 2017), and we 

230 held the global df = 1. The same authors recommend quantifying  (the global scale ý
231 hyperparameter) as the ratio of non-zero coefficients to coefficients that are zero to the 

232 square root of the number of observations. Because of the multivariate nature of a VAR 

233 model, we constructed several preliminary scenarios letting the global scale range from 
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234 0.025 to 0.08 and found that =0.025 resulted in reasonable performance. We also used ý
235 these preliminary model runs to consider several combinations of slab parameters; based 

236 on these simulations, we used =5 and  =1.0. Combined, these choices of ýýýÿÿ ý 2ýýÿÿ
237 hyperparameters resulted in a prior with a standard deviation ~ 0.24; as a result we used 

238 values of  and  for the Laplace prior, and fixed for the Normal ýÿÿ = 3 ýÿÿ = 0.165 ÿý = 0.24 

239 prior. 

240

241 Estimation

242 Estimation was done in a Bayesian framework using our varlasso R package (Ward, 

243 Marshall & Scheuerell, 2022). This package is built in R (R Core Team, 2021) and acts as an 

244 interface to Stan (Stan Development Team, 2022), which implements Markov chain Monte 

245 Carlo (MCMC) using the No-U Turn Sampling (NUTS) algorithm (Hoffman & Gelman, 2014; 

246 Carpenter et al., 2017). For all models, we ran 3 parallel MCMC chains, discarding the first 

247 2000 iterations of each and retaining the last 1000 samples. In addition to using visual 

248 diagnostics (Gabry, 2018), we calculated R-hat statistics to evaluate convergence (Vehtari 

249 et al., 2021).

250

251 Quantifying performance

252 We used two metrics to quantify the performance of alternative model formulations, 

253 as there may be multiple objectives of VARSS analyses. To compare the influence of priors 

254 on overall predictive ability, we calculated the approximate Leave-One-Out Information 

255 Criterion (LOOIC) in the 'loo' R package (Vehtari, Gelman & Gabry, 2017; Vehtari et al., 

256 2020). As a second metric, we computed log-score statistics to quantify the prior influence 
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257 on B matrix parameter estimates. Log-scores are often used to quantify the bias and 

258 precision of predictions (Gneiting & Raftery, 2007); similarly, they can also be used to 

259 quantify the predictions of parameter estimates when true values are known, as in the case 

260 of our simulations. The log-score can be calculated a number of ways, but involves 

261 evaluating an observation (or parameter value)  across a predictive density ÿ ÿ(ÿ,ÿýýýý) =
1ÿ

262  where  is a vector containing samples from the posterior. If the 3ÿ = 1:ÿÿ(ÿ|ÿÿ,ýýýý) ÿýýýý
263 density  does not have a closed form, an alternative approach is to estimate the ÿ()

264 empirical CDF to approximate   (Krüger et al., 2021). We adopted this empirical ÿ()

265 approach, using the 'scoringRules' R package (Jordan, Krüger & Lerch, 2019) and calculated 

266 log-scores, . ýýý(ÿ(ÿýÿÿÿ,ÿýýýý))

267

268 Application to marine food webs

269 To demonstrate the utility of Bayesian regularization, we applied the approach 

270 described above to a VAR model describing the ecosystem dynamics of the California 

271 Current (Horne et al., 2010; Kaplan et al., 2013). The 'Atlantis' ecosystem modeling 

272 framework (Fulton et al., 2004) couples output from a hydrodynamic Regional Ocean 

273 Modeling System (ROMS) model with a spatially explicit food web model that may include 

274 60+ functional groups, and includes fishing mortality.  We used an Atlantis model 

275 implemented to represent the California Current marine ecosystem, including the fisheries 

276 it supports (Hermann et al., 2009; Horne et al., 2010; Kaplan et al., 2013; Marshall, Kaplan 

277 & Levin, 2014). Estimates of fish biomass for the California Current Atlantis Model are 

278 derived from fisheries stock assessments, survey indices, and published data on growth, 

279 life history, and food habits (Horne et al., 2010; Kaplan, Horne & Levin, 2012). We used the 
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280 baseline model configuration from Marshall et al. (2014) to generate ecosystem dynamics 

281 over a 50-year horizon.  While Atlantis operates on a 12-hr time step, we used output at an 

282 annual time step to fit the VAR model. We restricted the analysis to the most recent 25 

283 years of biomass to allow the model to reach quasi-equilibrium. We also restricted the time 

284 series to 37 (of 62) functional groups.  Initial exploration revealed that the VAR models 

285 struggled to converge for functional groups with drastically different generation times (e.g., 

286 whales and zooplankton). Therefore, we focused on lower trophic level functional groups, 

287 in this case, prey and prey of prey of the mackerel functional group (including Pacific 

288 mackerel Scomber japonicus and jack mackerel Trachurus symmetricus). These modeled 

289 biomass time series were then used as responses in a VAR model of the California Current 

290 ecosystem (as observation error is not included as part of the Atlantis ecosystem model, we 

291 did not apply VARSS models to these data). Combined, these cutoffs yielded 925 data 

292 points; fitting this kind of data in a VAR framework where all interactions are possible (e.g. 

293 none are fixed a priori at 0) includes 1406 parameters (1369 interactions in B, 37 variance 

294 parameters in Q). 

295 Instead of just focusing on changes in single interspecific interactions, a broader 

296 question of interest is whether ecological communities are stable. To illustrate the impact 

297 of regularization on inference about community stability, we used the posterior estimates 

298 of B to calculate two metrics proposed by (Ives et al., 2003). First we calculated the 

299 proportion of stationary variance attributed to species interactions, , where m is det|ý|2/ÿ
300 the number of species in the community. Values of this stability metric greater than 1 

301 indicate unstable systems, and smaller values closer to 0 represent greater stability. 

302 Second, we calculated the rate of return, as the dominant eigenvalue of B. We calculated 
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303 each of the stability metrics separately for each MCMC draw to produce a posterior 

304 distribution of stability for each alternative prior formulation. 

305

306 Results

307 Simulated data

308 Our comparison of priors (Normal, Laplace, Regularized horseshoe) to simulated 

309 data indicated that posterior distributions of B matrix parameters were qualitatively 

310 similar between the Laplace and horseshoe priors, with the latter assigning slightly more 

311 density near 0 (Fig. S1). The total log-score across all parameters in the B matrix indicated 

312 that the horseshoe prior generated estimates that were most accurate and precise (Fig. 2). 

313 Some modeling applications may be more or less concerned with estimates of density 

314 dependence (diagonal of B), or estimates of species interactions (off-diagonal elements of 

315 B). In our simulations, we found that the effect of priors was largest between estimates of 

316 off-diagonal elements of B (Fig. 2). Because of wider tails, the normal prior was better able 

317 to capture non-zero elements, but also worse at estimating elements of B that were 

318 assigned values of 0 (Fig. 2). When standardized to a common scale, the regularized priors 

319 do a better job at estimating non-zero elements than the normal prior does at estimating 

320 true zeros (Fig. 2). Our LOOIC comparison to quantify the impact of alternative priors on 

321 predictive accuracy showed that the Laplace and horseshoe priors were slightly better than 

322 the normal distribution (though these estimates have considerable uncertainty; Fig. S2).

323 Our simulations used a fixed process variance, and varied the level of observation 

324 error variance to explore how signal to noise ratios impact estimates of the B matrix 

325 elements. Varying the observation error highlighted that reducing observation error 
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326 minimizes the differences between priors (or in contrast, increasing observation error 

327 makes the least accurate or precise priors even worse).  

328 Application to marine food webs

329 In our application to data from the California Current marine food web of 37 marine 

330 species, there were substantial differences in LOOIC between models with alternative 

331 priors; the model with Gaussian priors had the highest estimate (LOOIC = 389.3  45.6), ±

332 followed by the Laplace prior (222.2  69.4) and finally the model with regularized ±

333 horseshoe priors (-14.2  65.7). These results indicate that the model with regularized ±

334 horseshoe priors (lowest LOOIC) has the best approximated out of sample predictive 

335 ability. 

336 The effects of regularized B matrix priors are easily seen when comparing estimates 

337 from a VAR model with normal priors to one with regularized horseshoe priors (Fig. 3). 

338 With regularization, the majority of off-diagonal B matrix elements are assigned values 

339 close to 0. Despite zeroing out the majority of species interactions, the VAR model with 

340 regularized horseshoe priors appears to identify ecologically important interactions. The 

341 37 components of the food web in our analysis were centered around Pacific mackerel � 

342 the interspecific effect that was found to have the largest estimated effect on mackerel 

343 biomass is a positive effect of copepods (Fig. 4), an important diet items for this species 

344 (Dufault, Marshall & Kaplan, 2009; Brodeur et al., 2019). 

345 Finally, we compared the posterior distributions of estimated stability across 

346 alternative prior formulations. These results indicated that there were slight increases in 

347 estimated rates of return moving from horseshoe to Laplace to normal priors (Fig. 5).  

348 Rates of return within the unit circle are expected in stationary systems (Ives et al. 2003), 
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349 and the model with the regularized horseshoe prior appears closest to this assumption. 

350 Stability, calculated as  was more similar across alternative prior formulations, det|ý|2/37

351 with wide and overlapping credible intervals � though the point estimate for the model 

352 with horseshoe priors appeared slightly higher, translating to less stability (Fig. 5).

353 Discussion

354 As ecological datasets have grown larger and larger, statistical variable selection 

355 techniques have also evolved to reduce model complexity and help to identify important 

356 covariates. Penalized regression techniques offer several advantages over methods that are 

357 currently widely used in ecology (e.g., stepwise and all subsets regression). Regularizing 

358 priors, such as the Laplace and horseshoe used here offer several advantages over 

359 traditional methods. First, by including hyperparameters, uncertainty in the degree of 

360 regularization is propagated into the coefficient estimates. Second, model complexity is 

361 implicitly accounted for by setting many of the model coefficients near 0. Unlike stepwise 

362 variable selection, which may become trapped in valleys and need to be initialized from 

363 multiple starting points, a third advantage is that in the Bayesian approach, a model only 

364 needs to be run once (provided MCMC chains indicate convergence). 

365 Results from our simulated datasets using regularizing priors and VAR models 

366 illustrated that because the Laplace or horseshoe priors will result in many posterior 

367 estimates near zero, models with those priors are better able to identify true zeros. As 

368 expected, advantages of regularizing priors generally diminish as observation error is 

369 increased and the signal to noise ratio is decreased (Fig. 2). Depending on whether these 

370 small interactions are a focus of inference, or whether the goal of an analysis is to find the 

371 VAR or VARSS model with the best predictive ability, the Laplace or regularizing horseshoe 
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372 may each offer advantages. While we used log-scores to quantify the accuracy and 

373 precision of alternative models, other studies may be interested in other types of predictive 

374 performance (e.g. out of sample forecasting) and results would be expected to differ 

375 slightly depending on the type of inference. Regardless of the application, we recommend 

376 analysts compare the results from several formulations of priors, after establishing the 

377 goals of the modeling. 

378 Our estimation of interactions among 37 species in the California Current ecosystem 

379 represents a more realistic ecological analysis, where the potential complexity of the model 

380 exceeds the number of data points. With regularizing priors, posterior estimates of 

381 interspecific interactions from the Bayesian VAR model were generally shrunk toward zero 

382 (representing weak interactions, Fig. 3). As this food web was constructed with mackerel as 

383 a central focus, it is promising that the strongest interspecific effects on mackerel is a 

384 positive effect of copepods. Large zooplankton (euphauisiids) are the most important diet 

385 item for mackerel in the California Current Atlantis model, however the strength of the 

386 copepod result may be driven by both direct and indirect interactions (copepods are a diet 

387 item for mackerel, but also are the primary prey of euphauisiids). A similar strong linkage 

388 between mackerel and copepods was also found in Kaplan et al. (2014) � they simulated 

389 the effects of various levels of fishing pressure on forage fishes and found that scenarios 

390 with high exploitation rates of mackerel had a positive effect on euphauisiids, and 

391 subsequent negative interactions on copepods.

392 Ecological applications of multi-species models are increasingly common (Hampton 

393 et al. 2013a). For example, they have been used to examine food web dynamics in plankton 

394 communities (Ives et al. 2003; Hampton, Scheuerell & Schindler 2006), analyze effects of 
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395 shifting climate on large ecosystems (Hampton et al. 2008; Francis et al. 2012), illustrate 

396 portfolio effects in coral fishes (Thibaut, Connolly & Sweatman 2012), and evaluate varying 

397 effects of commercial fisheries (Dalton 2001; Lindegren et al. 2009). Combining 

398 regularizing priors with VAR or VARSS time series models offers one approach to 

399 simplifying the complexity of a large food web into a smaller number of interpretable 

400 components and indicators of emergent properties like stability. Future advances with 

401 these models could experiment with the inclusion of sample replicates, known observation 

402 errors (via other surveys for example), and time-varying interactions.

403
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575

576

577 Figure Legends  

578 Figure 1. Illustration of 3 potential prior distributions for interactions in VAR and VARSS 

579 models. All three priors are centered on 0 and their standard deviations are equal ( ~ ÿ 
580 0.24). 

581 Figure 2. Distribution of the average difference in log-scores between alternative priors on 

582 B matrix elements and the best model (each box represents 200 replicated datasets, and 

583 with values of 0 representing the best model). Values are averaged to allow comparison 

584 between (1) all B parameters, (2) diagonal elements, (3) off-diagonal elements that are not 

585 zero, and (4) off-diagonal elements that are zero.

586 Figure 3. Posterior means of species interaction estimates from the B matrix for the 

587 California Current marine food web. Results from using two priors for the off-diagonal 

588 elements are shown: a normal prior with each element estimated as a unique parameter, 

589 and a regularized horseshoe prior. Diagonal elements generally have a different range (0 � 

590 1) compared to off-diagonal elements. Figure 4. Time series of standardized biomass for 

591 mackerel and copepods, used in the VAR model of the California Current marine 

592 community. The two strongest effects on mackerel biomass are also shown (positive effect 

593 of copepods on mackerel, and a slight degree of density dependence of mackerel).
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594 Figure 5. Posterior distributions of community stability from the VAR models of the 

595 California Current marine food web, derived as  and the dominant eigenvalue of det (ý)
2/37

596 . Estimates are shown across a range of potential priors for the off-diagonal elements of . ý ý
597 Boxes represent the posterior quartiles (and median) and the vertical lines represent the 

598 upper and lower extremes.
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Figure 1
Figure 1

Illustration of 3 potential prior distributions for interactions in VAR and VARSS models. All
three priors are centered on 0 and their standard deviations are equal (0.24)
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Figure 2
Figure 2

Distribution of the average diûerence in log-scores between alternative priors on B matrix
elements and the best model (each box represents 200 replicated datasets, and with values
of 0 representing the best model). Values are averaged to allow comparison between (1) all
B parameters, (2) diagonal elements, (3) oû-diagonal elements that are not zero, and (4) oû-
diagonal elements that are zero

PeerJ reviewing PDF | (2022:07:75686:0:0:NEW 25 Jul 2022)

Manuscript to be reviewed



PeerJ reviewing PDF | (2022:07:75686:0:0:NEW 25 Jul 2022)

Manuscript to be reviewed



Figure 3
Figure 3

Posterior means of species interaction estimates from the B matrix for the California Current
marine food web. Results from using two priors for the oû-diagonal elements are shown: a
normal prior with each element estimated as a unique parameter, and a regularized
horseshoe prior. Diagonal elements generally have a diûerent range (0 3 1) compared to oû-
diagonal elements.
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Figure 4
Figure 4

Time series of standardized biomass for mackerel and copepods, used in the VAR model of
the California Current marine community. The two strongest eûects on mackerel biomass are
also shown (positive eûect of copepods on mackerel, and a slight degree of density
dependence of mackerel).
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Figure 5
Figure 5

Posterior distributions of community stability from the VAR models of the California Current
marine food web, derived as det(B)^(2/37) and the dominant eigenvalue of B. Estimates are
shown across a range of potential priors for the oû-diagonal elements of B. Boxes represent
the posterior quartiles (and median) and the vertical lines represent the upper and lower
extremes.
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