10

11

12

13

14

15

16

17

Convex-hull mass estimates of the dodo (Raphus cucullatus):

application of a CT-based mass estimation technique

Brassey, C.A.™*, O'Mahoney, T.}, Kitchener, A.C.%>3, Manning, P. L.**°, Sellers,

W11

'Faculty of Life Sciences, University of Manchester, Manchester M13 9PL
“Department of Natural Sciences, National Museums Scotland, Edinburgh

EH1 1JF

3 Institute of Geography, School of Geosciences, University of Edinburgh,

Drummond Street, Edinburgh, EH8 9XP

*Interdisciplinary Centre for Ancient Life, School of Earth, Atmospheric and
Environmental Sciences, University of Manchester, Manchester M13 9PL
® Department of Geology and Environmental Geosciences, College of

Charleston, Charleston, South Carolina, United States of America

*corresponding author (charlotte.brassey@manchester.ac.uk)



mailto:charlotte.brassey@manchester.ac.uk

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Abstract

The external appearance of the dodo (Raphus cucullatus, Linnaeus, 1758)
has been a source of considerable intrigue as trustworthy contemporaneous
accounts or depictions are rare. The body mass of the dodo has been
particularly contentious, with thise flightless pigeon alternatively reconstructed

as slim or fat depending upon the-pictorial evidence or the skeletal metric

used as the basis for mass prediction. Resolving this dichotomy and obtaining
a reliable estimate for mass is essential before future analyses regarding

dodo life history, physiology or biomechanics can be conducted.

Previous mass estimates of the dodo have relied upon predictive equations
based upon hind limb dimensions of extant pigeons. Yet the hind limb
proportions of dodo have been found to differ considerably from those of their
modern relatives, particularly with regards to midshaft diameter. Therefore,
application of predictive equations to unusually robust fossil skeletal elements
may bias mass estimates. We present a whole-body computed tomography
(CT) -based mass estimation technique for application to the dodo. We
generate 3D volumetric renders of the articulated skeletons of 20 species of
extant pigeons, and wrap minimum-fit ‘convex hulls’ around their bony
extremities. Convex hull volume is subsequently regressed against mass to

generate predictive models based upon whole skeletons.

Our best-performing predictive model is characterized by high correlation
coefficients and low mean squared error (a=-2.31, b=0.90, r?=0.97,

MSE=0.0046). When applied to articulated composite skeletons of the dodo
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(National Museums Scotland, NMS.Z.1993.13; Natural History Museum,
NHMUK A.9040 and S/1988.50.1), we estimate eviscerated body masses of
8-10.8 kg. When accounting for missing soft tissues, this may equate to live
masses of 10.6-14.3 kg. Mass predictions presented here overlap at the lower
end of those previously published, and support recent suggestions of a
relatively slim dodo. CT-based reconstructions provide a means of objectively
estimating mass and body segment properties of extinct species using whole

articulated skeletons.
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Introduction

Body mass (My) is a fundamental descriptor of an organism and co-varies with
important ecological and physiological traits, such as population density,
metabolism and cost-of-transport [1]. Key evolutionary scenarios, such as the
origin of avian flight [2] and the extinction of island flightless avian species [3],
have been diagnosed on the basis of estimated M,. Therefore, the
reconstruction of body mass in extinct bird species is a subject of
considerable interest within the palaeontological and evolutionary biology

literature [2—6].

An often-applied technique for estimating the body mass of an extinct
vertebrate has been to measure a skeletal dimension from modern species,
such as femur circumference [7] or glenoid diameter [8], and apply this as the
independent variable in a regression against body mass. However,
‘overdevelopment’ of the pelvic apparatus has been found to be significantly
correlated with the flightless condition in extant birds [9]. Therefore, the
application of mass prediction equations, based solely on hind limb material of

flightless avian taxa, has been questioned in extinct species such as the moa

[6].

The dodo (Raphus cucullatus, Linnaeus, 1758 [10]) is an iconic representative
of island flightlessness and human-induced extinction, and its external
appearance has been a source of considerable intrigue due to the scarcity of
trustworthy contemporaneous accounts or depictions [11]. This extinct

flightless columbiform was endemic to the island of Mauritius. However, the
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skeletal anatomy of the dodo is comparatively well known, and its pelvic
morphology has been thoroughly investigated. Hind limb bones of R.
cucullatus have been found to differ considerably in both their length and
width relative to their volant relatives [11, although see 12]. Yet previous
attempts to estimate the body mass of the dodo have predominantly relied
upon predictive equations derived solely from the hind limb metrics of extant

species [14-16].

An alternative approach to mass estimation involves the reconstruction of 3D
volumetric models. An early volumetric reconstruction of the dodo was
conducted by physically sculpting a scale model of an individual and
estimating volume via fluid displacement [13]. Whilst such volumetric
techniques are less liable to bias by individual robust/gracile postcranial
elements than traditional linear bivariate equations, they do inevitably involve
some degree of artistic licence in the sculpting of soft tissue contours and

require an estimate for fossil body density to be assigned.

Following advances in 3D imaging technology, the use of digital skeletal
models in mass estimation of fossil skeletons has become increasingly
popular [17-20]. These studies typically involve the ‘wrapping’ of geometric
shapes or lofted smooth surfaces around the skeleton in order to replicate the
original soft tissue contour of the animal. Zero-density cavities such as lung
and tracheal space may also be modeled [21]. However, similar to physical
sculpting with clay, assumptions must still be made regarding body density
and the extent of soft tissues beyond the skeleton. Therefore, it is essential

that reconstructions are grounded within a quantitative understanding of
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extant species in order to avoid subjective modeling of soft tissues (both body

and plumage).

Here we present new mass estimates for the dodo based on an alternative
‘convex hull’ volumetric reconstruction approach [22,23]. The convex hull (CH)
of a set of points is defined as the smallest convex polytope that contains all
said points, and intuitively can be thought of as a shrink-wrap fit around an
object (see Figure 1). Application of the convex hulling technique to mass
estimation does not involve any subjective reconstruction of soft tissue
anatomy and solely relies upon the underlying skeleton. We calculate
minimum convex hull volumes for a sample of composite articulated dodo
skeletons, and convert these to body mass estimates using a computed
tomography (CT) calibration dataset of 20 species of extant pigeon. To our
knowledge, this is the first time such an extensive CT dataset of extant
animals has been used to reconstruct the body mass of a fossil of an extinct

species.
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Methods and Materials

The modern dataset consists of 20 columbiform individuals, spanning a wide
variety of body sizes from a 70 g fruit dove (Ptilinopus; Swainson, 1825 [24])
up to the largest extant pigeon, the 2 kg Victoria crowned pigeon (Goura
victoria; Fraser, 1844 [25]). We also cover a broad taxonomic range (including
the closest extant relative of the dodo [26], the Nicobar pigeon (Caloenas
nicobarica; Linnaeus, 1758 [10])). Frozen carcasses were sourced from
National Museums Scotland, Edinburgh, and the University of Manchester
(see Table 1). Carcasses were CT scanned at Leahurst Veterinary School,
University of Liverpool, in a Toshiba Aquilion PRIME helical scanner at a slice
thickness of 0.5mm and a pixel spacing of between 0.24-0.51mm, depending
on the maximum size of the specimen. 3D models of the skeletons were
generated in Seg3D [27], using an automatic threshold with subsequent

manual masking to remove the dense rachises attached to the forelimb.

Models were exported into Geomagic Studio (www.geomagic.com), where

each skeleton was divided into functional units (skull, neck, trunk, humerus,
radiustulna, carpometacarpals, femur, tibiotarsus+fibula, tarsometatarsus,
feet). The cervical series was further subdivided in order to achieve a tight-
fitting hull around the curving neck. Minimum convex hulls were calculated in

MATLAB (www.mathworks.com), using the ‘convhull’ function implementing

the Quickhull (ghull) algorithm [28], and total convex hull volume was
calculated as the sum of individual segment volumes (see Figure 1). Body

mass was measured for each carcass, and the relationship between M, and
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convex hull volume (CH,o) was estimated using ordinary least squares (OLS)
regression on logio transformed data. As the purpose of the regression was to
derive a predictive equation, a type-I regression, such as OLS, was deemed
most appropriate [29]. Additionally we accounted for the statistical non-
independence of phylogenetically-related data points by carrying out
phylogenetic generalized least squares (PGLS) regressions, implemented in
MATLAB using ‘Regression2’ software [30]. A majority-rule consensus tree
was calculated using the R package ‘ape’ [31] based upon a sample of
10,000 trees sourced from the birdtree.org website [32] using the Hackett et

al. [33] phylogeny as a backbone. All branch lengths were set to 1.

To reconstruct the body masses of articulated dodo skeletons, we generated
3D digital models of these specimens. The Edinburgh dodo (National
Museums Scotland, NMS.Z.1993.13) was scanned using a Z+F Imager 5010
LIDAR (Light Detection And Range) scanner and reconstructed in the Z+F
LaserControl software. The Natural History Museum (NHMUK), London
specimens (Tring skeleton, S/1988.50.1; South Kensington specimen NHM
A9040) were digitized using the photogrammetric technique detailed
elsewhere [34,35] and reconstructed in VisualSFM [36]. Despite application of
two alternative imaging techniques, previous studies have found the results
obtained via photogrammetry and laser scanning to be comparable [34], and
convex hull results to be insensitive to point cloud density [23,37]. 3D models
of the dodo skeletons were cleaned up in Geomagic and subdivided into

functional units. Our only intervention with the dodo models was to mirror the

Comment [JH1]: A note must be
made here that all of these examples
that you have used are composites,
made up from different individuals
of sex and age.
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right hand side of the Edinburgh ribcage to account for missing ribs on its left
side. Convex hulls were fitted according to the methodology applied to

modern pigeons.

The largest extant pigeon (G. victoria) weighs on average 2.3 kg [38], a value
far below all previous estimates of dodo mass. When applying a pigeon-based
equation to predict dodo body mass, it is therefore necessary to extrapolate
beyond the body size range upon which the predictive model is based. By
restricting ourselves to phylogenetically closely related species, the fossil
species of interest may therefore be up to an order of magnitude greater in
size than any extant relative. Furthermore the majority of modern pigeons
included in this dataset are proficient fliers and have likely been subject to

very different evolutionary pressures than the flightless dodo.

For this reason, we also applied a previously published convex hull equation
derived from extant ratites and galloanserae birds, extending the range of
body masses beyond 60 kg and incorporating ground-dwelling species. Raw
data are taken from Brassey et al [23], whilst the axes have been inverted
(logio volume as the independent variable vs. logip mass as the dependent
variable) to create a predictive model. Standard OLS regression was
preferred as previous analyses found uncorrected type-l1 models to fit the data
better than phylogenetically corrected regressions [23]. It must be
emphasized that the non-pigeon data are derived from an earlier study
applying a different imaging technique (light detection and range, LIDAR, on
museum mounted skeletons) and uses literature-assigned values for mass

due to lack of associated body masses. Whilst the previous study found no



188  significant impact on calculated CH,, due to variation in point cloud density
189 associated with different imaging techniques, caution should be exercised

190 when comparing the regression models.
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Results

Total convex hull volumes for the modern pigeons are reported in Table 1,
and segment-specific CHyq values can be found in Supplementary Material
S1. Convex hull models are available for download from

http://www.animalsimulation.org. We found considerable variation between

frozen pigeon specimens in the posture of the digits forming the foot i.e.
adduction vs. abduction of the digits. This influenced the overall shape, and
hence calculated CH,q, of the foot functional units (see Figure 1D). Given
repositioning of the skeleton was not possible due to the frozen nature of the
carcasses, here we report total CH,q values with and without feet included.
External inspection of the carcasses suggested evisceration had been carried
out on some specimens. Using CT scans the occurrence of evisceration was
confirmed across our modern dataset (see Table 1). Therefore, we report
separate predictive models derived from ‘eviscerated’ carcasses (n=13),
‘intact’ carcasses (n=7), and a third ‘combined’ model comprising both

eviscerated and intact specimens (n=20).

The results of the OLS regression analyses are presented in Table 2, and
phylogenetically corrected (PGLS) regressions are given in Supplementary
Material S2 alongside the composite phylogeny used in this analysis. PGLS
regressions did not provide a better fit to the data than uncorrected OLS
regressions (as determined by Akaike Information Criterion values, AIC) for
the ‘eviscerated’ and ‘combined’ models (Table 2). However, a PGLS model
was found to fit the ‘intact’ extant pigeon data better than an uncorrected OLS

model (Table 2).

11
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Removing CH, of the feet from the analyses had very little effect on the
results of the regression, although mean squared error (MSE) decreased
slightly in all models and therefore only regression models minus feet are
discussed any further in the text. Figure 2 illustrates a strong positive
correlation between My ang CHyo for the eviscerated specimens within the
sample (a=-2.31, b=0.90, r?=0.97). In contrast, the relationship between My ang
CHyolin intact specimens illustrates a weak positive correlation characterized
by low correlation coefficients and high mean square error (a=-1.06, b=0.66,
r’=0.70). Intact specimens do not plot consistently above the eviscerated
pigeon slope (Figure 2) and are instead characterized by a high degree of
scatter. When combining the eviscerated and intact specimens into one

dataset, M, and CHy remain tightly correlated (a=-2.08, b=0.85, r’=0.92).

Total CH,q calculated for the mounted dodo skeletons are reported in Table 3
(see Supplementary Material S3 for segment-specific values) and an example
of a photogrammetric model is illustrated in Figure 3. Using the ‘eviscerated’
predictive model, dressed My is estimated as 8.0 kg (95% prediction interval
(PI) 4.6-13.9 kg), 8.7 kg (95%P1 5.0-15.0 kg) and 10.8 kg (95%P! 6.1-19.0 kg)
respectively for the NHMUK Tring, NHMUK South Kensington and Edinburgh
dodos. Applying the ‘combined’ predictive equation results in wider and
therefore more conservative prediction intervals (NHMUK Tring, 6.7 kg 95%PI
3.5-13.1 kg; NHMUK South Kensington, 7.3 kg 95%PI 3.7-14.3 kg; Edinburgh,

9.0 kg 95%P!I 4.5-17.9 kg).
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The results of the OLS regression of convex hull volume against body mass
for a dataset of ground-dwelling ratites and galloanserae derived from
Brassey et al [23] are presented in Table 2. This relationship is also
characterized by high correlation coefficients (a=-1.65, b=0.82, r?=0.97), and
results in intact mass estimates of 10.9 kg (95%PI 5.7-20.6 kg), 11.6 kg
(95%PI 6.1-22.1 kg) and 14.0 kg (95%PI1 7.3-26.6 kg) respectively for the

NHMUK Tring, NHMUK South Kensington and Edinburgh dodos.

Figure 4 illustrates the distribution of segment-specific convex hull volumes as
a proportion of total CH,q within the models. In extant pigeons trunk CHy
represents on average 69% of total CH,o. The NHMUK Tring dodo skeleton
has a percentage trunk volume significantly lower than that of extant pigeons
(67%, 1-tailed t-test, t=3.23, p<0.01), whilst percentage trunk volume in the
NHMUK South Kensington and Edinburgh skeletons is significantly higher
than extant pigeons (71% and 80%, t=-2.23 and -13.0 respectively, p<0.05).
With the exception of the tarsometatarsii of the NHMUK South Kensington
skeleton, pelvic convex hull segments of the dodos comprise a significantly
greater proportion of total CH,, than in extant pigeons (p<0.05). In contrast,
dodo pectoral convex hull segments contribute proportionally less to total

CH,oithan in extant pigeons (p<0.0001) (Figure 4).

13
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Discussion

Predictive equation derived from modern CT dataset

To our knowledge the present study represents the first application of a
predictive equation derived solely from whole-body CT to the problem of body
mass estimation for extinct animals. Previous volumetric mass estimate
studies have relied upon articulated museum skeletons of extant species to
derive a calibration equation [6,22]. Yet articulated skeletons are often
missing crucial specimen information, such as a recorded body mass. By
working with frozen carcasses, body mass is directly measurable and
uncertainties associated with mounting and posing of the skeletons can be

avoided [23].

Our dataset consists of both ‘intact’ and ‘eviscerated’ pigeons as determined
by examination of CT scans. Previous analyses of carcass composition have
found eviscerated mass to represent 62-66% of live body mass in rock doves
[39,40], yet no data exist regarding the possible scaling of internal organ mass
across a range of body sizes in the Columbiformes. As can be seen in Figure
2, there is no consistent disparity between intact and eviscerated specimens,
and the relationship between M, and CH, in intact pigeons is relatively weak
(r*=70, p=0.019). This correlation improves considerably when accounting for
phylogeny (Supplementary Material S2), but remains weaker than the
relationship between M, and CH, characterizing eviscerated specimens. Live
body mass has been shown to vary considerably in wild animals due to
hydration, nutrition and gut content [41] and therefore some degree of scatter

is to be expected in intact carcasses. Particularly striking is the variability in

14
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gizzard contents between similar-sized specimens visible in CT scans (see

Figure 5).

This suggests intact pigeon M, cannot be corrected for the presence of
internal organs using a single factor representing average percentage
eviscerated mass as a function of live mass (i.e. multiplying by values of 0.62
or 0.66 previously found in the literature). Additionally, attempting to correct
intact My, by substituting intact CH, into the eviscerated regression model
would be highly circular and result in artificially inflated correlation coefficients,
if the equation were used in a predictive capacity. Therefore, we apply both
the uncorrected OLS eviscerated model and combined (eviscerated and
intact) model to bracket the range of likely dodo body masses. Interestingly,
the very high correlation coefficient and low mean squared error of the
eviscerated equation suggest that once the variability associated with fluid
and gut content is removed, the relationship between the mass of the

remaining musculoskeletal system and CH, is more tightly constrained.

Volumetric body mass estimation applied to the dodo

No reliable records of the body mass of dodo exist prior to its extinction in the
17" Century and subsequent mass estimates have varied considerably. Early
accounts of the flightless bird suggested an average mass of 50 Ib (22 kg)
[42], although such accounts “have a tendency towards exaggeration” [11].
More recently a ‘slim’ dodo (mean 10.2 kg) was proposed on the basis of
femoral, tibiotarsal and tarsometatarsal length scaling in modern birds [14].

However hind limb bone length has been shown to correlate poorly with body
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mass relative to other cross-sectional geometric properties and frequently
contains a strong functional signal [8,43-45]. Alternatively, a predictive
equation based on femoral and tibiotarsal least circumference in ground-

dwelling birds has suggested mass estimates between 9.5-12.3 kg [15].

The application of volumetric mass estimation techniques to the dodo has
been rare. A sculpted scale model of a ‘slim’ dodo based upon mean skeletal
measures was created to replicate sketches dating contemporaneously to its
survival on Mauritius and resulted in mass estimated of 12.5-16.1 kg [13]. In
the same study a ‘fat’ dodo model based on later ‘exaggerated’ artworks was

predicted to weigh between 21.7-27.8 kg.

Here we estimate mean eviscerated body masses for articulated composite
dodo skeletons of between 8.0-10.8 kg. Without further information regarding
the effect of within-subject variability in gizzard, crop or gut content or
interspecific scaling of viscera mass, any extrapolation to a live mass should
be treated with caution. However, with this caveat in mind, a 33% increase in
mass to account for missing organs (as quantified in extant C. livia) would
take our results to 10.6-14.3 kg. This overlaps with the slim sculpted model
based on contemporaneous accounts [13]. Including our 95% prediction
intervals takes both the NHMUK Tring and South Kensington skeletons to a
maximum of 18.2 kg and 19.9 kg whole body masses, still considerably below
the 22kg suggested historically [42]. In contrast, the 95% prediction intervals

of the Edinburgh dodo include 22kg once multiplied by 1.33.
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Unlike all previous volumetric studies, our convex hulling technique does not
require a value for body density to be assigned from the literature. Instead we
directly derive the relationship between M, and CH,, in order to avoid
uncertainty regarding assigning literature values, which have been shown to
differ considerably across avian groups and with various methodologies for
estimating body density [17]. However, this does implicitly rely upon the
predictive equation being applied to a fossil of an extinct species that is
closely related to (and can therefore be assumed to share a similar body
density to) the modern dataset from which the predictive equation was
derived. In this case of estimating dodo mass based on extant pigeons, we
believe this assumption can be upheld. Alternatively, CH,, may be multiplied
by a given value of carcass density to give a hard lower limit to body mass (as
carcass volume cannot be less than convex hull volume). The sole literature
value for intact feathered pigeon density is 648kg/m®from Hamershock et al.
[46], producing hard lower bounds to estimated body mass 5.8kg, 6.3kg, and
7.9kg for the Tring, Kensington and Edinburgh composite skeletons

respectively.

We consider the convex hulling technique to be superior to other sculpting-
based volumetric methods (such as manual sculpting with clay [13] or digital
sculpting with non-uniform rational B-spline (NURBs) curves [20]) for the
purpose of mass estimation as soft tissues and hypothesized respiratory
systems need not be reconstructed for fossils of extinct species, and the
technique is entirely repeatable. When values for centre of mass (COM) and

segment inertial properties are required for further biomechanical analyses,
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NURBs may be required in order to achieve a representative mass distribution
across the skeleton. In such situations it is essential that soft tissue
reconstructions are based on quantitative comparative dissection data from
relevant modern species in order to minimize subjectivity in model creation.
However, for the sole purpose of mass estimation, convex hulling should be

the preferred technique.

Previous authors have cautioned over the extrapolation of regression models
beyond the limits of the extant dataset when applied in a predictive capacity
[47]. To avoid this scenario, here we also apply a convex hull predictive model
previously derived from ratites and ground-dwelling galloanserae birds [23] to
the mounted dodo specimens. This results in mass estimates for the intact
dodo ranging between 10.8-14.0 kg, remarkably similar to those values
tentatively reconstructed by correcting the eviscerated pigeon model for
missing viscera content. This further strengthens the argument for the
reconstruction of a relatively slim dodo, and suggests extrapolation of the
predictive equation beyond the range of modern pigeons does not, in this

instance, result in implausible mass estimates.

Yet a predictive equation based upon cursorial ground-dwelling birds might
also be considered inappropriate in light of the commonly-held perception of
the dodo as being poor at locomotion, i.e. non-cursorial. The issue faced
when assembling a modern calibration dataset on the basis of
functional/behavioral similarities (as opposed to phylogenetic relatedness) is

the requirement to assume a particular function/behaviour in a fossil species.
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In the case of the dodo, several ffirst-hand’ descriptions attest to the
‘tameness’ and ‘edibility’ of the bird [48, and references therein], yet very
limited (and contradictory) accounts exist regarding its locomotor

performance. Whilst some confirm the perception of dodo as fat and waddling:

“...her body is round and extremely fat, her slow pace begets that

corpulence” [49, p347]

Others suggest the dodo was capable of fast and ‘jaunty’ locomotion:

“they showed themselves to us with an abrupt stern face and wide
open mouth, very jaunty and audacious of gait” [50, p6]
“[they] could not fly, (because they [had] in place of the wings only

small Flittige) however [they] run fast” [51, p152]

In light of this confusion, a more appropriate modern calibration dataset might
therefore be selected on the basis of perceived evolutionary pressures (or
lack thereof) to which the dodo was subjected, rather than assumed
locomotor ability. Yet this also proves problematic, as the fates of many other
recent flightless bird species that have evolved in the absence of native
terrestrial predators have followed that of the dodo i.e. recent extinction.
Possible extant candidates are limited to the kakapo (Strigops habroptilus),
Galapagos cormorant (Phalacrocorax harrisi), Auckland Islands and Campbell

Islands teal (Anas aucklandica and Anas nesiotis) and over a dozen species
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of Gruiformes. Given that the majority of the above species are categorized as
threatened or extinct in the wild [52], obtaining specimens and associated
mass data is extremely challenging. Therefore whilst the dodo may have
differed from our modern calibration datasets in being both flightless and non-
cursorial, it must be recognized that a panacea for dodo mass estimation is
unlikely to exist, and perhaps the most appropriate recent analogues are

already extinct or nearing extinction.

Composite and articulated skeletons
rrhe dodo specimens included in this study are composite skeletons,
comprising skeletal material from more than one individual and including

sculpted or cast elements. [Therefore, our study is limited to estimating the

body mass of the hypothetical animal represented by each articulated
skeleton, rather than a known individual. Currently there exists only one near-
complete dodo skeleton comprising a single individual (the Thirioux dodo),

upon which research is currently still continuing [53].

Whilst the use of composite skeletons should clearly be treated with caution
when used in biomechanical analyses, their composite nature does not
entirely rule out their use, particularly in the case of mass estimation. A recent
large-scale macroevolutionary [54] study of body size in a fossil lineage relied
upon mass data derived solely from humeral and femoral circumferences of
one individual specimen per species. While this approach is often the only

one feasible given the highly fragmentary nature of the fossil record, taking
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one individual as being representative of an entire species leaves us

vulnerable to the possibility of high levels of intraspecific variation.

In contrast, a volumetric reconstruction based on a composite skeleton may
be more likely to reflect a species average by virtue of being a combination of
several individuals and could be less skewed by isolated robust or gracile
elements. If subsequent biomechanical analyses are to be carried out (such
as finite element analysis on a particular musculoskeletal unit), then it is
important that the body mass entered into the analyses is representative of
that specific individual. However, for the case of volumetric body mass
estimation alone, it ought to be possible to derive a representative species

mean from a composite skeleton.

Of more concern is the frequency of missing, deformed or reconstructed
material within a fossil mount. Known issues with the dodo mounts included in
this study include missing ribs (Edinburgh skeleton), missing carpals (NHMUK
South Kensington skeleton), deformation of the fragile pubis (NHMUK South
Kensington skeleton) or the loss of the most of the ischium, pubis and caudal
vertebrae (NHMUK Tring skeleton). For a given object, the extent of the
convex hull fitted to that object is dictated solely by its geometric extremes. In
many ways this is advantageous for volumetric fossil reconstructions as
damage occurring within the bounds of the convex hull does not affect our
volume estimate. However when extremities are missing (such as the caudal
tip of the pubis), the shape and volume of the convex hull are strongly

affected. This is evident in the low percentage trunk volume of the NHMUK
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Tring skeleton (Figure 5) compared to those of extant pigeons and other

dodos.

Whilst some evidence of underdevelopment of pectoral elements and
overdevelopment of pelvic elements in the dodo is discernable relative to
extant volant pigeons, Figure 5 predominantly illustrates the important
contribution of trunk volume to total mass estimates. The Edinburgh skeleton
has a proportionally more voluminous trunk than that of extant pigeons and
other dodo skeletons, and therefore all other skeletal elements contribute
proportionally less to total CH,q. The more voluminous trunk relative to other
specimens may be attributed to the anterior positioning of the sternum due to
constraints associated with the armature supporting the mount. The opposite
is true of the NHMUK Tring skeleton, in which damage to the extremities of
the pelvic girdle result in a reduced trunk volume. This highlights the
sensitivity of volumetric reconstructions of fossils of extinct species to trunk
morphology, and should be a concern when working with both composite and

complete fossil specimens.
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Summary

Here we present the first volumetric reconstruction of fossil body mass based
entirely on modern whole-animal CT data. The eviscerated body mass of
three articulated composite dodo skeletons is estimated to fall between 8.0-
10.8 kg. When accounting for missing organ mass, our mean values still fall
towards the lower range of previously published mass estimates. As the
availability and cost of CT improves, we believe this non-subjective convex
hull approach will become increasingly commonplace. Mass estimation of
extinct species from fossils relies upon two key components; a reliable
calibration equation derived from extant species, and an accurate
reconstruction of the extinct individual from its fossil. We discuss the issues
surrounding the use of articulated composite skeletons, and highlight the
particular importance of trunk morphology to volume reconstructions. We
suggest future efforts should focus on quantifying ribcage and sternal
geometry in extant groups in order to bracket the possible trunk shape in

fossils of extinct species.
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Figure 1. Example of the convex hulling process applied to the CT scanned
carcass of a Victoria crowned pigeon (Goura victoria) from which the skeleton
has been segmented. A and C, skeleton in dorsal and lateral view
respectively and; B and D, corresponding convex hulls fitted to the functional
units of the skeleton. Note convex hulls fitted to the feet in 1D are strongly

influenced by the positioning of the toes (see in text for discussion).

Figure 2. OLS regression results. Body mass (g) against convex hull volume
(mm®). For slope equations see Table 2. Filled circles and solid line,
eviscerated carcasses; crosses and dashed line, intact carcasses; dot-dash

line, combined sample.

Figure 3. A, Photogrammetry model of the Tring dodo skeleton (S/1988.50.1);

B, volumetric convex hulls fitted around the skeleton.

Figure 4. The distribution of segment CH, as a proportion of total CH, within
the convex hulled skeletons of extant pigeons and articulated dodo skeletons.
Mean values are illustrated for extant pigeons. Error bars represent 95%
confidence intervals of the mean. The underdevelopment of the pectoral girdle
(humerus, radius and ulna and carpometacarpals) in dodo relative to extant

pigeons is particularly striking.

Figure 5. Volumetric renderings of a rock dove (Columba livia, A-B) and
collared dove (Streptopelia decaocto, C-D) generated from CT scans. A and
C illustrate the outer soft tissue contours of the carcass, while B and D
illustrate the position of the gizzard and associated gizzard contents. There is

considerable variation in the quantity and size of gizzard stones between
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intact pigeon specimens within the dataset. Renderings were generated in

OsiriX [55]
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