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ABSTRACT
Background. Although genome-wide association studies (GWAS) are an increasingly
informative tool in the mining of new quantitative trait loci (QTLs), a classical
biparental mapping approach is still a powerful, widely used method to search the
unique genetic factors associated with important agronomic traits in bread wheat.
Methods. In this study, a newly constructed mapping population of Pamyati Azieva
(Russian Federation) × Paragon (UK), consisting of 94 recombinant inbred lines
(RILs), was tested in three different regions of Kazakhstan with the purpose of QTL
identification for key agronomic traits. The RILs were tested in 11 environments
of two northern breeding stations (Petropavlovsk, North Kazakhstan region, and
Shortandy, Aqmola region) and one southeastern station (Almalybak, Almaty region).
The following eight agronomic traits were studied: heading days, seed maturation days,
plant height, spike length, number of productive spikes, number of kernels per spike,
thousand kernel weight, and yield per squaremeter. The 94 RILs of the PAxP cross were
genotyped using Illumina’s iSelect 20K single nucleotide polymorphism (SNP) array
and resulted in the identification of 4595 polymorphic SNP markers.
Results. The application of the QTL Cartographer statistical package allowed the
identification of 53 stable QTLs for the studied traits. A survey of published studies
related to common wheat QTL identification suggested that 28 of those 53 QTLs were
presumably novel genetic factors. The SNP markers for the identified QTLs of the
analyzed agronomic traits of common wheat can be efficiently applied in ongoing
breeding activities in the wheat breeding community using a marker-assisted selection
approach.
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INTRODUCTION
Wheat is one of the three most important food crops in the world. It is the staple food for
about 40% of the world’s population, as it is one of the most abundant sources of calories
and protein in the diet, providing nearly 20% of the total dietary protein worldwide
(Braun et al., 2010). World wide wheat production in 2020–2021 amounted to 776.5
million tons. The FAO’s prediction for wheat production in 2021–2022 is expected to
be 769.6 million tons, 6.9 million tons less than the previous year’s outturn (Food and
Agriculture Organization of the United Nations, 2022). The main global exporters of wheat
are Argentina, Australia, Canada, Europe, Kazakhstan, the Russian Federation, Ukraine,
and the United States (Food and Agriculture Organization of the United Nations, 2022).
Kazakhstan is one of the top ten bread wheat producers and exporters in the global market
(USDA, 2019; Food and Agriculture Organization of the United Nations, 2022). According
to the FAO, wheat production in Kazakhstan in 2021–2022 is expected to reach 12.0 million
tons (Food and Agriculture Organization of the United Nations, 2022). In order to continue
providing the world’s population with enough wheat in 2050, its yield should be increased
by 60% (Shiferaw et al., 2013). Therefore, the constant improvement of productivity and
quality is essential for wheat breeding (Li et al., 2019).

Productivity, stress resistance, and quality are complex traits controlled by many
genes and genetic factors located in different regions of the chromosomes. Traits that
are very important but are difficult to select by phenotype can be mapped or identified
using appropriate phenotypic, genotypic, and statistical analyses. The underlying genetic
architecture of a quantitative trait can be described by identifying a set of quantitative
trait loci (QTLs) in the genome for a population and assigning effect values to these loci
using an appropriate statistical model framework (Nettelblad, Mahjani & Holmgren, 2013).
There are different methodologies for detecting and analyzing the presence of these loci
(Collard et al., 2005; Xu et al., 2017).

Associationmapping (AM) or a genome-wide association study (GWAS), which involves
the use of diverse germplasm, hasmuch higher resolving power in comparison to biparental
linkage-based mapping (QTL mapping) and is currently considered the method of choice
to unravel and understand the genetics of yield and yield-related traits (Sukumaran et al.,
2015; Zanke et al., 2015; Turuspekov et al., 2017; Wang et al., 2017; Anuarbek et al., 2020;
Mir, Kumar & Shafi, 2021; Gahlaut et al., 2021; Muhammad et al., 2021). Despite this, the
classic biparental mapping approach is still a powerful method for finding unique genetic
factors associated with important agronomic traits in common wheat (Wen et al., 2017).
There are several reviews describing the use of statistical methods for mapping quantitative
trait loci (QTLs, the genes responsible for variation in quantitative traits) in experimental
crosses (Zou & Zeng, 2008; Van Eeuwijk et al., 2010). The method allows the tracking of
QTL segregation by detecting markers associated with the traits of interest and assessing
the effects, number of QTLs, and their locations on the respective chromosomes. Genetic
linkage maps play an important role in genomic studies, including QTL mapping, MAS,
and map-based cloning (Zhang & Gai, 2009).
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Genetic maps of common wheat have progressed with the development of different
types of DNA markers, to high-throughput marker systems recently used in wheat (Wang
et al., 2014; Perez-Lara et al., 2016; Rasheed et al., 2017). There are a number of studies on
QTL mapping using different genetic linkage maps of hexaploid wheat starting from the
International Triticeae Mapping Initiative (ITMI) map, elaborated from the crosses of
synthetic wheat W7984 (Altar 84 durum wheat x Ae. tauschii) and common wheat cultivar
Opata 85, and a number of other maps (Paillard et al., 2003; Quarrie et al., 2005; Ma et al.,
2015; Perez-Lara et al., 2016; Liu et al., 2020).

The construction of biparental mapping includes the choice of parents that differ in
traits of interest, selection of molecular markers that distinguish between the two parents,
development of a mapping population, genotyping and phenotyping of the mapping
population, and identification of QTLs using a suitable statistical method (Xu et al., 2017).
Prior to relating the trait to loci, genetic components of the trait of interest should be
quantified through creating new recombination events. This can be achieved through
the development of segregating populations. In this regard, RIL populations have been
widely used in QTLmapping studies. For instance, RILs have successfully been used for the
identification and validation of QTLs underpinning the traits of agronomic importance
in staple cereals such as wheat (Börner et al., 2002; Griffiths et al., 2012; Ma et al., 2014;
Ma et al., 2015; El-Feki et al., 2018; Onyemaobi et al., 2018; Tshikunde et al., 2019; Tura
et al., 2020; Hu et al., 2020), Additionally, QTL studies of traits such as lodging (Yu &
Chen, 2013), grain hardness (Sourdille et al., 1996), grain protein content (Prasad et al.,
2003) and thousand grain weight (Varshney, Korzun & Börner, 2004), early heading (Xu
et al., 2005), yield and its components (Kumar et al., 2007; Li et al., 2014; Shi et al., 2017;
El-Feki et al., 2018; Onyemaobi et al., 2018; Tshikunde et al., 2019; Kumar et al., 2019; Tura
et al., 2020; Hu et al., 2020; Ren et al., 2021), drought tolerance (Duggan, Domitruk &
Fowler, 2000; Tahmasebi et al., 2017; Du et al., 2020) and disease resistance (Saini et al.,
2022; Genievskaya et al., 2019; Genievskaya et al., 2020) in wheat were mainly based on
the use of RILs. Importantly, the recently published wheat reference genome (Appels et
al., 2018) allows us to retrieve the list of genes within these QTL intervals, identify their
physical genomic coordinates and conduct functional annotation analysis. Thus, QTL
mapping in crops has become a common practice due to the advances made in the area of
molecular markers as well as that statistical genomics. QTL mapping approaches will need
to acknowledge the central roles of QTL by environment interactions (QEI) and QTL by
trait interactions in the expression of complex traits such as yield.

Earlier, QTL mapping for yield and its components, grain quality, and drought
and disease resistance in Kazakhstan has been successfully performed using the DH
mapping populations (MPs) Chinese Spring × SQ1 (Quarrie et al., 2005; Abugalieva,
2007; Abugalieva et al., 2010; Abugalieva et al., 2014) and Avalon × Cadenza (Amalova
et al., 2021a). Still, the further development of local MPs is an important part of the
local wheat breeding programs. Here we studied a RIL MP of Pamyati Azieva × Paragon
(PAxP) developed within the framework of the international project ‘‘ADAPTAWHEAT’’
(Adaptawheat, 2012). Previously, the PAxP population was genotyped with KASP
technology, where a low-density genetic map was constructed (Yermekbayev et al., 2020).
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Moreover, this population was successfully tested for resistance to leaf and stem rusts,
both at the seedling and adult plant-growth stages, where 24 quantitative trait loci (QTLs)
were identified for resistance to rust diseases (Genievskaya et al., 2019; Genievskaya et al.,
2020). In addition, the PAxP mapping population showed a wide range of variation in
yield-associated traits in southeast Kazakhstan (Amalova et al., 2019). The objective of this
study was to identify QTLs for key agronomic traits using the population PAxP tested in
three different environments of Kazakhstan during five years of trials, 2015–2020.

MATERIALS & METHODS
Plant materials
For this study, we used a bread wheat biparental MP from the cross of the spring wheat
cultivars Pamyati Azieva (Russian Federation) and Paragon (United Kingdom), hereafter
referred to as PAxP. The PAxP MP consisted of 94 recombinant inbred lines (RILs)
and their development was described earlier (Amalova et al., 2019). The cultivar Pamyati
Azieva was derived from the cross Saratovskaya 29× Lyutestsens 99/80−1.7 and provided
a combination of drought resistance, resistance to powdery mildew, and contained a high
number of kernels per spike, which ensures high productivity per spike. The cultivar was
recommended for theWestern Siberian region of the Russian Federation and was approved
for commercial cultivation in North Kazakhstan (Official website of the State Commission
for Cultivars Testing of Crops of the Ministry of Agriculture of the Republic of Kazakhstan,
2022). Paragon was developed using the crosses CSW-1724-19-5-68//AXONA/TONIC and
served both conventional and organic growers well and is recognized as a bread-making
cultivar (UK recommended list, group 1). Moreover, Paragon has broad-spectrum disease
resistance and good straw characteristics. The cultivar is a high-quality, bread-making
UK spring wheat, does not contain the GA-insensitive Rht-B1b or Rht-D1b alleles, and is
photoperiod sensitive (Kowalski et al., 2016).

Evaluation of the MP for variation in agronomic traits
The studied traits were divided into two groups: plant adaptation-related traits and yield
components. The plant adaptation traits included heading date (HD, days), seedmaturation
days (SMD, days), and plant height (PH, cm). The yield components included spike length
(SL, cm), number of productive spikes (NPS, pcs), number of kernels per spike (NKS, pcs),
thousand kernel weight (TKW, g), and yield per square meter (YM2, g/m2).

The MP and parents were evaluated in the experimental plots of Kazakhstan at the
Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, Almaty, Southeast
Kazakhstan) in 2015–2020, the A.I. Barayev Research and Production Centre for Grain
Farming (RPCGF, Shortandy, North Kazakhstan) in 2018–2020, and the North Kazakhstan
Agricultural Experimental Station (NKAES, Petropavlovsk, North Kazakhstan) in 2018–
2019 (Supplemental File). The MP lines and parents were planted in two replications at
each location in completely randomized blocks of 1m2 plot. The distance between rows was
15 cm, with a five cm distance between plants (Dospekhov, 1985). The climate conditions
recorded during the trials are shown in Table 1.
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Table 1 Location, environment, and weather data at three regions in Kazakhstan.

Site/Region Almaty (Southeast of Kazakhstan) Petropavlovsk (North) Shortandy (North)

Latitude/Longitude 43◦21′ / 76◦53′ 69◦31′/4◦10′ 51◦40′/71◦00′

Altitude, m 740 141 363
Soil type Light chestnut

(humus 2.0–2.5%)
Black soil
(humus 4.5–5%)

Southern carbonate chernozem
(humus 3.6%)

Conditions Rainfed Rainfed Rainfed
Year 2015 2016 2017 2018 2019 2020 2018 2019 2018 2019 2020
Annual rainfall, mm 228 550 301 217 299 279 272 151 321 430 426
Mean temperature, ◦C 21.4 19.9 20.8 19.6 19.8 19.8 16.1 16.3 15.2 17.1 19.2
Max temperature, ◦C 27.3 24.0 27.0 25.2 27.0 24.2 20.8 21.0 19.8 23.8 20.7
Min temperature, ◦C 16.8 16.0 14.7 14.8 12.9 14.2 10.8 10.2 9.8 12.4 17.6

Genotyping and genetic map construction of the mapping population,
QTL analysis, and statistics
The RILs and two parental cultivars were genotyped using Illumina’s iSelect 20K single
nucleotide polymorphism (SNP) array at TraitGenetics (TraitGenetics GmbH,Gatersleben,
Germany). The genotypic data were filtered to remove markers with >10% missing
data, with <0.1 minor allele frequency, and markers with distorted segregation. In the
end, the genetic map consisted of 4,595 polymorphic high-quality SNP markers and
initially constructed by TraitGenetics GmbH (http://www.traitgenetics.com (Gaterseleben,
Germany)) using JoinMap v5.0 software package (Stam, 1993)within theADAPTAWHEAT
project (Adaptawheat, 2012) funded by 7th European Union program. All SNPs showed a
good fit to 1:1 segregation in the RILs mapping population (p> 0.001 in the Chi-squared
test) (Genievskaya et al., 2019). To plot a haplotype map of the PAxP MP, the R statistical
platform (R Studio Team, 2020) was applied.

The QTL analysis was performed using data from every year and location and the
QTL identification was conducted as previously described in Amalova et al. (2021a) and
Amalova et al. (2021a). Specifically, the composite interval mapping (CIM) method of
Windows-based QTL Cartographer v2.5 software (Wang, Basten & Zeng, 2012), with the
logarithm of the odds ratio (LOD) threshold of 3.0 was applied. The genetic map was drawn
by MapChart v2.32 software (Voorrips, 2002). For the search for protein-coding genes that
overlap with identified significant SNPs on the peak, each marker’s sequence was inserted
into the BLAST tool of Ensembl Plants (2022) and compared with the Wheat Chinese
Spring IWGSC RefSeq v1.0 genome (Appels et al., 2018). Proteins were identified using the
UniProt database (UniProt, 2022) via cross-reference from Ensembl Plants (2022). Pearson’s
correlation and three-way analysis of variance (ANOVA) analyses were performed using the
R statistical platform (R Studio Team, 2020). ANOVA analysis was performed based on data
for two years (2018 and 2019) in three studied locations. The broad-sense heritability (H2)
was calculated according to Covarrubias-Pazaran (2019). The Additive Main Effect and
Multiplicative Interaction (AMMI) analysis and Finley–Wilkinson analysis were analyzed
using GenStat software (VSN International, 2019).
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Figure 1 Distribution of 4,595 single nucleotide polymorphisms (SNPs) across 21 chromosomes in 94
RILs of the bread wheat Pamyati Azieva× Paragonmapping population.

Full-size DOI: 10.7717/peerj.14324/fig-1

RESULTS
Genetic map
The genetic map of bread wheat Pamyati Azieva × Paragon was constructed by using
94 RILs of the MP and 4,595 polymorphic SNP markers (Fig. 1). The total length of the
genetic map was 2,723.90 cM with a mean intermarker distance of 1.60 cM. Chromosome
2B contained the largest number of markers at 563, having a length of 150.6 cM, and amean
distance of 3.74 cM betweenmarkers. Chromosome 4D had the smallest number, with only
20 markers, as the length of this chromosome was 16.8 cM with a mean distance of 1.19
cM. The gap reflected the degree of linkage between the markers, ranging from 1.77 cM
(chr 2B) to 8.28 cM (chr 3D), with a mean value of 3.50 cM (Table S1). Among informative
4,595 SNPs, few markers showed a slight segregation distortion towards either AA or
BB alleles, but the p-values, obtained from the chi-square test of Mendelian segregation,
remained to be statistically significant (Table S2). The assessment of allelic proportions
for RILs provided that 46.7% derived from Pamyati Azieva (red) and 47.5% from Paragon
(blue) with the remaining 5.8% being heterozygotes (green) (Fig. S1).
Altogether, of the 4595 high-quality polymorphic markers, 1939 (42.2%) markers were

localized to the A genome, 2099 (45.7%) markers were mapped to the B genome, and 557
(12.1%) were mapped to the D genome (Fig. 1).

Comparative assessment of phenotypic variations of the MP in three
studied research organizations
The field experiments were conducted at three locations: (1) KRIAPI (2015–2020), (2)
RPCGF (2018–2020), and (3) NKAES (2018–2019). RILs were studied at three locations,
and the phenotypic trait variation indicated a large level of variability and significance
among regions. The average HD varied from 42.3 ± 0.16 days at NKAES to 60.5 ± 0.15
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Table 2 The phenotypic variability of the agronomic traits in the RILs of the Pamyati
Azieva× Paragon bread wheat mapping population that was tested in three locations in Kazakhstan.

Traits Site Check
cultivar

Parental cultivars RILs

Pamyati Azieva Paragon min max mean+SE

NKAES 40.0 40.5 44.5 39.0 46.2 42.3± 0.16
RPCGF 55.0 42.0 41.0 37.7 51.3 42.5± 0.18HD

KRIAPI 51.0 59.7 58.7 57.2 66.0 60.5± 0.15
NKAES 42.8 46.5 47.3 38.5 49.3 45.1± 0.19
RPCGF 59.0 56.0 57.0 54.3 61.0 56.5± 0.11SMD

KRIAPI 40.7 36.7 34.7 14.7 38.0 35.4± 0.20
NKAES 89.7 81.3 66.3 61.5 91.8 76.4± 0.62
RPCGF 60.9 55.2 54.3 44.3 65.7 55.7± 0.45PH

KRIAPI 103.3 95.9 91.4 61.7 106.9 92.0± 0.78
NKAES 9.3 10.3 8.8 7.8 12.4 9.6± 0.08
RPCGF 8.4 8.6 8.9 7.6 10.8 9.0± 0.07SL

KRIAPI 10.2 11.0 11.0 8.7 13.8 11.0± 0.10
NKAES 2.8 2.9 2.6 1.6 3.8 2.4± 0.04
RPCGF 2.8 2.0 1.9 1.1 2.9 1.7± 0.04NPS

KRIAPI 5.1 3.8 4.0 2.5 5.3 3.7± 0.05
NKAES 35.1 32.0 35.3 27.6 43.7 34.8± 0.37
RPCGF 30.9 37.5 34.8 27.7 42.5 35.8± 0.35NKS

KRIAPI 45.5 46.1 57.7 40.5 60.5 49.4± 0.50
NKAES 33.8 32.1 30.5 28.4 42.5 35.8± 0.27
RPCGF 33.5 34.2 32.9 25.6 44.9 34.6± 0.34TKW

KRIAPI 40.9 31.3 28.2 22.4 36.2 30.3± 0.26
NKAES 278.7 317.3 221.4 133.4 310.6 226.5± 4.15
RPCGF 300.6 294.9 251.3 73.7 464.3 271.0± 7.91YM2

KRIAPI 619.4 483.6 578.5 207.4 666.9 519.8± 11.80

Notes.
The experimental station NKAES (Petropavlovsk), RPCGF (Shortandy), KRIAPI (Almaty region). Astana was used as a check
cultivar in the North regions (NKAES and RPCGF), and Kazakhstanskaya 4 in the southeast region (KRIAPI).

days at KRIAPI. The average PH ranged from 92.0 ± 0.78 cm at KRIAPI to 55.7 ± 0.45
cm at RPCGF (Table 2). The average yield components (SL, NPS, NKS, and YM2) showed
a high value at KRIAPI, followed by NKAES. However, the average TKW was higher at
RPCGF and NKAES in comparison to KRIAPI (Table 2).

The three-way ANOVA for genotypes was significantly different between two-factor
regions and years for seven traits (Table S3). The analysis showed a significant difference
between two-factor (genotype, region) for HD (2.02), NPS (1.49), and NKS (1.36). Also
was calculated heritability (H2) for all traits in studied years in locations (Table S3).

Correlation of phenological traits of the Pamyati Azieva × Paragon
bread wheat MP in the three studied regions
Pearson’s correlation results suggest that in RPCGF, HD was negatively correlated with
YM2, while in NKAES and KRIAPI, this association was not observed (Fig. 2B). At all three
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Figure 2 Pearson’s correlation index based onmultiple years’ data in three regions: (A) NKAES
(Petropavlovsk); (B) RPCGF (Shortandy); and (C) KRIAPI (Almaty). Correlations with P < 0.05 are
highlighted in color. The color indicates either positive (blue) or negative (red) correlations.

Full-size DOI: 10.7717/peerj.14324/fig-2

testing sites, average values of NKAES, RPCGF, and KRIAPI, PH was positively correlated
with YM2. NKS was significantly associated with the yield at all three sites, with the highest
average values recorded in KRIAPI (0.47), followed by NKAES (0.34) and RPCGF (0.33)
(Fig. 2). In contrast, the average value of TKW over two years (2019–2020) was correlated
with YM2 at the two northern stations but not in the southeastern region (Table S4).
The correlation of NKS and TKW was in congruence with the results in Table 2, as the
highest average NKS was recorded at KRIAPI, and TKW at the two northern stations was
significantly higher than that at KRIAPI.

TKW and YM2 assessment of individual RILs in the three locations
TKW and YM2 are important agronomic traits in the evaluation of wheat performance
in the field. Overall, 39, 7, and 19 RILs demonstrated higher YM2 in comparison to
the appropriate check cultivars in NKAES, RPCGF, and KRIAPI, respectively (Fig. S2).
Moreover, three lines (PAxP-01, PAxP-05, and PAxP-28) demonstrated high productivity
in Northern Kazakhstan. In addition, five highly productive lines (PAxP-07, PAxP-14,
PAxP-16, PAxP-20, and PAxP-21) were revealed at two sites (Shortandy and Almaty). Two
lines (PAxP-01 and PAxP-05) showed high productivity for YM2 in all three regions (Fig.
S2). The TKW assessment showed a wide distribution range. The analysis of the average
value of TKW revealed 21 and 32 RILs that exceeded the TKW of the check cultivars in
the Astana in the Shortandy and Petropavlovsk regions, respectively (Fig. S3). In addition,
eight lines (PAxP-04, PAxP-66, PAxP-68, PAxP-82, PAxP-84, and PAxP-92) showed higher
values compared to the local check cultivar Astana in Northern Kazakhstan.

The TKW and YM2 results showed that lines PAxP-01, PAxP-04, PAxP-05, PAxP-68,
PAxP-82, and PAxP-84 were highly productive in comparison to the check cultivars in
the three regions. Particularly, the Finley–Wilkinson analysis suggested that PAxP-01 and
PAxP-05 showed highly productive YM2 across all three tested sites, and PAxP-05 showed
a very stable, high TKW (Fig. S4).
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Assessment of AMMI the MP in the three studied regions
The Additive Main Effects and Multiplicative Interaction (AMMI) analysis of average
YM2 well-separated all three studied environments. PC1 (Principal Component 1) was
particularly informative (68.04%) andwas the largest contributor to the separation between
two regions (north vs southeast), while PC2 (31.96%) effectively separated NKAES from
the RPCGF region (Fig. S5).

The assessment of the AMMI plot for YM2 showed the highest average yield performance
was at KRIAPI. The RILs located in the center of the plot showed high stability in the three
studied regions. Several RILs, including PAxP-21, PAxP-07, PAxP-11, and PAxP-35,
showed higher yield performances at KRIAPI and RPCGF (Fig. S5). Four RILs (PAxP-72,
PAxP-65, PAxP-92, and PAxP-93) demonstrated a high average yield at KRIAPI and
NKAES but not at RPCGF (Fig. S5).

QTL mapping of agronomic traits in north and southeast regions
The results of the QTL analysis of the 94 RILs of mapping population PAxP identified
53 stable QTLs for eight traits out of the detected 296 QTLs. The QTL LOD ranged from
the threshold value of 3 (Qhd-PAxP.ipbb-7D, Qnps-PAxP.ipbb-1A.1, and Qnps-PAxP.ipbb-
5A.1) to 10.9 (Qsl-PAxP.ipbb-4A),and located on 17 chromosomes. Among the eight traits,
the number of identified QTLs ranged from 3 QTLs for SMD to 11 QTLs for NKS (Table
S5). The total number of stable QTLs identified for the group of plant adaptation-related
traits was fifteen (Table S5 and Fig. 3), and the number of QTLs for the group of traits for
yield components was thirty-eight (Table S5 and Fig. 3).

QTLs for the yield-related traits (NPS, SL, NKS, TKW, and YM2)
The stable QTLs for the group of yield components varied from 6QTLs (SL and TKW) to 11
QTLs (NKS). The R2 varied between 10% (Qnps-PAxP.ipbb-2D andQYM 2-PAxP.ipbb-4A)
to 40% (Qnks-PAxP.ipbb-6D). The highest LODwas 10.9, which detectedQsl-PAxP.ipbb-4A
(Table S5 and Fig. 3).

Seven QTLs were associated with NPS. All QTLs were located on chromosomes 1A (two
QTLs), 2D, and 5A (four QTLs). Six QTLs were associated with SL. The QTLs for SL were
detected on chromosomes 4A, 4B, 5A (two QTLs), 5B, and 7D. Two QTLs (Qsl-PAxP.ipbb-
4B andQsl-PAxP.ipbb-5A.1) were detected in Northern Kazakhstan (RPCGF and NKAES).
Qsl-PAxP.ipbb-4A was detected in the two regions (Almaty and Shortandy) that had LOD
values ranging from 3.4 to 10.9 (Table S5 and Fig. 3).

The highest number of QTLs was detected for NKS. ElevenQTLs for NKSwere identified
and mapped on chromosomes 2D (two QTLs), 3B (four QTLs), 4B, 5A, 6B, 6D, and 7A.
The two QTLs located on chromosome 2D and two QTLs located on chromosome
3B were detected in southeast Kazakhstan from 2015 to 2019. The three QTLs (Qnks-
PAxP.ipbb-3B.4, Qnks-PAxP.ipbb-4B, and Qnks-PAxP.ipbb-6B) located on the 3B, 4B, and
6B chromosomes were identified only at NKAES. Seven QTLs showed an additive effect of
between 1.63 pcs and 4.11 pcs with the origin of Pamyati Azieva. Qnks-PAxP.ipbb-6D was
detected in the two regions (Almaty and Shortandy), showed the highest R2 (40%), and
was the donor of increasing alleles from Paragon (−5.22 pcs) (Table S5 and Fig. 3).
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Figure 3 The genetic map of QTLs associated with plant adaptation and yield components and iden-
tified using the Pamyati Azieva× Paragonmapping population. The marker’s names are shown on the
right, and marker loci positions are shown on the left of the linkage maps in centimorgans (cM). Signifi-
cant markers in identified QTLs were given in blue for traits NPS, SL, NKS, TKW, and YM2 and green for
HD, SMD, and PH.

Full-size DOI: 10.7717/peerj.14324/fig-3
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Figure 4 The quantitative trait locusQtkw-PAxP. ipbb-2B.2 for the trait ‘‘thousand kernel weight’’ on
chromosome 2B.

Full-size DOI: 10.7717/peerj.14324/fig-4

Following NKS, the next two traits with the largest identified numbers of QTL were
YM2 (eight QTLs) and TKW (six QTLs). The assessment of the remaining QTLs for YM2

suggested that three loci (QYM 2-PAxP.ipbb-2D.1, QYM 2-PAxP.ipbb-4A, and QYM 2-
PAxP.ipbb-5A.2) were common for two northern stations (RPCGF and NKAES). Likewise,
Qtkw-PAxP.ipbb-2B.2 for TKW (Fig. 4) was detected in two Northern Kazakhstan stations
(RPCGF and NKAES) and showed the highest LOD value (9.9) and R2 (34%). Among
all of the QTLs, Qtkw-PAxP.ipbb-2B.1 showed the highest additive effects from Pamyati
Azieva (3.85 g) (Table S5 and Fig. 4).

QTLs for the plant adaptation-related traits (HD, SMD, and PH)
The QTLs identified in multiple environments for the group of plant adaptation-related
traits varied from four QTLs (HD), three QTLs (SMD), and eight QTLs (PH). The R2 for
each individual QTL varied between 12% (Qph-PAxP.ipbb-7B) and 26% (Qhd-PAxP.ipbb-
7A). The highest LOD was 8.2, which was observed at Qph-PAxP.ipbb-7A. Among the
QTLs, eight showed positive additive effects, with Pamyati Azieva increasing the effects of
the QTLs, while seven had negative additive effects, with Paragon increasing the effects of
the QTLs (Table S5 and Fig. 3).

Four QTLs were detected for HD, one each on chromosomes 2A, 7A, 7B, and 7D. The
QTLQhd-PAxP.ipbb-7Awas also detected in the three regions and had LOD values from 3.1
to 8.1, with the additive effect from Paragon of−0.9 days. The second,Qhd-PAxP.ipbb-7B,
was detected in the two regions and had LOD values ranging from 3.7 to 9.6, with an
additive effect equaling 0.72 days from Pamyati Azieva as the donor of alleles. For the
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Figure 5 The position of identified quantitative trait loci (QTLs) for plant height (PH), which were re-
vealed on chromosomes 5A (A) and 6A (B).

Full-size DOI: 10.7717/peerj.14324/fig-5

SMD, three QTLs were detected on chromosomes 1A, 5D, and 6A. Among the QTLs for
the SMD, two showed additive effects from Pamyati Azieva and one additive effect from
Paragon, increasing the effects of the QTLs in Northern Kazakhstan (Table S5 and Fig. 3).

For PH, eight QTLs were detected on chromosome 2B (three QTLs), 5A (two QTLs), 6A,
7A, and 7B. Three QTLs (Qph-PAxP.ipbb-2B.3, Qph-PAxP.ipbb-5A.1, andQph-PAxP.ipbb-
5A.2) were identified only in Southeast Kazakhstan (KRIAPI). The two QTLs with the
highest LOD values were Qph-PAxP.ipbb-5A.2 and Qph-PAxP.ipbb-6A, which originated
from Pamyati Azieva (Fig. 5). Qph-PAxP.ipbb-7A is the QTL with the highest LOD value
(8.2).

The highest additive PH effect was observed for Qph-PAxP.ipbb-2B.2 (height-reducing
allele from Paragon), which decreased height up to 4.56 cm (Fig. 3 and Table S5). One of
the QTLs for PH (Qph-PAxP.ipbb-7B) coincided with the position ofQYM 2-PAxP.ipbb-7B,
which is the QTL for YM2 (Table S5 and Fig. 3). Notably, in all identified QTLs for PH, the
decreasing alleles were from Paragon, and the increasing alleles were from Pamyati Azieva
(Fig. 3 and Table S5).

The total identified QTLs found in the three regions varied from 32 QTLs in Southeast
Kazakhstan (KRIAPI), and 32 QTLs in (NKAES) and 16 QTLs (RPCGF) in Northern
Kazakhstan (Fig. 6). Only one commonQTL (Qhd-PAxP.ipbb-7A) among the studied traits
was identified in the three regions. Ten common QTLs identified in Shortandy (RPCGF)
and Petropavlovsk (NKAES) were common between these regions, and five common QTLs
were identified in the Almaty (KRIAPI) and Shortandy (RPCGF) regions (Fig. 6). Three
QTLs (QYM 2-PAxP.ipbb-2D.1, QYM 2-PAxP.ipbb-4A, and QYM 2-PAxP.ipbb-5A.2) were
detected only in Northern Kazakhstan (RPCGF and NKAES).

DISCUSSION
Identification of QTLs for agronomic traits using the Pamyati
Azieva × Paragon mapping population
The success in the identification of new QTLs for yield components depends on many
factors, such as well-developed MP, high-resolution genotyping of the MP, genetic and
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Figure 6 The number of stable quantitative trait loci (QTLs) for eight studied traits identified in three
regions (NKAES, Petropavlovsk, in blue; RPCGF, Shortandy, in brown; KRIAPI, Almaty, in blue cir-
cles).

Full-size DOI: 10.7717/peerj.14324/fig-6

phenotypic variability of the population defined by selected parental lines, genotype-
environment interaction patterns, etc. (Xu et al., 2017; Slafer, Savin & Sadras, 2014). In
this study, the MP developed by using two genetically distinct parents bred in the UK and
Russian Federation was genotyped based on 4,595 SNPs in all three subgenomes. The SNP
genotyping of this MP provided higher resolution than in our latest QTL mapping effort
using Avalon x Cadenza MP, which relied on 3,647 polymorphic SNPs (Amalova et al.,
2021a). Moreover, whereas the Avalon x Cadenza doubled haploid MP was constructed
using two British cultivars, the PAxP MP was developed using varietal representatives
of two genetically distant pools that were tested in three wheat-growing regions of the
country. Therefore, in this study, it was expected that a larger number of novel QTLs
would be identified in comparison to the QTL mapping of eight agronomic traits using the
Avalon x Cadenza MP.
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The QTL mapping assessment using field trials of the PAxP in three contrasting regions
allowed the detection of 53 QTLs identified in two or more environments (Fig. 3) out of
a total of 296 QTLs for eight agronomic traits, suggesting that the remaining 243 QTLs
were region-specific associations. Only one stable QTL (HD) was common among all
three tested regions, confirming the sharp environmental differences in the selected sites
(Fig. 6). It was found that, although the NKAES and RPCGF experimental sites belong
to the Northern region of the country, the shared number of QTLs in these two sites (10
QTLs) was equal to those that were shared between KRIAPI (southeast region) and NKAES
(Fig. 6). Evidently, the growing conditions in NKAES and KRIAPI better facilitated the
higher variability in the studied traits, as the number of identified QTLs at the RPCGF was
half that in the other two sites. At the same time, there were certain conditions, such as
KRIAPI 2019, where relatively limited precipitation and lower temperature at the booting
stage possibly affected yield components. This limitation also influenced the correlation
between TKW and YM2 (Table S4), which is in normal conditions supposed to be positive
one.

Interestingly, the only one common QTL for all three tested sites (Qhd-PAxP.ipbb-7A)
was identified for HD and was located on chromosome 7A, with a peak of 43.2 cM
(700,955,008 bp) (Table S6). the literature survey indicated that Qhd-PAxP.ipbb-7A
(30,147,904-727,580,363 bp) was mapped in the vicinity of Vrn-A3 (TaFTA), which was
located at 45 cM and linked with a barc154 (65,515,540 bp) microsatellite marker (Bonnin
et al., 2008). Moreover, the genetic location of Qhd-PAxP.ipbb-7A coincided with a QTL
for HD, which was located on 43.5 –46.5 cM (78,328,789–82,350,351 bp) (Hu et al., 2020).
Therefore, it is possible that Qhd-PAxP.ipbb-7A is associated with Vrn-A3 and influenced
the flowering time of the MP by Paragon, as it was a source for the efficient allele in the
association (Table S5).

Notably, the genetic position of one of those QTLs for PH (Qph-PAxP.ipbb-7B) was
located on chromosome 7B on marker interval 10.1 cm–45.9 cm (3,701,651–115,373,417
bp) and matched the position of QTL for YM2. None of the detected QTLs for PH was
found at the RPCGF site, which is an indication that conditions in this region were rather
stressful and suppressed the mean values not only for PH but also for NPS (Fig. 3). This
indicates that the variability of traits was reduced under the stress condition of RPCGF. The
number of identified QTLs at the RPCGF sites was also lower in comparison to KRIAPI
and NKAES for yield components, including NPS, NKS, and TKW (Fig. 6). A comparison
of mapped QTLs for traits analyzed in this study versus previous studies, including those
that were detected using Avalon x Cadenza MP, indicated that 28 QTLs were presumably
novel genetic factors for the eight analyzed traits as 25 QTLs matched known associations
(Table S6). The fact that 25 QTLs found in this study were also reported elsewhere is
confirming (1) the functional importance of these marker-trait associations (MTAs)
on a wide geographical scale, and (2) provides additional support for the robustness of
findings in this study. The overview of similar genetic locations of QTLs for the same
targeted traits shows that three QTLs for HD (Qhd-PAxP.ipbb-2A, Qhd-PAxP.ipbb-7A, and
Qhd-PAxP.ipbb-7B) were identified a similar interval on the same chromosome in RILs
study associated with yield and heading date in China (Hu et al., 2020; Chen et al., 2020).
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Within the region, four associations matched the results from studies of the CS× SQ1 DH
mapping population, whereQTLs for PH (Qph-PAxP.ipbb-5A.2), SL (Qsl-PAxP.ipbb-5A.2),
and NPS (Qnps-PAxP.ipbb-1A. and Qnps-PAxP.ipbb-5A.3) were identified in southeastern
Kazakhstan (Quarrie et al., 2005; Abugalieva, 2007). The seven associations matched the
results from studies of the UK reference mapping population Avalon × Cadenza, where
QTLs associations with PH, SL, NPS, NKS, and TKW were identified in the northern,
central, and southern regions of Kazakhstan (Amalova et al., 2021a). Qnps-PAxP.ipbb-1A.2
was identical to the genetic positions of QTLs identified with the analyses of six traits using
GWAS based on the assessment of common wheat in three different regions of Kazakhstan
(Turuspekov et al., 2017). Two QTLs (Qnps-PAxP.ipbb-5A.3 and Qtkw-PAxP.ipbb-4B.2)
were identical to the same genetic position of QTLs identified in the GWAS of yield
components in the spring wheat collection harvested under two water regimes in Northern
Kazakhstan (Amalova et al., 2021b) (Table S6).

We have aligned the significant SNPs of identified 53 stable QTLs to the Chinese Spring
reference genome (Appels et al., 2018) using the Wheat Ensembl database (Ensembl Plants,
2022). The results showed that out of 53 significant SNPs, 44 and nine QTLs were located in
genic and intergenic genomic positions respectively (Table S5). Among, the alignment of the
significant SNPs in the 28 identified presumably novel QTLs with sequences in the database
showed that 15 SNPs in genic positions (Table S5). The five presumably novel QTLs were
aligned with the basic helix-loop-helix transcription factors (Qsl-PAxP.ipbb-4B), F-box
domain-containing protein (Qsl-PAxP.ipbb-5B, Qsmd-PAxP.ipbb-5D), ubiquitin core
domain-containing protein (Qnks-PAxP.ipbb-3B.2), E2 ubiquitin-conjugating enzyme
(Qsmd-PAxP.ipbb-1A). The novel QTL for SL (Qsl-PAxP.ipbb-4B) was aligned with gene
TraesCS4B02G364900, which codes protein basic helix-loop-helix transcription factors. The
protein is expressed in the endosperm of the seed and also in the spikes during the heading
time (Guo &Wang, 2017) (Table S4). The other two novel QTLs (Qsl-PAxP.ipbb-5B,
Qsmd-PAxP.ipbb-5D) where significant SNPs were aligned with F-box domain-containing
protein. It is known that F-box proteins regulated plant development and control flowering
time (Jain et al., 2007; Hong et al., 2012). Another identified important alignment of novel
QTLs and specific genes is related to a ubiquitin-associated group of enzymes. E3 ubiquitin-
protein ligase, along with E1 ubiquitin-activating and E2 ubiquitin-conjugating enzymes,
is known to participate in the ubiquitylation of proteins (Liu et al., 2020). Ubiquitylation
itself is essential for the regulation of various biological processes, including growth and
development, response to biotic and abiotic stress, and regulation of chromatin structure
(Ramadan et al., 2015; Xu et al., 2021). In this study, we identified that the most significant
SNPs in two QTLs (Qnks-PAxP.ipbb-3B.2 and Qsmd-PAxP.ipbb-1A) were aligned with
ubiquitin core domain-containing protein and an E2 ubiquitin-conjugating enzyme,
respectively (Table S5).

Evaluation of PAxP recombinant inbred lines in multiple tested
environments
An additional value of anMP tested inmultiple environments is the possibility of identifying
promising RILs with high yield potential. Our previous analysis of Avalon x Cadenza in
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several regions of Kazakhstan allowed the express extraction of valuable genetic lines
(Amalova et al., 2021a) that were instantly introduced into the selection processes of
several breeding organizations. Similarly, it was anticipated that RILs generated from
Paragon and Pamyati Azieva, two genetically very distant cultivars, would provide plenty
of promising candidates with a high yield potential in three different regions of the country.
As expected, 39, seven, and 19 RILs were identified with higher YM2 than standard cultivars
in NKAES, RPCGF, and KRIAPI, respectively (Fig. S2). The assessment of those extracted
RILs using Finley–Wilkinson testing was also helpful in identifying PAxP-05 and PAxP-01
as potentially valuable sources for high TKW and YM2 in all three regions. PAxP-05 and
PAxP-01 showed outstanding YM2 performance in KRIAPI, in the average TKW values
in the two northern stations, and in SL, NPS, and NKS data in all three studied regions
(Table S7). In addition, PAxP-05 carried a positive allele for 32 of the identified QTLs,
including those with high effects for HD, NPS, TKW, and YM2 (Table S7). Generally,
each of identified RILs with outstanding field performance could be used as a donor to
improve wheat adaptation and productivity in Kazakhstan. Thus, comprehensive means
of genetic and analytical studies for the identification of new phenotypically stable alleles
or/and allelic combinations for the traits of interest can be successfully used in local wheat
breeding projects.

CONCLUSIONS
The 94 RILs of the PAxP MP that were developed from genetically distant cultivars and
were genotyped using Illumina’s iSelect 20K SNP array resulted in the identification of
4595 polymorphic SNP markers. The RILs were tested in 11 environments in two northern
and one southeastern region of Kazakhstan and showed a wide range in yield performance.
In total, 39, seven, and 19 RILs were identified with a higher average YM2 than standard
cultivars in NKAES, RPCGF, and KRIAPI, respectively. Two RILs, PAxP-05 and PAxP-01,
showed high average TKW and YM2 values in all three regions. The environmental
patterns differently influenced the yield performance. For instance, Pearson’s correlation
results suggested that HD was negatively correlated with YM2 in the RPCGF site, but
the correlation was not significant in the NKAES and KRIAPI sites. In all three regions
(NKAES, RPCGF, and KRIAPI), the average PH was positively correlated with YM2. The
average NKS was significantly associated with the yield in all three regions, while average
the TKWwas correlated with YM2 only in the two northern regions (NKAES and RPCGF).
The phenotypic data of RILs studied in 11 environments of the three regions were used
for the identification of important QTLs associated with the studied agronomic traits. The
application of the QTL Cartographer statistical package allowed for the identification of
53 stable QTLs (Table S5 and Fig. 3) out of a total of 296 QTLs for eight agronomic traits.
A survey of published studies related to common wheat QTL identification suggested
that 28 QTLs for the eight analyzed traits were presumably novel genetic factors, while
25 QTLs matched known associations. The findings in this study can be very helpful for
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further validation of identified MTAs for their use in bread wheat breeding projects for the
development of new competitive and highly productive cultivars.
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