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Background: Dehydroepiandrosterone-sulfate is the most abundant circulating androgen
in humans and other catarrhines. They are involved in several biological functions, such as
testosterone production, glucocorticoid antagonist actions, neurogenesis and
neuroplasticty. Although the role of DHEAS in cognition remains elusive, the
DHEAS/cortisol ratio has been positively associated with a slower cognitive age-decline
and improved mood in humans, but whether this relationship is found in nonhuman
primates remains unknown. Methods: We measured DHEAS and cortisol levels in serum
of 107 adult chimpanzees to investigate the potential relationship between cognition and
DHEAS as well as DHEAS/cortisol ratio, taking into account age, sex, and their interactions.
We tested for cognitive function using the primate cognitive test battery (PCTB) and
conducted principal component analyses to categorize cognition into three components:
spatial relationship tasks, tool use and social communication tasks, and auditory-visual
sensory perception tasks. Results: DHEAS levels, but not the DHEAS/cortisol ratio,
declined with age in chimpanzees. Our analyses for spatial relationships tasks revealed a
significant interaction between DHEAS/cortisol ratio and age, with a positive correlation
between DHEAS/cortisol ratio in elderly, but not in younger individuals. Tool use and social
communication had a negative relationship with age. Our data show that the
DHEAS/cortisol ratio, but not DHEAS individually, is a promising predictor of age-related
cognitive decline in chimpanzees and may be involved in spatial cognition.
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25 Abstract

26 Background: Dehydroepiandrosterone-sulfate is the most abundant circulating androgen in 

27 humans and other catarrhines. It is involved in several biological functions, such as testosterone 

28 production, glucocorticoid antagonist actions, neurogenesis and neuroplasticty.  Although the 

29 role of DHEAS in cognition remains elusive, the DHEAS/cortisol ratio has been positively 

30 associated with a slower cognitive age-decline and improved mood in humans. Whether this 

31 relationship is found in nonhuman primates remains unknown.

32 Methods: We measured DHEAS and cortisol levels in serum of 107 adult chimpanzees to 

33 investigate the potential relationship between cognition and DHEAS as well as DHEAS/cortisol 

34 ratio, taking into account age, sex, and their interactions. We tested for cognitive function using 

35 the primate cognitive test battery (PCTB) and principal component analyses to categorize 

36 cognition into three components: spatial relationship tasks, tool use and social communication 

37 tasks, and auditory-visual sensory perception tasks.

38 Results: DHEAS levels, but not the DHEAS/cortisol ratio, declined with age in chimpanzees. 

39 Our analyses for spatial relationships tasks revealed a significant interaction between 

40 DHEAS/cortisol ratio and age, with a positive correlation between DHEAS/cortisol ratio in 

41 elderly, but not in younger individuals. Tool use and social communication had a negative 

42 relationship with age. Our data show that the DHEAS/cortisol ratio, but not DHEAS 

43 individually, is a promising predictor of age-related cognitive decline in chimpanzees and may 

44 be involved in spatial cognition.

45
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48 Introduction

49 Dehydroepiandrosterone (DHEA) and its sulfated ester (DHEAS) are steroid hormones 

50 produced by the adrenal gland (Nguyen & Conley, 2008) as well as the gonads and the brain at 

51 smaller proportions. While they have been detected in a number of species, including birds 

52 (Newman et al., 2008; Poisbleau et al., 2009), rodents (Boonstra et al., 2008; Quinn et al., 2013) 

53 and marine mammals (Gundlach et al., 2018; Miller et al., 2021; Robeck et al., 2017), humans 

54 and other primates are unique in having DHEA and DHEAS (hereafter denoted as DHEA(S) for 

55 both) as the most abundant circulating steroids (Rege et al., 2019). 

56 Studies have demonstrated multiple biological actions of DHEA(S) (Hildreth et al., 

57 2013). First, they have been associated with reproduction, as they can be converted to sex 

58 steroids (e.g., testosterone and estrogens) (Labrie et al., 2011; Traish et al., 2011). Accordingly, 

59 they are important sources of sex steroids for women in the post-menopausal period (Labrie, 

60 2010). Second, DHEA(S) are involved in stress regulation due to their anti-glucocorticoid action 

61 (Kalimi et al., 1994; McNelis et al., 2013) by countering the neurotoxic (Kimonides et al., 1999) 

62 and immunosuppressive effects of glucocorticoids (Buford & Willoughby, 2008). Third, 

63 DHEA(S) promote neuroplasticity, neurogenesis, and neuroprotection (Kimonides et al., 1998), 

64 and several studies have reported a potential role of DHEA(S) in improving memory due to their 

65 agonist action on glutamate N-methyl-d-aspartate (NMDA) receptors (Baulieu & Robel, 1998; 

66 Dong & Zheng, 2012; Maninger et al., 2009; Wen et al., 2001). 

67 DHEA(S) levels decline by about 20% from ages 20 to 80 years (Vallée et al., 2001). 

68 This decline has been associated with aging processes and predisposition to diseases, including 

69 cardiovascular (Jia et al., 2020; Shufelt et al., 2010), metabolic (Abbasi et al., 1998; Villareal et 

70 al., 2000), and cognitive disorders (Racchi et al., 2003b; Sorwell & Urbanski, 2010). In humans, 
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71 the aging process is associated with declines in cognitive abilities, such as processing speed, 

72 spatial memory, language, and executive function (reviewed by Harada et al., 2013). However, 

73 there is individual variability in age-related cognitive changes, including medical illness, 

74 psychological factors, and sensory factors (reviewed by Harada et al., 2013). Aging is also the 

75 critical risk factor for a variety of human pathologies, including neurodegenerative diseases such 

76 as Alzheimer�s, cancer, and metabolic diseases. For this reason, there is an increased attention 

77 towards research to identify potential buffers of cognitive aging.

78 Based on the benefits of DHEAS in neuroprotection and its relationship with aging, 

79 DHEAS has been labeled as the �youth hormone� (Baulieu, 1996; Racchi et al., 2003a), and a 

80 number of clinical trials have investigated the effect of DHEA supplements to slow the aging 

81 process (Alhaj et al., 2006; Allolio & Arlt, 2002; Khorram et al., 1997; Maninger et al., 2009; 

82 Panjari & Davis, 2010; Wolkowitz et al., 1997). However, both clinical trials and correlational 

83 studies investigating the relationship between DHEAS levels and cognitive function are 

84 inconclusive. While some studies showed a positive relationship between DHEAS and cognitive 

85 function (Davis et al., 2008; Valenti et al., 2009; van Niekerk et al., 2001), many studies show no 

86 relationship (Barrett-Connor & Edelstein, 1994; Miller et al., 1998; Ravaglia et al., 1998; Yaffe 

87 et al., 1998), and one study showed an inverse relationship (Morrison et al., 2000). These 

88 inconsistencies may be related to the fact that multiple intrinsic and extrinsic factors can 

89 influence these hormones and confound results. For instance, some trials with DHEA 

90 supplements were successful in improving cognition in rodents, but it was unclear if this effect 

91 was directly due to DHEA function or indirectly through its conversion to sex steroids (Sorwell 

92 & Urbanski, 2010). Also, studies in humans have found that the ratio of DHEAS to cortisol is a 

93 better measure of stress levels and provides a clearer picture for the role of DHEAS in cognitive 
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94 function. A high cortisol/DHEAS ratio has been reported in humans with dementia (Ferrari & 

95 Magri, 2008), depression (Mocking et al., 2015), and in aged rhesus monkeys (Macaca mulatta) 

96 exhibiting depression-like behaviors compared to age-matched controls (Goncharova et al., 

97 2010).

98 However, no studies have investigated the association between DHEAS and cognition in 

99 chimpanzees (Pan troglodytes). Phylogenetically, chimpanzees are one of the closest living 

100 relatives to humans, and they are known for their sophisticated cognitive skills in captivity 

101 (Boysen & Berntson, 1995; Call et al., 1998; Inoue & Matsuzawa, 2007) and in the wild (Boesch 

102 et al., 2009; Janmaat et al., 2014). They also have the highest circulating DHEAS concentrations 

103 among nonhuman primates (Bernstein et al., 2012; Rege et al., 2019), and like humans, they 

104 experience an extended adrenarche � the postnatal secretion of these adrenal androgens 

105 (Campbell, 2011; Cutler Jr et al., 1978; Sabbi et al., 2020). This makes chimpanzees excellent 

106 comparative models for understanding the role of DHEAS in human biology and evolution. 

107 The present study aimed to investigate the potential relationships between DHEAS, as 

108 well as the DHEAS/cortisol ratio, and cognitive performance in captive chimpanzees. We 

109 predicted that the DHEAS/cortisol ratio would be a better predictor of cognitive performance 

110 than DHEAS individually.

111

112 Materials and Methods

113

114 Subjects and sample collection

115 The subjects were 107 chimpanzees (67 females and 40 males) housed in the National 

116 Chimpanzee Care Center at MD Anderson Cancer Center (N = 77, 48 females and 29 males) and 
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117 the Yerkes National Primate Research Center (N = 30, 19 females and 11 males) at Emory 

118 University. Most chimpanzees were captive-born at the two facilities above. A few were wild 

119 born and imported to the U.S prior to 1974, when CITES banned the importation of 

120 chimpanzees. At the time of this project, their ages ranged from 11 to 52 years old (mean ± 

121 standard deviation (SD) = 31.5 ± 10.8 years). All chimpanzees were housed, fed and received 

122 daily enrichment according to federal regulations governing the use of nonhuman primates in 

123 research. Ten females were under oral contraception (Provera), and nine females had intrauterine 

124 devices (IUD). One blood sample was collected per individual in the morning, during annual 

125 physical exams. During these exams, the chimpanzees were temporarily anesthetized using either 

126 ketamine or telazol, following standard operation procedures adopted at each facility. After fully 

127 recovering from the anesthesia, all chimpanzees returned to their respective social groups. This 

128 research was approved by the Institutional Animal Care and Use Committee of Emory 

129 University (Protocol nos. 2000673 and 2002189). All procedures adhered to the legal 

130 requirements of the United States and to the American Society of Primatologists� Principles for 

131 the Ethical Treatment of Primates. Blood samples were obtained prior to the Federal Register 

132 that designated the status of endangered to all captive chimpanzees under the Endangered 

133 Species Act (U.S Fish and Wildlife Service, 2015).

134

135 Cognitive tests

136 Subjects were tested on a modified version of the primate cognition test battery (PCTB) 

137 originally described by Herrmann et al. (2007) and Herrmann et al. (2010).  Details of the testing 

138 have been described elsewhere (Hopkins et al., 2021; Russell et al., 2011). The PCTB attempts to 

139 assess subjects� abilities in various domains of physical and social cognition. Testing was 
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140 conducted between 1 to 12 years from serum sample collection (mean ± SD = 4.4 ± 2.6 years), 

141 and it was completed over one to five testing sessions, depending on the motivation and attention 

142 of the subject. All chimpanzees were given the opportunity to participate in the social and 

143 physical cognitive testing. Nine tasks were utilized in the �Physical Cognition� portion of our 

144 test battery, including tasks exploring the apes� spatial memory and understanding of spatial 

145 relationships, ability to differentiate between quantities, understanding of causality in the visual 

146 and auditory domains, and their understanding of tools. There were three tasks within the �Social 

147 Cognition� dimension of the PCTB and they are designed to assess subjects� initiation in joint 

148 attention abilities, their response to joint attention cues, and their ability to use appropriate 

149 communicative modalities based on the attentional status of a human experimenter (Attentional 

150 State).

151

152 Hormonal assays

153 Serum samples were analyzed by enzyme immunoassay (EIA) developed for 

154 measurement of cortisol and DHEAS. We chose to measure DHEAS instead of DHEA, because 

155 the former is more stable and present in circulation at higher concentrations than the latter. The 

156 DHEAS assay has been previously described (Takeshita, 2022). The cortisol assay used 

157 microplates pre-coated with a goat anti-rabbit IgG antibody (Jackson Immunoassays, Cat#111-

158 001-003) at the concentration of 10 µg/ml, as previously described (Khonmee et al., 2019; 

159 Takeshita, 2022). The primary antibody was polyclonal anti-cortisol (BG-001) purchased from 

160 Coralie Munro (UC Davis, CA). The cortisol horseradish peroxidase (HRP) enzyme was 

161 purchased from the Endocrine Laboratory of the Smithsonian Biology Conservation Institute 

162 (Front Royal, VA). The cross-reactivities for the cortisol antibody were 100% for cortisol, 

PeerJ reviewing PDF | (2022:07:75333:0:1:NEW 2 Aug 2022)

Manuscript to be reviewed



163 42.08% for dehydrocortisol, 26.53% for cortisone, 0.35% for corticosterone, 0.18% for 

164 desoxycorticosterone, 3.37% for prednisone, and <0.16% for tetrahydrocorticosterone.

165 Prior to the assay, nine standards were prepared by 1:2 serial dilutions of hydrocortisone 

166 (Alfa Aesar, Cat#AAA1629203) in assay buffer (Arbor Assays, MI, Cat#X065) from 100 ng/g to 

167 0.39 ng/g. The control was set at 5 ng/g. Following standard preparation, serum samples were 

168 diluted at 1:10 (cortisol) in assay buffer and taken to the EIA following the procedures 

169 previously described (Takeshita, 2022) with minor adaptations. In brief, 50 µl of samples, 

170 standards and controls were added to each designated well in duplicate. Assay buffer was added 

171 to non-specific binding (NSB) (75 µl) and B0 wells (50 µl), also in duplicate. In sequence, 25 µl 

172 of cortisol HRP diluted in assay buffer (1:5,000) were added to each well. Immediately after 

173 adding HRP, 25 µl of anti-cortisol diluted in assay buffer (1:25,000) were added to each well, 

174 except NSB wells. The plates were sealed and incubated at room temperature for 1 h (cortisol 

175 assay). After the incubation time, the microplates were washed 4 times with wash buffer (0.5% 

176 Tween-20, 1.5 M Sodium Chloride), blotted dry and developed by adding 100 µl of 60% High-

177 kinetic TMB (TMBHK60, Moss Inc.) to each well, followed by incubation in the dark at room 

178 temperature for 10 min. The reaction was stopped by adding 50 µl of stop solution (1N HCl) to 

179 each well, and the plate was read in a plate reader (BioTek TSI 800, VT, USA) at 450 nm.

180 To validate the two hormonal assays for chimpanzee serum, parallelism tests were 

181 conducted by serially diluting a pooled sample in assay buffer from 1:2 to 1:64 for the cortisol 

182 and from 1:2 to 1:512 for the DHEAS assay, due to the high concentration of this steroid in the 

183 samples. The curves generated by the serially diluted pooled samples were visually inspected for 

184 parallelism with the standard curves in each hormonal assay and confirmed by F-tests. Both 

185 visual inspection and F-tests indicated parallelism for cortisol (F8,8 = 0.51, p = 0.40) and DHEAS 
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186 assays (F10,8 = 0.99, p = 0.90). Additionally, accuracy tests were conducted by spiking a pooled 

187 sample with known amounts of steroids and measured using the EIAs described above. The 

188 mean ± SD recoveries were 85.9 ± 3.4% for cortisol and 98.1 ± 6.3% for DHEAS. The 

189 successful parallelism and accuracy tests indicated that the assays were considered suitable for 

190 chimpanzee serum, so we analyzed all samples in duplicate. The intra-assay coefficients of 

191 variation (CV) (N = 107) were 3.6% and 5.16%, and the inter-assay CVs (N = 4) were 11.6% 

192 and 12% for cortisol and DHEAS assays, respectively.

193

194 Statistical analyses

195 We used R software version 4.1.0 (Core Team, 2017) for the regression analyses and 

196 IBM SPSS Statistics for Windows version x.0 (SPSS Inc. Chicago, USA), licensed for Kent 

197 State University, for the principal component analyses (PCA). To exclude the possibility of 

198 hormonal contraception as a confounding factor in the hormonal analyses, we first built three 

199 linear models with only females (N=67) to test the effect of hormonal contraception (fixed 

200 factor) on DHEAS and the DHEAS/cortisol ratio (response factors), controlling for age. 

201 Contracepted females were not significantly different than non-contracepted females in any of 

202 the models (DHEAS β ± SE: 0.51 ± 0.79, t = 0.65, p = 0.52; DHEAS/cortisol ratio β ± SE: -0.01 

203 ± 0.04, t = -0.1, p = 0.92), so we included all individuals in our subsequent analyses.

204 We conducted PCA on the intercorrelations of 12 individual cognitive tasks assessed 

205 during the PCTB to reduce the dimensionality of the cognitive data. The unrotated solution 

206 yielded five components with eigenvalues >1, which explained between 14.54% and 9.59% of 

207 the variance. However, components 4 and 5 did not yield much new information on any 

208 variables, with only one or two having high loadings (> 0.5). We further reduced the analysis to 
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209 three components, and using Varimax rotation with Kaiser normalization, all 12 variables were 

210 adequately represented. The three components that were extracted explained 14.76%, 13.63%, 

211 and 12.97% of the variance, respectively. PC1 (spatial relationships) included the tasks �spatial 

212 memory�, �object permanence�, �rotation�, and �transposition�. PC2 (tool use and social 

213 communication) included the tasks �tool use success�, �tool properties�, �gaze following�, 

214 �initiation of joint attention (gesture production)�, and �attention state�. PC3 (auditory and 

215 visual sensory perception) included �relative numbers�, �causality noise�, and �causality visual� 

216 tasks. Using the Z-values from these three components, we built linear models to test the effect 

217 of cortisol, DHEAS, DHEAS/cortisol ratio, testosterone, and age in each PC.

218 Multiple models were built to test PC1, PC2, and PC3 as response factors. Normality was 

219 confirmed visually by diagnostic plots (histogram of frequency, quantile-quantile plot, 

220 distribution of residuals) and Shapiro-Wilk normality test (Shapiro & Wilk, 1965). 

221 Homoscedascity across categorical factors (sex, colony, contraception) was confirmed by 

222 Levene�s test (Levene, 1961). If the model distribution was not normal, we used Box-Cox 

223 transformation. We initially included as predictors: age at PCTB testing, DHEAS, 

224 DHEAS/cortisol ratio, and their interactions. To account for potential effects of age, sex or 

225 colony differences in hormonal levels, we first tested DHEAS and the DHEAS/cortisol ratio as 

226 response factors, with individual age during serum sample collection, sex, and colony (Yerkes or 

227 MDACC), and their interactions. Following Burnham and Anderson (2002), we sequentially 

228 removed fixed factors with the highest p-value. We selected the models with the lowest Akaike 

229 Information Criterion (AIC). All plots were generated using the package ggplot2 (Wickham, 

230 2009). Fixed factors that showed significant effects on hormones were added as interactions with 
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231 the associated hormone in the cognition models (PC1, PC2, and PC3) to control for these effects. 

232 Nonsignificant factors were not included in the cognition models to reduce model complexity. 

233 To aid in data visualization of interactions between two continuous variables, we plotted 

234 one of these variables as a 3-level categorical variable. For age, we used the categories described 

235 previously for chimpanzees (Hopkins et al., 2021): young (<25 years old, N = 33), middle-aged 

236 (25-36 years old, N = 46), and elderly (>36 years old, N = 29).

237

238 Results

239 The DHEAS/cortisol ratio models were not better than the null model, indicating no 

240 relationship between this hormonal index and age, sex, or colony. However, the best DHEAS 

241 model included age, with a negative relationship between DHEAS levels and age (β ± SE = -0.1 

242 ± 0.05, t = -2.05, p = 0.04, Fig. 1). Sex and colony were not significant and were removed from 

243 the final model. To correct for the effect of age on DHEAS levels (Fig. 1), the models to test 

244 cognitive function as response variables initially included a three-way interaction between age at 

245 cognitive testing, hormonal levels, and the difference between age at serum sampling and age at 

246 cognitive testing.

247

248 FIGURE 1

249

250 The PCTB PC1 (spatial relationships) model with the lowest AIC included a significant 

251 interaction between age and the DHEAS/cortisol ratio (β ± SE = 0.002 ± 0.0007, t = 2.95, p = 

252 0.004), which explained 10% of the variance in PC1. The presence of this interaction suggests 

253 that performance on spatial relationships tasks has a positive correlation with the 
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254 DHEAS/cortisol ratio in older, but not younger individuals (Fig.2). DHEAS, corrected by age, 

255 did not improve the model and was excluded. 

256

257 FIGURE 2

258

259 The PCTB PC2 (tool use and social communication) model with the lowest AIC included 

260 a significant effect of age (β ± SE = -0.026 ± 0.0086, t = -3.02, p = 0.003), but no effect of 

261 DHEAS/cortisol ratio, DHEAS controlled by age, or their interactions. In this model, age 

262 explained 8% of the variance in PC 2 (Fig.3).

263 The PCTB PC3 (auditory and visual sensory perception) model with the lowest AIC 

264 included a non-significant, negative correlation with age (β ± SE = -0.02 ± 0.009, t = -1.7, p = 

265 0.09) and it was not significantly different than the null model (⍙AIC = 0.9). 

266

267 FIGURE 3

268

269 Discussion

270 The present study tested the relationship between age, DHEAS and the DHEAS/cortisol 

271 ratio in chimpanzee cognitive performance. We found that contraception, sex, and colony did not 

272 affect hormonal levels, but age was negatively correlated with DHEAS levels. We reduced our 

273 cognitive data derived from performance on the PCTB to three principal components. The first 

274 component (PC1) reflected individual chimpanzees� performance on spatial relationships tasks, 

275 and we found a significant interaction between age and the DHEAS/cortisol ratio in this 

276 component. The second component (PC2) reflected chimpanzees� tool use and social 
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277 communication abilities. We found a significant negative effect of age in this component. 

278 Finally, the third component (PC3) quantified their abilities to discriminate quantity and 

279 understand causal relationships. We found no significant effects of age, hormones, or their 

280 interactions on this component.

281 The negative correlation between age and DHEAS levels observed in the present study is 

282 consistent with previous studies in rhesus macaques (Muehlenbein et al., 2003), Japanese 

283 macaques (Takeshita et al., 2013) and lemurs (Perret & Aujard, 2005) that show an age-related 

284 decline in DHEAS levels. One cross-sectional study in chimpanzees reported a modest age-

285 related decline in female chimpanzees from 15 to 54 years old (Blevins et al., 2013), and our 

286 findings extend this pattern to male chimpanzees. A recent longitudinal study using urine 

287 samples from wild chimpanzees showed that DHEAS levels start to rise from 2-3 years of age 

288 until adulthood, which is a period known as adrenarche, with no sex differences in hormonal 

289 levels (Sabbi et al., 2020). Adrenarche was not observed in our study because our sample size 

290 was limited to individuals over 12 years old, but consistent with the findings reported by Sabbi et 

291 al. (2020), we found no sex differences in serum DHEAS levels. 

292 We also found that contraception did not influence DHEAS levels, which supports 

293 previous studies in chimpanzees (Blevins et al., 2013), ovariectomized rhesus macaques (Conley 

294 et al., 2013), and long-tailed macaques (Henderson & Shively, 2004). In contrast, studies in 

295 humans showed that contraception decreased DHEAS levels in women (Enea et al., 2009), but 

296 that these changes are related to alterations in serum albumin, DHEAS� main binding protein 

297 (Carlström et al., 2002; Panzer et al., 2006). In premenopausal women, approximately 50-75% of 

298 circulating estrogen derive from adrenal androgens, while in post-menopausal women, this rate is 

299 estimated to 100% (Labrie et al., 1998; Samaras et al., 2013). Unlike humans, chimpanzees do 
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300 not experience menopause (Ellis et al., 2018; Thompson et al., 2007), so it is possible that the 

301 influence of DHEAS in female reproduction may differ between these species. In addition, the 

302 effect of oral contraception in DHEAS levels can be affected by age (Conley et al., 2013) and the 

303 type of contraceptive (Trienekens et al., 1986), which may also explain the contrast between 

304 these studies.

305 Regarding the cognitive tests, we found an interaction between age and the 

306 DHEAS/cortisol ratio on the PC1 factor, which indicates that the DHEAS/cortisol ratio is more 

307 important for cognition in elderly chimpanzees. Previous studies in humans have associated low 

308 DHEAS levels in elderly humans with age-related conditions, including cognitive decline 

309 (Bologa et al., 1987; Flood & Roberts, 1988; Flood et al., 1988; Moffat et al., 2000), 

310 cardiovascular diseases (Jia et al., 2020; Shufelt et al., 2010), and Alzheimer�s disease (Weill-

311 Engerer et al., 2002). DHEAS has its affinity to sigma-1 receptors, and acts by facilitating 

312 neurotransmission in hippocampal neurons and NMDA signaling (Yabuki et al., 2015; Yoon et 

313 al., 2010) The positive effect of the DHEAS/cortisol ratio in PC1 in older individuals may be 

314 related to the beneficial effects of DHEAS in the brain, including anti-inflammatory, antioxidant, 

315 and neuroprotective effects (Aly et al., 2011; Bastianetto et al., 1999; Majewska, 1995; 

316 Rammouz et al., 2011). Experimental studies have shown that DHEAS improves memory 

317 retention in rodents (Flood & Roberts, 1988) and acts in the neocortex and hippocampus by 

318 increasing NMDA receptors, a glutamate receptor involved in neural plasticity and cognitive 

319 processes (Collingridge et al., 2013; Wen et al., 2001). In humans, the cortisol/DHEAS ratio has 

320 been negatively correlated with hippocampal, amygdala, and insula volume in humans, and with 

321 tau and p-tau levels (Jin et al., 2016; Ouanes et al., 2022). Due to the positive effects of DHEAS 

322 in the hippocampus, our results suggest that the dynamics between DHEAS and cortisol in 
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323 chimpanzee brain are similar to the mechanism reported in humans and that a high 

324 DHEAS/cortisol ratio may contribute to preserving cognitive function in older individuals. 

325 Further research on hippocampal volume and adrenal steroids in chimpanzees will help to clarify 

326 this. 

327 The fact that PC1 was associated with the DHEAS/cortisol ratio, but not DHEAS levels 

328 independently, may explain why the literature on the relationship between DHEAS and cognition 

329 is inconsistent (Sorwell & Urbanski, 2010; Vallée et al., 2001). Previous studies have reported 

330 that DHEAS levels are affected by acute and chronic stress due to its antagonistic action on 

331 glucocorticoids (Kalimi et al., 1994; Maninger et al., 2010; McNelis et al., 2013). For this 

332 reason, recent studies that adopted the co-measurement of cortisol and DHEAS to investigate 

333 cognition and stress levels in several species, including marine mammals (Gundlach et al., 2018; 

334 O'Brien et al., 2017), ungulates (Almeida et al., 2008; Jurkovich et al., 2020), humans (De Bruin 

335 et al., 2002; Miller et al., 1998; Ouanes et al., 2022), and nonhuman primates (Goncharova et al., 

336 2012; Maninger et al., 2010; Takeshita et al., 2014; Takeshita et al., 2019). 

337 Our findings may also clarify why there is usually an inverted U-relationship between 

338 stress and cognitive performance (Sapolsky, 2015). One study in rhesus monkeys demonstrated 

339 that moderate stress stimulates DHEAS production (Goncharova et al., 2012). By competing 

340 with cortisol for glucocorticoid receptors (GR), higher DHEAS availability will prevent the 

341 deleterious effects of cortisol in the brain that are associated with the binding of cortisol to GR. 

342 However, intense or prolonged stress will result in a decrease in the DHEAS/cortisol ratio due to 

343 the continuous stress stimuli (Sugaya et al., 2015). Higher cortisol to DHEAS binding of GR 

344 could promote neurodegeneration, which negatively affects memory and cognition (de Kloet et 

345 al., 1999). Due to the competitive relationship between DHEAS and cortisol, the use of both 

PeerJ reviewing PDF | (2022:07:75333:0:1:NEW 2 Aug 2022)

Manuscript to be reviewed



346 hormones in stress studies is a better indicator of the DHEAS availability than is either hormone 

347 measured alone (Gabai et al., 2020; Whitham et al., 2020)..

348 Hormonal levels were not correlated with PC2, but we found a negative correlation 

349 between PC2 and age. In contrast, PC3 was not associated with age nor with hormonal levels. 

350 Age-related decline in cognition has been widely reported in humans and other primates (Hara et 

351 al., 2012; Herndon et al., 1997; Hopkins et al., 2021; Lacreuse et al., 2018; Lacreuse et al., 2014; 

352 Rothwell et al., 2022), and it has been associated with cortical thinning (Ahn et al., 2011), grey 

353 matter atrophy (Mulholland et al., 2021; Nickl-Jockschat et al., 2012), a decline in neuron 

354 density (Edler et al., 2020; Hara et al., 2012; Wilson et al., 2010), oxidative stress, 

355 neuroinflammation, and altered hippocampal intracellular signaling and gene expression 

356 (reviewed by Bettio et al., 2017). Longitudinal studies investigating cognitive decline in 

357 chimpanzees have reported that the aging effect is more pronounced in older individuals 

358 performing spatial tasks, which agrees with our findings (Hopkins et al., 2021). The lack of an 

359 aging effect on PC3 in comparison to PC1 and PC2 observed in the present study suggests that 

360 chimpanzees have a faster age-related decline in tasks requiring spatial memory or social 

361 communication skills in comparison to audio-visual sensory perception. Indeed, previous studies 

362 reported that executive function and spatial cognition are among the first functions to decline 

363 with age in humans (Clark et al., 2012) and other primates (Csete et al., 2015; Foster et al., 2012; 

364 Lacreuse et al., 1999; Ng & Recanzone, 2018; Picq, 2007).

365 This study has some limitations. First, the timing between serum sampling and cognitive 

366 tests varies between individuals. Although DHEAS levels were influenced by age, the 

367 DHEAS/cortisol ratio did not, which is another advantage of using this measurement instead of 

368 isolated DHEAS levels. Nevertheless, we accounted for the effect of the timing between serum 
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369 sampling and cognitive testing in our cognitive models. Second, our data are cross-sectional, and 

370 there are inter-individual differences that may affect test performance or hormonal levels. 

371 However, as shown previously, stress can account for much of the variation on DHEAS levels 

372 (Du et al., 2011; Goncharova et al., 2012; Maninger et al., 2010; Prall et al., 2017; Takeshita et 

373 al., 2014), and we controlled for this factor by measuring cortisol levels. Considering animal 

374 research ethics and the classification of captive chimpanzees as endangered, longitudinal data on 

375 chimpanzee serum paired with cognitive data are difficult to obtain in sufficiently large numbers.

376 Our findings reveal important connections between DHEAS and aging in chimpanzees. 

377 First, that DHEAS declines with aging in both males and females. Second, that DHEAS/cortisol 

378 ratio is important for spatial cognition in elderly chimpanzees. Chimpanzees have an extended 

379 postnatal increase in DHEAS levels called adrenarche, which appears to be unique to humans 

380 and great apes and spans from the pre-pubertal period to mid-adulthood (Bernstein et al., 2012; 

381 Copeland et al., 1985; Cutler Jr et al., 1978; Sabbi et al., 2020). Although the reasons for the 

382 emergence of adrenarche in hominids is still unclear, Campbell (2020); (Campbell, 2021) 

383 hypothesized that this trait evolved to promote brain development during early growth in both 

384 humans and great apes. Our findings support this hypothesis and further suggest that the 

385 extended adrenarche in these species might have contributed to a prolonged period of heightened 

386 DHEAS levels, which may buffer the age-related cognitive decline in these species. Based on 

387 evidence on the function of DHEAS in neuroprotection and neuroplasticity (Bastianetto et al., 

388 1999; Dong & Zheng, 2012; Flood & Roberts, 1988; Kimonides et al., 1998; Kimonides et al., 

389 1999; Majewska, 1995) and the similarities between humans and chimpanzee with regards to 

390 adrenal androgen secretion patterns (Bernstein et al., 2012; Rege et al., 2019), our results support 

391 the hypothesis that DHEAS may have contributed to human cognitive evolution.
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392 In summary, our study is the first to investigate the relationship between DHEAS/cortisol 

393 ratio, age, and cognition in chimpanzees. Our data show evidence of a positive correlation 

394 between DHEAS/cortisol ratio and spatial cognition in aged chimpanzees and of an aging effect 

395 on tool use and social communication. These results contribute to our understanding of the role 

396 of DHEAS in human evolution and highlight the importance of integrating cortisol and DHEAS 

397 in the investigation of age-related disorders. 

398
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Figure 1
Relationship between serum DHEAS levels and age in 107 captive chimpanzees (Pan
troglodytes).

Each data point represents one individual. Data on DHEAS levels were power-transformed to
fit model assumptions. The regression line represents the predicted relationship between
DHEAS levels and age, and the shaded area represents a 95% confidence interval on the
fitted values.
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Figure 2
Interaction between the DHEAS/cortisol ratio and age as predictor of Primate Cognition
Testing Battery PC1 (spatial relationships) in chimpanzees.

Each data point represents one individual. The regression lines represent the predicted
relationship between PC1 and DHEAS levels in three age categories: young (dotted line),
middle-aged (dashed line), and elderly (solid line). The shaded areas represent a 95%
confidence interval on the fitted values.
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Figure 3
Relationship between age and Primate Cognition Testing Battery PC2 (tool use and
social communication) in chimpanzees.

Each data point represents one individual. The regression line represents the predicted
relationship between PC2, and the shaded area represents a 95% confidence interval on the
fitted values.
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