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Despite the eûects of herbivore camping on soil physicochemical properties have been
studied, whether the eûects change soil microbial communities remain unknown,
especially below the surface. Our paired subsoil samples from half month-camping and
non-camping showed for the ûrst time that camping signiûcantly changed the relative
abundance of 21 bacterial phylotypes and ûve fungal phylotypes with signiûcantly
increases in the relative abundance of putative chitinase and Terpenes vanillin-
decomposition genes, nitrite reduction function (nirB, nasA), decreases in the relative
abundance of putative carbon ûxation genes (ackA, PGK, and Pak), starch-decomposition
gene (dexB), gene coding nitrogenase (anfG), and tetracycline resistance gene (tetB) for
bacterial communities, as well as signiûcantly decreases in the relative abundance of
animal endosymbiont and increases in the relative abundance of litter saprotroph and
endophyte for fungal communities. However, camping did not change taxonomic and
functional diversities. Niche restriction was the main driving force of bacterial and fungal
community assembly. Compared with the no camping, camping increased the stability of
bacterial networks but decreased the stability of fungal networks. Camping exerted a
positive eûect on the network through compressing the niche width, and reduced the
change in the network through reducing the niche overlap. This study provides a ûrst
insight into the eûect of animal camping on soil microbial communities for grassland.
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20 Abstract

21 Despite the effects of herbivore camping on soil physicochemical properties have been studied, 
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22 whether the effects change soil microbial communities remain unknown, especially below the surface. 

23 Our paired subsoil samples from half month-camping and non-camping showed for the first time that 

24 camping significantly changed the relative abundance of 21 bacterial phylotypes and five fungal 

25 phylotypes with significantly increases in the relative abundance of putative chitinase and Terpenes 

26 vanillin-decomposition genes, nitrite reduction function (nirB, nasA), decreases in the relative 

27 abundance of putative carbon fixation genes (ackA, PGK, and Pak), starch-decomposition gene 

28 (dexB), gene coding nitrogenase (anfG), and tetracycline resistance gene (tetB) for bacterial 

29 communities, as well as significantly decreases in the relative abundance of animal endosymbiont and 

30 increases in the relative abundance of litter saprotroph and endophyte for fungal communities. 

31 However, camping did not change taxonomic and functional diversities. Niche restriction was the main 

32 driving force of bacterial and fungal community assembly. Compared with the no camping, camping 

33 increased the stability of bacterial networks but decreased the stability of fungal networks. Camping 

34 exerted a positive effect on the network through compressing the niche width, and reduced the change 

35 in the network through reducing the niche overlap. This study provides a first insight into the effect of 

36 animal camping on soil microbial communities for grassland.

37 Keywords: fungi; bacteria; grassland; network robustness; niche breadth; niche overlap

38

39 Introduction

40 Camping may involve many fields, such as military, ecotourism recreation, wildlife habitat behavior 

41 and grassland management. In the field of grassland management, herbivore camping can be defined 

42 as important parts of the technology of improving and restoring degraded grassland by herbivores 
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43 night penning that removes the undesired vegetation, and changes the nutrient content and structure 

44 of soils through herbivore excretion and trampling during night penning, as well as subsequent sowing 

45 (Jiang et al. 1996; Jiang et al. 1999; Yuan et al. 2012; Zhang et al. 2001). It has been proved to be a 

46 successful comprehensive technology (Zhang et al. 2001) that can improve natural grassland and 

47 rebuild artificial grassland at a very low cost (Yuan et al. 2012; Zhang 2002). The camping has been 

48 applied in grassland and pasture management in New Zealand, North Korea, and Inner Mongolia, 

49 Guizhou, and Yunnan of China.

50 The previous in-depth explorations have advanced this field. Camping can change vegetation and soil 

51 attributes (Jeffrey & David 1996; Zhang et al. 2001). On the one hand, at the community level, camping 

52 is reported to having able to clean weed and shrub, change vegetation composition, increase forage 

53 yield (Yuan et al. 2012). For instance, camping (grazing and trampling) can remove almost all of the 

54 aboveground original plants, reduce the number of live shrubs, and fast the growth of reseeding 

55 grasses (Zhang et al. 2001). Camping significantly increases the coverage, proportion, and yield 

56 (Zhang 2002) of grass, but significantly reduces the coverage and proportion of weeds (Yuan et al. 

57 2012) and the sprouted branches number of shrub Salix inamoena (Zhang 2002). Furthermore, at the 

58 physiological level of plants, sheep manure and urine increase the concentration of the soil solution, 

59 which affect the water potential of plants; sheep feces and urine significantly change the cell 

60 membrane permeability of leaf and root, however, the feces and urine alone does not work (Zhang et 

61 al. 1999a). In terms of plant nutrient content, camping significantly increases the crude protein content 

62 in the leaves of shrub Salix inamoena (Zhang 2002). Besides, camping impact is found to be varied 

63 greatly with topographic positions, trampling intensities and vegetation types (Jeffrey & David 1996). 
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64 On the other hand, camping is documented to able to fertilizing grassland (Yuan et al. 2012; Zhang et 

65 al. 2001). For example, soil fertility increases with the increase of camping intensity. Camping 

66 improves the soil organic matter concentration, the nitrogen (N), phosphorus (P) and potassium 

67 availability and the soil pH by 41-63%, 14-33%, 143-460%, 67-330%, and 0.7-1.2 units, respectively 

68 (Jiang et al. 1996). Camping increases the concentrations of soil ammonium N and nitrite N which 

69 were high enough that potentially toxic to plant roots (Zhang et al. 2001). However, whether and how 

70 camping affects the structure, function and the potential interaction of soil microbial communities have 

71 not been explored.

72 Predecessors had used the idea of reductionism to decompose the camping into browsing (grazing), 

73 trampling and excretion of faeces and urine (Jiang et al. 1999; Zhang 2002; Zhang et al. 1999a; Zhang 

74 et al. 1999b). Browsing and trampling completely removes grassy plants (Zhang 2002), whereas some 

75 shrub Salix inamoena still survives (Jiang et al. 1999). Trampling increases the compactness of 0-20 

76 cm soil and the bulk density of 10-20 cm soil, however, first increases and then decreases the bulk 

77 density of 0-10 cm soil (Jiang et al. 1999). Additionally, trampling damages herbage, buries seeds, 

78 promotes germination, reduces standing plant litter, increases soil compaction and bulk density, 

79 reduces soil porosity, water stable aggregates, water permeability and air permeability, resulting in 

80 rain logging and anoxia (Hou et al. 2004). Although treading increases soil total N and P 

81 concentrations, and plant N and P contents, but decreases plant C concentrations, C:N and C:P ratios 

82 and exacerbates P limitation (Li et al. 2021b). Treading increases the abundance of soil total bacteria, 

83 fungi, and arbuscular mycorrhizal fungi (Liu et al. 2015). Inputs of excrement and urine are a crucial 

84 pathway by which herbivores change the elements and stoichiometry of plants and soil (Li et al. 
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85 2021a), and fertilizing grassland (Yu et al. 2008). Although urine input has a short-term scorch impact 

86 on vegetations (Yu et al. 2008), urine increases the root biomass, herbage N, root N, total plant N by 

87 3.03-27.82%, 22.92-88.99%, 21.09-35.51% and 30.90-33.19%, respectively (Williams et al. 1999), 

88 and could enhance grass tillering, and elevate the height and weight of grass tillers, which improving 

89 in grass biomass (Yu et al. 2008). Moreover, urine increases pH, microbial activity, microbial biomass 

90 (Rooney et al. 2006), NH4
+, and microbial biomass N by 0.1-1.03 units, 63.27%, 7.31%, 535.90-

91 569.05%, and 122.83-185.95% (Williams et al. 1999), respectively. In addition, urine increases the 

92 total P, molybdate reactive P, organic P and condensed P contents of soil solution by 470.19%, 

93 431.25%,731.82% and 392.42%, respectively (Williams et al. 1999), and substantially changes 

94 bacterial community structure (Rooney et al. 2006), significantly increases ammonia-oxidizing bacteria 

95 (AOB) species richness by 18.97-350% (Rooney & Clipson 2008). The studies of dung addition are 

96 more in-depth than those of urine addition. Manure input improves nutrient availability, aggregate 

97 stability, and enhances soil fertility and yield (Asmita et al. 2021; Shi et al. 2021). Excrement results in 

98 more soil (total, microbial and organic) C, N and P accumulations (Arthur & Bruno 2021; Li et al. 2021a; 

99 Maillard & Angers 2014), AN, AP, AK, OM, and TK contents (Liu et al. 2021b). For example, excrement 

100 increases microbial carbon (C), nitrogen (N), organic C, total N by 88%, 84%, 27%, and 33%, 

101 respectively (Liu et al. 2020a). Manure increases the activities of sucrase(Liu et al. 2021b), ³-1,4-

102 glucosidase, dehydrogenase, acid and alkaline phosphatase, N-acetyl-³-D-glucosaminidase, urease 

103 and sulfatase by 124.1%, 147%, 114%, 39%, 112%, 58%, 104% and 228%, respectively (Liu et al. 

104 2020a), and increases soil bacterial diversity (Liu et al. 2021b), but declines fungal diversity (Guo et 

105 al. 2022). Besides, sheep faeces and urine increases soil Fe content and plant Mg, Mn contents, 
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106 decreases soil Zn content and plant Ca, Fe and Zn contents (Zhang et al. 1999b). However, the 

107 influences of urine or faeces input on soil and plant element contents and stoichiometry distinguish 

108 from that of co-inputs (Li et al. 2021a). Despite the studies provides credible supports to salubrious 

109 effects of excrements on soil and plant (Rayne & Aula 2020), since the microbial community 

110 composition in manure to be different and less diverse than in soil (Andrea et al. 2021), animal faeces 

111 input into soils results in the introduction of dung-derived microbes (Macedo et al. 2021), and the 

112 propagation and proliferation of antibiotic resistance genes in soil, likely constituting serious threat to 

113 ecosystem and human health (Zhang et al. 2021), we still need to understand the effects of camping 

114 on soil microorganisms and antibiotic resistance genes. Although alone or mix effect of browsing 

115 (grazing), trampling and excretion of faeces and urine on soil have been well studied, since complex 

116 interactions exist in these effects (Li et al. 2021a), making it difficult to extrapolate to the overall effect 

117 of camping, remains unknown about how camping alter soil microbial communities. 

118 Therefore, the aims of this study are to deciphering whether the herbivore camping changes the 

119 taxonomic, functional and network patterns of soil microbial communities. Specifically, this study 

120 answers for the first time the following questions:(1) whether the camping enhances microbial 

121 diversity? (2) What microorganisms are enriched and inhibited by the camping and what are their 

122 functional implications? (3) whether and how camping can improve microbial network interaction? 

123 This study provides novel insight into the effects of camping on pasture ecosystems that experience 

124 herbivore camping, a common to grasslands worldwide, and supplies update knowledges for 

125 understanding this technology.

126 Material & Methods
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127 Sampling sites, design and soil sampling

128 Sampling sites were located in Weining county (26°52'N, 104°17'E; ca. 2440 m above sea level), 

129 Guizhou province, SW China (Zhang et al. 2001). It experiences a subtropical and warm temperate 

130 monsoon climate with mean annual rainfall of 926 mm and temperature of 11.6 °C, a frost-free period 

131 of 180 d, and average sunshine hours of 1800 (Wu et al. 2020). The yellow brunisolic soil covers this 

132 area (Zhang et al. 2001). For surface soil (0-10 cm), the organic carbon content was 61.05 g/kg, total 

133 nitrogen content 3.88 g/kg, total phosphorus content 1.01 g/kg, alkali hydrolyzed nitrogen content 

134 354.04 mg/kg, and available phosphorus content 6.43 mg/kg; for subsurface soil (10-20 cm), the 

135 organic carbon content 41.30 g/kg, total nitrogen content was 2.78 g/kg, total phosphorus content 0.82 

136 g/kg, alkali hydrolyzed nitrogen content 259.05 mg/kg, and available phosphorus content 3.50 mg/kg. 

137 Wumeng semi-fine wool sheep accounts for 62% of sheep in stock of Guizhou (Wu & Shen 2020). 

138 Wumeng semi-fine wool sheep is of economic significance in the Wumeng mountain area (Wu et al. 

139 2020) of Guizhou (Wu & Shen 2020). The sheep camping (ca. half sheep/night/m2) was carried out 

140 spontaneously for 15 nights (Jiang et al. 1996) by local herdsmen in October 2018. Sheep camping is 

141 a spontaneous grassland management of local herdsmen. The herdsman allowed us to sampling 

142 without any official and document permission, and we did not participate in the implementation of the 

143 camping. Therefore, this study does not involve animal related ethic matters. At the16th day, we only 

144 took subsurface soil (10-20 cm) samples from three paired sites ((camping sites and corresponding 

145 no camping sites) × 3) where the topographies, plants, and soil type are nearly identical. Three 

146 samples were collected randomly at each site and mix them into a composite sample. This sampling 

147 method reduced to the maximum extent the impacts of non-design source variation (e.g., background 
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148 environmental variation). 

149 DNA extraction, Sequencing of amplicons, Processing of sequence data, and Bioinformatics 

150 analysis

151 Soil DNA was isolated by a PowerSoil DNA Isolation Kit, and its quality and quantity were checked by 

152 electrophoresis (Ding et al. 2020). The PCR amplification was performed using Applied Biosystems 

153 Gene Amp PCR System 9700. The V4 region of the bacterial 16S rRNA was PCR-amplified using the 

154 primers 806R and 515F and the fungal ITS2 region was amplified using the primers ITS3_KYO2 and 

155 ITS4. The amplified products were extracted using Qubit 2.0 (ThermoFisher). Illumina sequencing was 

156 carried out using an Illumina Hiseq platform with PE250 mode (Illumina, Inc.). The original sequencing 

157 data are spliced and filtered to obtain high-quality target sequences. Usearch 

158 (http://drive5.com/uparse/) was performed to obtain OTU matrixes at a cutoff of 97%. Taxonomy was 

159 assigned using Uclust (https://drive5.com/usearch/manual/uclust_algo) based on the Silva database 

160 (https://www.arb-silva.de/) for the bacterial community or the Unite database (https://unite.ut.ee/) for 

161 the fungal community (Ding et al. 2020). Bacterial communities were rarefied to 10432 sequences and 

162 fungal communities were rarefied to 9236 sequences for each sample. To understand the effects of 

163 camping on soil microbial biodiversity, Goods Coverage, Observed OTUs, Chao1, ACE, InvSimpson 

164 (Inverse Simpson), Fisher�s diversity and Faith�s Phylogenetic (PD) diversity were calculated. The 

165 methods used to retrieve the functional profiles and functional diversity of bacterial and fungal 

166 communities follow the methods in our previous study (Ding & Wang 2021) with minor modifications. 

167 Briefly, soil bacterial functional profile were predicted using �Tax4Fun� package 

168 (http://tax4fun.gobics.de/Tax4Fun/Tax4Fun_0.3.1.zip) in R version 3.0 (https://cloud.r-project.org/), 
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169 and FAPROTAX version 1.2.4 (https://pages.uoregon.edu/ 

170 slouca/LoucaLab/archive/FAPROTAX/SECTION_Download/MODULE_Downloads/CLASS_ 

171 Latestrelease/UNIT_FAPROTAX_1.2.4/FAPROTAX_1.2.4.zip) in Pyhton version 3.7.4 

172 (https://www.python.org/downloads/release/python-374/). Fungal functional profiles were predicted 

173 using FUNGuild (http://www.funguild.org/) in Pyhton version 3.7.4. richness, Shannon, Pielou, 

174 InvSimpson of functions were calculated using �vegan� package (https://cloud.r-project.org/) in R 

175 version 3.6.

176 Statistical analysis

177 Shapiro Wilk test and Levene test were applied to determine the normality and homoscedasticity of 

178 data, respectively (Ding & Wang 2021). The ANOVA and t test were used to test the difference 

179 between the camping and no camping groups when data could meet the requirements of normality 

180 and homoscedasticity. The Kruskal-Wallis test and Wilcoxon test were performed when the data could 

181 not meet (Ding et al. 2020).

182 To figure out the important phylotypes with significant differences between groups, the random forest 

183 analysis (�randomForest� package) and Kruskal-Wallis test (�stats� package) were used in R.

184 Network analysis is a robust and effective method to quantify the microbial interaction (Kong et al. 

185 2019; Zhou et al. 2020). To minimize the impact of data sparsity on the network and strengthen the 

186 reliability of the network, only bacterial or fungal OTUs appearing in >= two samples (Banerjee et al. 

187 2019) and had a total relative abundance >= 0.1% in all samples were included in the network analysis 

188 (Zhang et al. 2018), resulting in 881 bacterial and 183 fungal OTUs. Microbial interaction networks 

189 were constructed using the �WGCNA� and �igraph� packages. The Pearson correlation coefficient was 
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190 calculated for each pair of OTUs, Benjamini and Hochberg corrected p value was reported (Fan et al. 

191 2020). Random matrix theory was used to determine the optimal threshold of correlations in 

192 constructing microbial interaction networks in both our and previous studies (Zhou et al. 2020). A 

193 threshold of strong Pearson�s r > 0.8 and p < 0.001 was set based on the three facts: (a) the microbial 

194 phylotypes that shows strong correlations with each other are more probably to interact with each 

195 other (Fan et al. 2020); (b) the optimal threshold from random matrix theory and priori knowledges 

196 (Fan et al. 2020; Yuan et al. 2021) is about 0.8; (c) network properties were needed to be compared 

197 under the same conditions (Zhou et al. 2020). Two sided Kolmogorov-Smirnov test were used by 

198 performing �ks.test� function to discriminate the cumulative distribution of 10000 bootstrapping node 

199 properties of the camping and no camping networks where the null hypothesis is that the properties 

200 under the camping and no camping have same distribution patterns (Banerjee et al. 2019), and 

201 Kolmogorov-Smirnov test and Kruskal-Wallis test were employed to determine the difference in 

202 robustness (average degree and natural connectivity) between the camping and no camping networks 

203 after 50% nodes were stochastically removed (Banerjee et al. 2019; Yuan et al. 2021). Furthermore, 

204 network robustness defined as the declines in microbial average degree (and natural connectivity) 

205 with the increasing proportion of removing nodes (and edges) were tested (Pan et al. 2021; Shi et al. 

206 2021). The linear regression model was used to describe these relationships. The linear regression 

207 model was also used to test the effect of niche width and niche overlap on the network property (degree 

208 and difference between degrees (�degree)). Bayesian structural equation model (Bürkner 2017) was 

209 implemented to examine potential pathways that can account for how camping alter the network 

210 property. A pathway was acceptable if the 95%CI (confidence interval) of the coefficient of the pathway 
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211 does not contain 0 (Bürkner 2017).

212 Results

213 Diversities and composition of soil microbial communities under camping and no camping

214 > 96% of coverage in all samples suggested that the good sampling and sequencing (Ding & Wang 

215 2021).The normality and homoscedasticity tests showed that Observed OTUs, Chao1, ACE, 

216 InvSimpson, Fisher, PD of soil microbial communities followed the premises of normality and 

217 homogeneity (Shapiro Wilk's test and Levene's test, p = 0.0610 � 0.9661, Table S1). As expected, the 

218 ANOVA and T test showed that all diversity indexes in the camping group were not significantly distinct 

219 from the no camping group (p = 0.045 � 0.901, Table S2). Unexpectedly, the PERMANOVA test with 

220 9999 permutations showed that there were no evidently difference in soil bacterial or fungal community 

221 composition between groups overall community level based on Bray-Curtis (R2=0.224, p = 0.20 for 

222 bacteria; R2=0.192, p = 0.50 for fungus), jaccard (R2=0.220, p = 0.20 for bacteria; R2=0.225, p = 0.30 

223 for fungus), unweighted unifrac (R2=0.214, p = 0.40 for bacteria; R2=0.204, p = 0.50 for fungus) and 

224 weighted unifrac (R2=0.169, p = 0.60 for bacteria; R2=0.222, p = 0.50 for fungus) distances (Figure 

225 S1). However, Venn plots showed that 385 (1.52% of total sequence number) and 390 (1.46% of total 

226 sequence number) bacterial OTUs and 259 (2.96% of total sequence number) and 192 (1.13% of total 

227 sequence number) fungal OTUs were unique to the camping and the no camping, respectively (Figure 

228 S2). Furthermore, Random Forest analysis found that these two groups could be clearly predicted and 

229 significantly separated by 21 bacterial phylotypes and five fungal phylotypes (Kruskal-Wallis test, p = 

230 0.0369 � 0.0495, Figure 1). The camping significantly increased the abundance of Chelatococcus, 

231 Luteimonas, Dyadobacter, Ruminococcaceae UCG-005, Aquamicrobium, Cohnella, Limnothrix, 
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232 Pseudanabaena PCC-7429, Family XIII AD3011 group, Christensenellaceae R-7 group, 

233 Prevotellaceae UCG-004, Olivibacter, OLB13, and Rummeliibacillus, whereas significantly reduced 

234 the abundance of Ruminococcus 1, LD29, Rudaea, RB41, FukuN18 freshwater group, Cellvibrio, and 

235 Clostridium sensu stricto 18 in bacterial communities. Besides, the camping significantly increased the 

236 abundance of Podospora, Rhexocercosporidium, Symbiotaphrina, however, significantly decreased 

237 the abundance of Rhizomucor and Candida in fungal communities (Kruskal-Wallis test p = 0.0369 � 

238 0.0495), compared with the no camping.

239

240 Functional profiles and diversities of soil microbial communities under camping and no 

241 camping

242 Contrary to the intuitive, as much as 83 function group levels related to C (Figure S3-16, and 57-

243 59), N (Figure S18-31, and 60-65), P (Figure S66-70), hydrogen (Figure S32), sulfur (Figure 

244 S33-37), iron (Figure S38), manganese (Figure S39) cycles, plastic degradation (Figure S17), 

245 fermentation (Figure S40), plant pathogens (Figure S41), animal parasites or symbionts (Figure 

246 S42), predatory and/or parasites (Figure S43-45), mammal gut bacteria (Figure S46), bacterial 

247 nutrition types (Figure S47-55), and antibiotic resistance genes (Figure S71-82) were tested 

248 using Wilcoxon rank sum test. These tests suggested that no evident differences were detected in 

249 diversity indexes (richness, Shannon, Pielou, InvSimpson) of these bacterial functions between 

250 camping and no camping (Figure S3-82). Besides, no significant differences were detected in 

251 diversity indexes (richness, Shannon, Pielou, InvSimpson) of growth form, guild, trait, and trophic 

252 mode of fungus (Figure S83-86). However, bacterial functional analysis showed that compared 
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253 with the no camping soils, the camping significantly increased the relative abundance of dark 

254 thiosulfate oxidation, and cellulolysis, but significantly decreased the relative abundance of 

255 xylanolysis (Welch�s t test with two sides p = 0.032 � 0.048, Figure 2). The camping significantly 

256 increased the relative abundance of C decomposition genes (chitinase and Terpenes vanillin), nitrite 

257 reduction function (nirB, nasA), significantly decreased the relative abundance of C fixation genes 

258 (ackA, PGK, Pak), C decomposition gene (dexB), gene coding nitrogenase (anfG), and tetracycline 

259 resistance gene (tetB). (Welch�s t test with two sides p = 8.95e-4 � 0.046, Figure 2). The camping 

260 significantly decreased the relative abundance of animal parasites or symbionts (Welch�s t test with 

261 two sides p = 0.032). The fungal functional analysis showed that the camping significantly decreased 

262 the relative abundance of animal endosymbiont (Welch�s t test with two sides p = 0.030). 

263 Additionally, the camping significantly increased the relative abundance of litter saprotroph and 

264 endophyte (Welch�s t test with two sides p = 0.013, 0.018, Figure 2).

265 Soil microbial networks under camping and no camping

266 In order to determine the effects of camping on microbiome associations, bacterial and fungal 

267 networks under the camping and no camping treatments were established. Results revealed distinct 

268 association patterns (Figure 3). Compared to the no camping soils, although the camping decreased 

269 the number of nodes (by 3%, 19%), number of clusters (9%, 10%), centralization degree (4%, 9%), 

270 negative edges proportion (4%, 39%) of bacterial and fungal networks, elevated the positive edges 

271 proportion (3%, 27%) and modularity (0.1%, 37%) of bacterial and fungal networks. The camping 

272 decreased central eigen (by 1%) and vulnerability (11%) of bacterial network, however, increased 

273 those (15%, 44%) of fungal network. The camping increased number of edges (by 5%), connectance 
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274 (11%), average degree (8%), number of positive edges (8%), number of negative edges (1%) and 

275 natural connectivity (0.01%) of bacterial network, whereas, increased those (49%, 21%, 36%, 35%, 

276 69%, 38%) of the fungal network (Table S3). Kolmogorov�Smirnov test indicated that node degree, 

277 closeness, transitivity, and eigenvector centrality under the camping were statistically distinct from 

278 those under no camping (p = 2.2e-16 - 4.62e-8, Table 1). We assessed the difference in network 

279 stability (average degree and network connectivity) between the camping and no camping 

280 treatments by network bootstrapping after 50% nodes were randomly removed. Kolmogorov�

281 Smirnov test indicated that the camping significantly changed the network stability (average degree 

282 and network connectivity, p = 2.2e-16, 2.2e-16), and Kruskal test revealed that average degree and 

283 network connectivity of bacterial network were 1.9 � 3.9-fold those of fungal network, regardless of 

284 the camping and no camping (Table 2). Interestingly, the camping significantly increased the 

285 average degree and network connectivity of the bacterial network by 5% and 1% (p = 2.2e-16, 2.2e-

286 16), respectively. Nevertheless, the camping significantly decreased those of the fungal network by 

287 50% and 40% (p = 2.2e-16, 2.2e-16), respectively. Furthermore, we performed robustness analysis 

288 of networks based on removing a proportion of nodes and edges. Results showed that the average 

289 degree and network connectivity of bacterial network were higher than those of fungal network, 

290 regardless of the camping and no camping. Compared with the no camping soils, the camping 

291 increased the average degree and network connectivity of bacterial network, however, decreased 

292 those of fungal network, irrespective of the remove of nodes and edges (Figure 4).

293 Niche breadth, niche overlap, Specialist/Generalist species and assembly mechanism of 

294 microbial communities under camping and no camping
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295 Wilcoxon rank sum test revealed that the bacterial niche breadth was 1.2 � 1.3-fold those of fungi (p 

296 = 2.22e216 � 1.3e216), regardless of the camping and no camping. Compared with the no camping 

297 soils, the camping decreased the niche breadth index of bacteria and fungi by 3% (p = 0.054) and 

298 14% (p = 1.9e205), respectively (Figure 5a). Wilcoxon rank sum test revealed that fungi niche 

299 overlap index was 1.2 � 1.4-fold that of bacteria (p < 2.22e216), regardless of the camping and no 

300 camping. Compared with the no camping soils, the camping increased the niche overlap of bacteria 

301 and fungi by 2% (p < 2.22e216) and 13% (p < 2.22e216), respectively (Figure 5b). T test 

302 suggested that the percentage of bacterial generalist was 4.1 � 4.7-fold that of fungi (p = 0.0022, 

303 0.0016), the percentage of fungal specialist was 5.8-fold those of bacteria (p = 0.015, 0.0023), 

304 regardless of the camping and no camping (Figure 5c). Compared with the no camping, the 

305 camping increased percentage of bacterial generalist and decreased percentage of bacterial 

306 specialist by 3% (T test, p = 0.583) and 1% (T test, p = 0.953), respectively. Unexpectedly, the 

307 camping decreased the percentage of fungal generalist and percentage of fungal specialist by 10% 

308 (T test, p = 0.719) and 1% (T test, p = 0.953), respectively.

309 Understanding how the manage and evolution shape community assembly mainly involves two 

310 opposing views: niche and dispersal hypothesis. In order to identify the first-order drivers that drive 

311 community assembly, dispersal�niche continuum index (DNCI) was used to quantify the relative 

312 importance of niche or dispersal process (Vilmi et al. 2020). Result showed that the E values from 

313 niche-controlled model and niche - and dispersed controlled model were lower than that from 

314 dispersal-controlled model (Figure 5d-e), indicating that niche restriction was the main driving force 

315 of bacterial and fungal community assembly.
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316 Discussion

317 Herbivore camping changes the structure of subsoil microbial communities with functional 

318 implications

319 Few studies found, in the pasture, herbivore camping affects soil physical, and chemical properties 

320 (Jiang et al. 1999; Niu et al. 2009; Zhang et al. 1999b; Zhang et al. 2001). Herbivore returns 60-95% 

321 of intake nutrients to grassland in the form of urine and feces (Niu et al. 2009). Camping herbivore 

322 increases soil compactness by treading and lying and increased soil temperature by lying. In 

323 addition, camping also destroys weeds. As far as we know, none researches have ever been 

324 reported subsoil microbial communities involved in herbivore camping. Our study firstly 

325 demonstrated that the camping significantly enriched and depleted the bacterial and fungal 

326 phylotypes, which might result in microbial community function fluctuations, and has important 

327 implications for soil carbon and nutrient cycling, and soil and plant health.

328 For increased bacterial genera, the genus Chelatococcus is denitrifier with the nirK gene, degrades 

329 PAHs, nitrilotriacetate, acesulfame, aminopolycarboxylic acids, and crude-oil (Table S5), this genus�s 

330 enrichment in camping could contribute to the increase in the relative abundance of dark thiosulfate 

331 oxidation (Figure 2) since it could employ desulfurization (Table S5). Luteimonas is found in sewage 

332 sludges, crude oil, waste compost, rumen, and manure, has a key role during the composting 

333 humification, anaerobic digested residue, manure, and the wood composting process. This genus can 

334 degrade various carbohydrates such as starch, cellulose, chitin, lignocellulose, aromatic hydrocarbon, 

335 has catalytic activities involving in oxidase, catalase, alkaline phosphatase, esterase, and esterase 

336 lipase, and organic matter degradation (Table S5). In addition, Luteimonas is aerobic and nitrate 
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337 reducing bacteria (Mekdimu et al. 2021), has ability in denitrifying (David et al. 2018) by reducing nitrite 

338 only to nitrous oxide (N2O) (Zhang et al. 2017c). It promotes early plant growth and development, 

339 increases the acquisition of nitrogen (N) and phosphorous (P) by plants (Claire 2019). Luteimonas 

340 shows a slight inhibition of pathogen growth, as part of healthy microbiome of healthy plants (Kristina 

341 et al. 2020). Luteimonas carries some antibiotic resistance genes (Gou et al. 2021). The dissipation 

342 of Luteimonas in the composts contributed greatly to the reduction in relative abundance of antibiotic 

343 resistance gene (Liu et al. 2020b; Wang et al. 2021). It also degrades antibiotic sulfamethoxazole 

344 (Table S5). Luteimonas is also considered as an useful indicator for soil amelioration (Guo et al. 2017). 

345 Dyadobacter utilises organic residue, cellulolytic (Table S5), is involved in partial nitrification (Zhang 

346 et al. 2019) and disease suppression (Fu et al. 2017), and can increases soil Nitrate N, ammoniacal 

347 N, and plant growth (Saurabh et al. 2018). Ruminococcaceae UCG-005 can be found in rumen, 

348 intestinal microbiome, faeces of ruminant, and cattle houses; It can digest fiber, and produce short 

349 chain fatty acids by fermenting dietary polysaccharides (Table S5). Aquamicrobium genus is found in 

350 the activated sludge, sewage, wastewater, and soil (Table S5). They are ammonia oxidizing bacteria 

351 (Su et al. 2021), can largely contribute to the nitrogen removal (Sun et al. 2019), and are able to 

352 degrade recalcitrant and complex organic pollutants such as heterocyclic compounds and aromatic 

353 compounds (Table S5). It can also increase the biomass (Qu et al. 2015). Cohnella can degrade xylan, 

354 cellulose, carboxymethyl cellulose, chitin, sawdust, and litter (Table S5), and can fix nitrogen (Xiao et 

355 al. 2019). Limnothrix can metabolise a wide range of organic substrates such as amino acids, 

356 carbohydrates, and carboxylic acids (Table S5). The Pseudanabaena PCC-7429 genus is small 

357 filamentous cyanobacterium, which is often an epiphyte of Microcystis colonies (Christopher & Jennifer 
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358 2022) and can be found in microbial mats (Nataliia et al. 2020). Christensenellaceae R-7 group 

359 degrades organic matter. For instance, it can powerfully degrade carbohydrates, amino acids, and 

360 carboxylic acids, and also performs propionate and butyrate methanogenic degradation (Table S5). 

361 The Prevotellaceae UCG-004 genus can be found in rumen and faeces of ruminant, and utilises 

362 starch, protein, peptides, hemicellulose, and pectin (Table S5). Olivibacter can be found in soils, waste 

363 and gut, degrade hydrocarbon and polymer, complex and toxic compounds, take part in partial 

364 nitrification, and enable fixing nitrogen to promote plant growth (Table S5). The OLB13 genus harbors 

365 genes that encode key enzymes for respiratory ammonification, N2O-detoxification and CO2 fixation 

366 pathways, plays key roles in nitrite accumulation, and has anaerobic fermentation function (Table S5). 

367 Rummeliibacillus is facultative anaerobic, is found in organic farming soils, and composting processes; 

368 It carries carbohydrate-utilizing genes involved in protein and cellulose metabolism; It hydrolyses 

369 starch and gelatin, degrades polybrominated diphenyl ethers and fiber, produces medium-chain 

370 carboxylic acid can improve the efficiency of carbohydrate uses in the leaf litter and the sludge (Table 

371 S5). Additionally, it has the ability to antagonise the growth of soilborne plant pathogens Fusarium 

372 sambucinum (Mohamed et al. 2017). Higher abundance of the genera (Chelatococcus, Luteimonas, 

373 Dyadobacter, Ruminococcaceae UCG-005, Aquamicrobium, Cohnella, Limnothrix, Pseudanabaena 

374 PCC-7429, Christensenellaceae R-7 group, Prevotellaceae UCG-004, Olivibacter, OLB13, and 

375 Rummeliibacillus) in camping than in no camping (Figure 1) suggested that camping could be 

376 beneficial to soil carbon and nitrogen cycling and health. 

377 For the decreased bacterial genera, the Ruminococcus 1 genus is the most significant cellulose-

378 degrading genus in the intestine and rumen of herbivores (Zhang et al. 2017a), and produce several 
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379 types of and most of cellulases and hemicellulases, and a large amount of cellulolytic enzymes, such 

380 as exoglucanases, endoglucanases, glucosidases, and hemicellulases; It can degrade plant 

381 polysaccharides, hemicellulose, pectin, and cellulose present in the plant cell wall, fiber, xylan and 

382 pectin, degrade complex carbohydrates, ferment complex nondigestible polysaccharides (Zhang et al. 

383 2022), and break down fibrous plant material (Table S5). Its increases enhance the fiber degradation 

384 (Pan et al. 2018). LD29 can use cellulose, mannan, xylan, chitin, starch, and sulfated polysaccharides 

385 (Table S5). This genus can be found in gut (Liao et al. 2021). The higher abundance of LD29 is found 

386 in high oxygen environments than in low oxygen environments (Zhao et al. 2021). The lower 

387 abundance of LD29 genus and higher abundance of the anaerobic genus OLB13 and 

388 Rummeliibacillus in camping than that in no camping (Figure 1) likely suggested a hypoxic 

389 environment under camping. This speculation may reflect previous findings of impacts of trampling, 

390 which showed that camping and trampling reduced soil air permeability and caused soil hypoxia (Hou 

391 et al. 2004). Rudaea can be found in the activated sludge (Federico et al. 2013), plays key players in 

392 nitrification and N assimilation (Meier et al. 2021), can decompose plant residues and organic matter, 

393 and convert solid organic waste into useable nutrients for plants; It is involved in denitrification or the 

394 biodegradation of some aromatic compounds, cellulose, biphenyl, naphthalene, phenol and antibiotics 

395 (Table S5); It is resistant to multiple antibiotics (Zhao et al. 2019) and produce antifungal metabolites 

396 (Nasser et al. 2020). In addition, Rudaea is a pathogenic species (Li et al. 2021c). RB41 is commonly 

397 found in rhizosphere (Huang et al. 2021b), and petroleum contaminated soil (Alexandria & Rachel 

398 2019), accounts for the majority of soil C flux, play key role in nitrification and N assimilation, has 

399 strong adaptability to low nutrition, act an crucial role in driving the soil metabolic and biogeochemical 
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400 cycling, enhance the biodegradation of polyfluoroalkyl substances and has substantial application 

401 value in environmental pollution remediation (Table S5). The genus FukuN18 freshwater group is 

402 found in pasture soils exposed to urea (urine patches) (Ganasamurthy et al. 2021). Higher abundance 

403 of this genus in ecosystems indicate the degradation status of ecosystems (Yang et al. 2019). Lower 

404 abundance of this genus in camping than that in no camping (Figure 1) suggested that camping could 

405 improve the soil ecosystem. Most Cellvibrio species are saprophytic soil bacteria degrading plant cell 

406 wall polysaccharides (Yannick & David 2013), drivers cellulose and hemicellulose fibers hydrolysis (Li 

407 et al. 2019), Cellvibrio is involved in the degradation of glucans, pectin, mannan, arabinan and chitin, 

408 and cell wall polysaccharide, and in the N-cycle, has nitrate-reducing activity (Table S5). Cellvibrio is 

409 also common to plant inhabitants with nitrogen fixation activity (Xiao et al. 2019) that promote the 

410 increase of biomass (Akyol et al. 2019; Cristóbal et al. 2022). Cellvibrio genus carries some antibiotic 

411 resistance genes (Gou et al. 2021), such as tetracycline resistance gene (Zhang et al. 2017b). 

412 Clostridium sensu stricto 18 is hydrocarbon degrading (Diana et al. 2020) and hydrogen-producing 

413 genera (Yang & Wang 2021).

414 For increased fungal genera, Podospora species are saprophytic, obligately coprophilous, cellulose 

415 degraders inhabiting the dung of various herbivores such as rabbits, goats or horses and also isolated 

416 as endophytes from trees, grass as well as herbaceous plants and soils; It decay recalcitrant 

417 lignocellulose and plant biomass due to its lignocellolytic enzymes (Table S5), consequently result in 

418 an increase of soil fertility (He et al. 2019). It could be served as antifungal agent (Liu et al. 2021a), 

419 contributes to antagonism relationship with pathogenic microorganisms (Yim et al. 2017), has 

420 significant effects on controlling soil-borne diseases (Tao et al. 2020), and also enhance root growth 
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421 (Yim et al. 2017). Therefore, Podospore is most abundant in healthy soils (Xu et al. 2012). Higher 

422 abundance of this genus in camping than that in no camping (Figure 1) suggested that camping could 

423 improve the soil health. Rhexocercosporidium is a phytopathogenic fungus commonly found in soils 

424 (Douterelo et al. 2016), and can cause ginseng rusty root rot, rusted root of Ginseng, such as 

425 Rhexocercosporidium panacis (Table S5). Higher abundance of this genus in camping than that in no 

426 camping (Figure 1) suggested that camping might negatively impact on some plants. Members of the 

427 Symbiotaphrina genus are gut endosymbionts, capable of digesting dried plant and woody substrates, 

428 degrading the disaccharide cellobiose, and assisting the host to digest the food and detoxify various 

429 plant materials (Table S5). It should be noted that no harmful effect of Symbiotaphrina is reported (Li 

430 et al. 2022).

431 For the decreased fungal genera, Rhizomucor is extracellular ³-glucosidase producer; Rhizomucor 

432 miehei in our study contains 110 glycoside hydrolases, 118 glycosyl transferases, 2 polysaccharide 

433 lyases, 20 carbohydrate esterases, 155 proteases, 97 lipases and esterases, 15 cellulases, 16 

434 chitinases; It can produce 3-hydroxy-3-methylglutaryl coenzyme A reductase, highly efficient raw 

435 starch hydrolyzing r-Amylase, glyceraldehyde-3-phosphate dehydrogenase, aspartic protease, 

436 lipases, b-glucosidase, glyceraldehyde-3-phosphate dehydrogenase, L-asparagine amidohydrolase, 

437 xylanase, b-1,3-1,4-glucanase and utilize various substrates as a single carbon source (Table S5). 

438 However, the Rhizomucor miehei is an opportunistic pathogen may cause frequently fatal mycotic 

439 diseases (Gyöngyi et al. 2004). some studies suggest that fungi from Candida genus are very 

440 important human and animal pathogens, and are resistant to drugs (Karpinski et al. 2021). However, 

441 some studies show that only a few species from the genus candida (near 200 species in this genus) 
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442 are human opportunistic pathogens, e.g., candida albicans, Candida parapsilosis, Candida tropicalis 

443 and Candida auris; Candida glabrata, Candida auris is multidrug-resistant (Table S5). Lower 

444 abundance of these two genera in camping than that in no camping (Figure 1) suggested possible 

445 improvement of soil ecosystem by camping.

446 Interestingly, some genera that transmitted from dung were also predominant among metabolically 

447 active phylotypes in dung treated soil (Semenov et al. 2021). Family XIII AD3011 group, 

448 Prevotellaceae UCG-004, Christensenellaceae R-7 group, Ruminococcus 1, Ruminococcaceae 

449 UCG-005, Prevotellaceae UCG 004, LD29, Olivibacter, and Symbiotaphrina are also detected in 

450 rumen, gut and/or dung (Table S5). This suggested that the subsoil microbial community could be 

451 affected by microorganisms from the dung of camping herbivores. More interestingly, a recent study 

452 found that most non-native microorganisms from dung did not survive in soils after few months 

453 (Semenov et al. 2021). This suggested that the influences of camping on the subsoil microbial 

454 communities could be temporary, but this still needs further confirmation. 

455 Since Dyadobacter, Rummeliibacillus, Cohnella, Luteimonas, Podospora, Cellvibrio, Ruminococcus 

456 1, LD29, and Rudaea are cellulose degraders (Table S5), the enrichment of Dyadobacter, 

457 Rummeliibacillus, Cohnella, Luteimonas, and Podospora (Figure 1) in camping could contribute to 

458 the increase in the relative abundance of cellulolysis (Figure 2), especially in the case of the 

459 depletion of Cellvibrio, Ruminococcus 1, LD29, and Rudaea (Figure 1). Since Cellvibrio, LD29, 

460 Ruminococcus 1, Rhizomucor, and Cohnella are xylanolytic (Table S5), the depletion of Cellvibrio, 

461 LD29, Ruminococcus 1, and Rhizomucor in camping (Figure 1) could contribute to the decrease in 

462 the relative abundance of xylanolysis (Figure 2), especially in the case of the enrichment of Cohnella 
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463 (Figure 1). Cohnella, Luteimonas, Cellvibrio, LD29, and Rhizomucor have chitinase (Table S5), the 

464 enrichment of Cohnella and Luteimonas in camping (Figure 1) could contribute to the increase in the 

465 relative abundance of C decomposition genes (chitinase, Figure 2), especially in the case of the 

466 depletion of Cellvibrio, LD29, and Rhizomucor (Figure 1). The enrichment of Luteimonas and OLB13 

467 in camping (Figure 1) could contribute to the increase in the relative abundance of nitrite reduction 

468 function (Figure 2) due to their denitrification (Table S5). OLB13 harbors genes that encode CO2 

469 fixation pathways (Table S5), however, the OLB13 is enriched (Figure 1) but the relative abundance 

470 of C fixation genes is depleted (Figure 2) in camping, indicating that there might be other microbes 

471 that contain C fixation genes and remain to be explored. Our study partially supports the finding that 

472 manure addition increases the relative abundances of diazotrophs (Ye et al. 2021) (e.g. Cohnella, 

473 Olivibacter, Figure 1 and Table S5 in our study). Cellvibrio, Cohnella, Olivibacter can fix N (Table 

474 S5), the depletion of Cellvibrio (Figure 1) in camping could contribute to the decrease in the relative 

475 abundance of gene coding nitrogenase (Figure 2), especially in the case of the enrichment of 

476 Cohnella and Olivibacter (Figure 1). Besides, our results sustained that bacterial nitrifiers (e.g., 

477 Dyadobacter, Olivibacter, Figure 1 and Table S5 in our study) were enhanced (Shi et al. 2021; Ye et 

478 al. 2021). 

479 Cellvibrio carries tetracycline resistance gene (Table S5), the depletion of Cellvibrio (Figure 1) could 

480 contribute to the decrease in the relative abundance of tetracycline resistance gene (tetB, Figure 2). 

481 Tetracyclines is the best-selling veterinary antibiotic, its content is also the highest in animal 

482 manures (Yue et al. 2021). Furthermore, inputs of manure from antibiotic-free cattle led to increases 

483 in abundances of some abiotic resistance genes in comparison to no manure inputted soils 
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484 (Shawver et al. 2021). A recent study found that the increase of tetracycline resistance gene 

485 abundance dominated the abundance increase of resistance genes in soil treated with manure 

486 (Huang et al. 2021a). Our results showed the only significant change occurred in tetracycline 

487 resistance gene (tetB, Figure 2). Intriguing, the abundance of tetracycline resistance gene (tetB) was 

488 depleted by camping, suggesting that camping could be a potential method for antibiotic elimination 

489 of animal faeces. However, the impact of antibiotic use on camping impact still needs to be 

490 confirmed. Cellvibrio and Podospora are saprophytic (Table S5), the enrichment of Podospora in 

491 camping (Figure 1) could contribute to the increase in the relative abundance of litter saprotroph 

492 (Figure 2), especially in the case of the depletion of Cellvibrio (Figure 1). The enrichment of litter 

493 saprotroph in camping is consistent with the finding that manure addition increases the relative 

494 abundance of saprotrophic fungi (Ye et al. 2021). The enrichment of Podospora in camping (Figure 

495 2) could contribute to the increase in the relative abundance of litter endophyte because Podospora 

496 is also as an endophyte from grass (Josphat et al. 2011).

497 An 18-year experiment showed that manure significantly enhanced soil bacterial diversity (Ye et al. 

498 2021). A meta-analysis of total of 2303 studies found that manure increased bacterial diversity and 

499 reduced fungal diversity (Guo et al. 2022). On the contrary, the taxonomic and functional diversities of 

500 subsoils in this study showed resistance to camping, which suggesting that soil ecosystems can act 

501 as buffers (Semenov et al. 2021) against disturbance. Whether this stability is characterized by short-

502 term time scale still needs further study.

503 Herbivore camping affects the networks of subsoil bacterial and fungal communities

504 In this study, camping increased the bacterial and fungal network complexity, particularly the number 
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505 of positive edges. The results are consistent with the previous impact of manure on the microbial 

506 network (Ye et al. 2021). Four potential mechanisms may explain this phenomenon: (a) the stress-

507 gradient hypothesis. the stress-gradient hypothesis and our previous study about microbial 

508 interactions showed that stressed habitats result in facilitations (positive links) higher frequency than 

509 competitions (negative links) (Ding & Wang 2021). As discussed above, camping and trampling 

510 could reduce soil air permeability and cause soil hypoxia. In addition, camping and dung and urine 

511 input resulted in high soil ammonia concentration (up to 377 mg/kg) (Zhang 2002) that could be toxic 

512 to microbes. Both hypoxia and high ammonia can stress the soil microbes, therefore, leading to 

513 more often positive links. (b) exogenous microorganism. Many studies (Kong et al. 2019; Torres et 

514 al. 2021) have shown that microbial inoculation could increase the positive interaction of microbial 

515 network. Microorganisms from manure addition could also enhance the association of 

516 microorganisms (Yang et al. 2022). Some potential dung-derived phylotypes including 

517 Ruminococcaceae UCG-005, Christensenellaceae R-7 group, Prevotellaceae UCG-004, 

518 Ruminococcus 1 (Table S5) elevated their degree of networks by 50 - 2300% (Table S4). (c) 

519 Microorganisms that could cooperate with the original soil microorganisms were more likely to 

520 successfully colonize and proliferate in soils. This scenario could also enhance positive microbial 

521 interactions. (d) Nutrient input from faeces and urine made some microorganisms proliferate which 

522 were reflected by the increased microbial carbon and nitrogen (88% and 84%, respectively) under 

523 manure addition (Liu et al. 2020a). These synergic increases could also lead to more positive links. 

524 Besides, we found that some low abundance bacteria and fungi taxa had highest degree of the 

525 network, suggested that low abundant rather than high abundant bacteria and fungi were keystone 
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526 taxa that affected the stability of the network (Figure 5f), supporting previous findings (Pan et al. 

527 2021). To our knowledge, this is first study to show that herbivore camping could affect the stability 

528 of the network via shifting the properties of high and low degree taxa. Four types of changes that 

529 could explain the change in network stability were found. 

530 (1) more than 62.45 - 72.26% of high degree OTUs and low degree OTUs were specific to the no 

531 camping or camping as indicated by Venn plots (Figure 6a, b, e, f) suggested that the camping 

532 shifted the node identity of networks, compared with the no camping. 

533 (2) 17.86 - 22.36% of OTUs were shared in the no camping and camping, implied that camping 

534 shifted the high degree OTUs and low degree OTUs under the no camping from the states of high 

535 and low degree to the states of low and high degree, respectively (Figure 6 c, d, g, h). Furthermore, 

536 compared with the no camping, the camping decreased the node degree of Luteimonas, (OTU_287 

537 and OTU_1365, from 77 and 77 to 1 and 0), Dyadobacter (OTU_1216 and OTU_3484, from 77 and 

538 71 to 72 and 1), Ruminococcaceae UCG-005 (OTU_1880, OTU_399, OTU_4129 from 71,71,5 

539 to1,1,2), Pseudanabaena PCC-7429 (OTU_3596, from 77 to 71), Family XIII AD3011 group 

540 (OTU_1230, OTU_594 from 3 and 77 to 2 and 0), Christensenellaceae R-7 group (OTU_2495, 

541 OTU_2549, OTU_4118, from 2, 3, 66 to 0, 0, 2), Prevotellaceae UCG-004 (OTU_2810, OTU_378, 

542 OTU_529, OTU_1946, OTU_3132 from 71,77,3,4,66 to 8,4,2,1,0), Olivibacter (OTU_446 from 77 to 

543 72), OLB13 (OTU_2259 from 77 to 0), Ruminococcus 1 (OTU_1411 from 66 to 0). Whereas, the 

544 camping increased the node degree of Aquamicrobium (OTU_262, from 2 to 77), Limnothrix 

545 (OTU_99 from 0 to 72), Cellvibrio (OTU_219 0 to 72), FukuN18 freshwater group (OTU_392 from 0 

546 to 77), OLB13 (OTU_446 from 1 to 71), Rudaea (OTU_2905 from 0 to 1), and RB41 (OTU_53 from 
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547 66 to 72) and some potential dung-derived phylotypes including Ruminococcaceae UCG-005 

548 (OTU_4330, OTU_1005, OTU_836 from 3,1,0 to 72,4,2), Christensenellaceae R-7 group (OTU_490 

549 from 0 to 1), Prevotellaceae UCG-004 (OTU_2172, OTU_2408 from 2, 1 to 3, 10), Ruminococcus 1 

550 (OTU_449, OTU_539 from 0,6 to 10,10) (Table S4), partially reflecting that some dung-derived 

551 phylotypes enhanced the network interaction (Yang et al. 2022). 

552 (3) for the bacterial network, the camping decreased the total relative abundance of high degree 

553 OTUs (6.54% under camping vs.7.27% under no camping) by 10.02% (Figure 6a). Camping 

554 significantly decreased the niche overlap of high degree OTUs and specific high degree OTUs 

555 (Wilcoxon test, p = 6.5e-13, 7.0e-04), and significantly increased the relative abundance of high 

556 degree generalist species and specific high degree generalist species (Wilcoxon test, p = 1.1e-04, 

557 1.1e-04) (Figure S87a,c,e,h). The camping decreased the total relative abundance of low degree 

558 OTUs (6.09% under camping vs. 6.28% under no camping) by 2.95% (Figure 6b). Camping 

559 significantly increased the niche overlap of low degree OTUs and specific low degree OTUs 

560 (Wilcoxon test, p = 8.4e-4, 0.027) and decreased the niche breadth of low degree OTUs and specific 

561 low degree OTUs (Wilcoxon test, p = 1.1e-10, 8.2e-06) (Figure 88a-d). However, Camping increased 

562 the total relative abundance of the shared OTUs that shifted the states of high degree under no 

563 camping (1.87%) to the states of low degree under Camping (2.08%) by 11.26% (Figure 6 c). 

564 Camping significantly decreased the niche breadth of these share degree OTUs (Wilcoxon test, p = 

565 3.0e-05) (Figure 89b). Camping decreased the total relative abundance of the shared OTUs that 

566 shifted the states of low degree under no camping (2.92%) to the states of high degree under 

567 camping (2.37%) by 18.84% (Figure 6 d). Camping significantly decreased the niche breadth of 
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568 these share degree OTUs (Wilcoxon test, p = 1.9e-03) (Figure 89d). For the fungal network, the 

569 camping decreased the total relative abundance of high degree OTUs (1.24% under camping vs 

570 9.85% under no camping) by 87.43% (Figure 6 e). Camping significantly increased the niche overlap 

571 of high degree OTUs and specific high degree OTUs (Wilcoxon test, p = 0.032, 0.011), and 

572 significantly decreased the niche width of high degree OTUs and specific high degree OTUs 

573 (Wilcoxon test, p = 2.8e-08, 1.9e-05), significantly decreased the relative abundance of no significant 

574 species in high degree OTUs and specific high degree OTUs (Wilcoxon test, p = 0.0048, 0.0018) 

575 (Figure S90a-d,e,h). The camping decreased the total relative abundance of low degree OTUs 

576 (0.69% under camping vs.1.49% under no camping) by 53.40% (Figure 6 f). Camping significantly 

577 increased the niche overlap and niche width of low degree OTUs (Wilcoxon test, p = 0.018, 0.0002) 

578 and specific high degree OTUs (Wilcoxon test, p = 0.19, 0.0005), decreased the relative abundance 

579 of no significant species in low degree OTUs and specific low degree OTUs (Wilcoxon test, p = 

580 0.045, 0.091) (Figure S91a-d,f,i). However, Camping decreased the total relative abundance of the 

581 shared OTUs that shifted the states of high degree under no camping (0.40%) to the states of low 

582 degree under Camping (0.18%) by 54.95% (Figure 6 g). Camping increased the niche overlap of 

583 these shared OTUs (Wilcoxon test, p = 0.9), and decreased the niche width of these shared OTUs 

584 (Wilcoxon test, p = 0.0056) (Figure S92a-b). Camping increased the total relative abundance of the 

585 shared OTUs that shifted the states of low degree under no camping (0.16%) to the states of high 

586 degree under camping (1.03%) by 535.56% (Figure 6 h). Camping increased the niche overlap of 

587 these shared OTUs (Wilcoxon test, p = 0.041), and decreased the niche width of these shared OTUs 

588 (Wilcoxon test, p = 9.0e-04) (Figure 92c-d). 
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589 (4) for the bacterial communities, compared with no camping, the camping significantly changed the 

590 relative abundance of functions of the low degree OTUs, high degree OTUs, specific low degree OTUs 

591 and specific high degree OTUs (Welch�s t test with two sides p = 7.73e-5 - 0.048, Figure S93a-e). 

592 Compared with no camping, the camping significantly suppressed the relative abundance of most C-, 

593 N-, and P-cycle functions and antibiotic resistance gene of the low degree OTUs and specific low 

594 degree OTUs, but improved those of high degree OTUs and specific high degree OTUs (Welch�s t test 

595 with two sides p = 2.28e-7 - 0.050, Figure S94-99). The camping significantly suppressed the relative 

596 abundance of most C-, N-, and P-cycle functions and antibiotic resistance gene of the shared OTUs 

597 that shift the states of high degree under no camping to the states of low degree under camping, 

598 however, the camping significantly improved the relative abundance of most C-, and P-cycle functions 

599 and antibiotic resistance gene of the shared OTUs that shift the states of low degree no camping under 

600 to the states of high degree under camping (Welch�s t test with two sides p = 9.84e-8 - 0.050, Figure 

601 S100-101). The relative abundance of C-, N-, and P-cycle functions and antibiotic resistance gene of 

602 high degree OTUs and specific high degree OTUs were significantly higher than those of low degree 

603 OTUs and specific low degree OTUs under camping, whereas, the opposite trend was found under 

604 no camping (Welch�s t test with two sides p = 7.72e-7 - 0.049, Figure S102-110).

605 For the fungal communities, compared with no camping, the camping significantly declined the relative 

606 abundance of Microfungus (Welch�s t test with two sides p = 0.047, 0.019, Figure S111-112 a,d) of 

607 the low degree OTUs and specific low degree OTUs, improved the relative abundance of Undefined 

608 Saprotroph of the low degree OTUs (Welch�s t test with two sides p = 1.43e-3, Figure S111b) but 

609 declined the relative abundance of Undefined Saprotroph of the specific low degree OTUs (Welch�s t 
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610 test with two sides p = 7.34e-3, Figure S112e), declined the relative abundance of Saprotroph (Welch�s 

611 t test with two sides p = 3.0e-03, 0.012, Figure S111-112c,f) but improved the relative abundance of 

612 Symbiotroph (Welch�s t test with two sides p = 0.022, 0.016, Figure S111-112c,f) of both low degree 

613 OTUs and specific low degree OTUs, and declined the relative abundance in the white rot of both high 

614 degree OTUs and specific high degree OTUs (Welch�s t test with two sides p < 1.0e-15, <1.0e-15, 

615 Figure S111-112g,h). The camping did not significantly change the relative abundance of functions of 

616 the shared OTUs that shifted the states of high degree under no camping to the states of low degree 

617 under camping (Welch�s t test with two sides p > 0.05, not show), however, the camping significantly 

618 suppressed the relative abundance of Facultative Yeast and Yeast of the shared OTUs that shifted 

619 the states of low degree no camping under to the states of high degree under camping (Welch�s t test 

620 with two sides p = 1.0e-15 - 0.048, Figure S111-112i). 

621 As niche restriction was the main driving force of bacterial and fungal community assembly, the niche 

622 width decreased the degree of networks (p = 0.0015 and p = 0.3652 for camping and no camping, 

623 respectively, Figure 7a) and niche overlap increased the changes in degree of networks (p < 2.2e-16 

624 and p < 2.2e-16 for both camping and no camping, respectively, Figure 7b). Furthermore, the first 

625 evidence was provided by our Bayesian structural equation model suggested that camping exerted a 

626 positive effect on the network degree through compressing the niche width (Estimate = -0.02 - -0.10, 

627 -0.14 - -0.75, Figure 7c), and camping reduced the change in the network degree through reducing 

628 the niche overlap (Estimate = -0.04 - -0.05, 0.26 - 0.29, Figure 7d). These results provide useful 

629 enlightenments for the first time for the management of camping soil microorganisms in pasture and 

630 for insights to the impact of wild camping behaviour on soil that we have generally ignored.
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631 Conclusion

632 Our study firstly suggested that camping significantly changed the relative abundance of 21 bacterial 

633 phylotypes and five fungal phylotypes with implications for soil carbon and nutrient cycling, and soil 

634 and plant health, while did not change taxonomic and functional diversities. Compared with the no 

635 camping, the camping increased the stability of bacterial network, whereas, decreased the stability of 

636 fungal network. Camping exerted a positive effect on the network through compressing the niche 

637 width, and reduced the change in the network through reducing the niche overlap. However, the effects 

638 of this change on the soil viruses, protozoa, and the plants that are later established remains unknown. 

639 This study provides a stepping-stone insight to the effect of herbivore camping on soil microbial 

640 communities.

641
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Figure 1
Figure 1

Figure 1 Random Forest analysis (left) and Kruskal-Wallis test (right) of bacterial (a) and
fungal communities (b). Mean decrease Gini: mean decrease in Gini index. The larger the
value, the more important the phylotypes is in distinguishing groups. *, p < 0.05.
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Figure 2
Figure 2

Figure 2 Functional diûerences of soil microbial communities (a-e: bacteria, f: fungi)
between camping and no camping
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Figure 3
Figure 3

Figure 3 Co-occurrence networks for microbial communities between camping and no
camping. A node suggests an OUT, its colour and size are proportional to its degree; a link
represents the signiûcant Pearson correlations with r > 0.8 and the Benjamini and Hochberg
corrected p < 0.001. A red link indicates a positive relationship, but a blue link indicates a
negative relationship.
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Figure 4
Figure 4

Figure 4 Network robustness analysis for microbial communities between the camping and
no camping. Smaller decline at the same proportion indicates more stability within networks.
B, bacteria; F, fungi.
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Figure 5
Figure 5

Figure 5 Diûerences in niche breadth (a), niche overlap (b), specialist/generalist species (c),
assembly mechanism (d, e), and the node degree distribution with relative abundance ranks
(f) of bacterial and fungal communities between camping and no camping.
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Figure 6
Figure 6

Figure 6 Venn diagram showing the number of speciûc and shared nodes between diûerent
degrees and diûerent groups (camping and no camping).
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Figure 7
Figure 7

Figure 7 Linear regression model showing the eûect of niche width (a) and niche overlap (b)
on the network property (degree and diûerence between degrees (�degree)). Bayesian
structural equation model showing how camping alter the network property via niche width
(c) and niche overlap (d).
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Table 1(on next page)

Table 1

Table 1 Results of the Kolmogorov-Smirnov test comparing bootstrapped node attributes of
networks under No camping and Camping. For each network, node attributes were computed
by bootstrapping 10 0000 times. Kolmogorov-Smirnov test compares the cumulative
distribution of two properties where the null hypothesis is that the properties have same
distribution patterns.
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1

Comparison
Degree Closeness transitivity

Eigenvector 

centrality

No camping B vs 

Camping B 
0.1665**** 0.5276**** 0.0133**** 0.2984****

No camping F vs 

Camping F 
0.4941**** 0.5066**** 0.0595**** 0.2462****

No camping B vs 

No camping F
0.4693**** 1**** 0.0967**** 0.3248****

Camping B vs 

Camping F
0.4913**** 1**** 0.1430**** 0.2604****

2 The values in each cell represents the maximum difference in the absolute cumulative 

3 distribution function.  **** indicate statistical significance at p < 0.0001, respectively. B, 

4 bacteriab F, fungi.

5
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Table 2(on next page)

Table 2

Table 2 Results of the Kolmogorov-Smirnov test and Kruskal-Wallis test comparing network
stability (average degree and network connectivity) of networks under No camping and
Camping after 50% nodes were randomly removed. For each network, node properties were
computed by bootstrapping 100000 times.
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Method Comparison Average degree Natural connectivity

No camping B vs 

Camping B 
0.2021**** 0.0987****

No camping F vs 

Camping F 
0.9043**** 0.8718****

No camping B vs 

No camping F
0.9811**** 1****

Kolmogorov-Smirnov 
test

Camping B vs 

Camping F
1**** 1****

No camping B vs 

Camping B 
11.1137 vs 11.6460**** 42.3549 vs 42.9296****

No camping F vs 

Camping F 
5.9364 vs 2.9788**** 18.3614 vs 11.0958****

No camping B vs 

No camping F
11.1137 vs 5.9364**** 42.3549 vs 18.3614****

Kruskal-Wallis test

Camping B vs 

Camping F
11.6460 vs 2.9788**** 42.9296 vs 11.0958****

2 The values in top four cells represent difference for Kolmogorov-Smirnov test, which the 

3 maximum difference in the absolute cumulative distribution function; The values in bottom four 

4 cells represent mean value for Kruskal-Wallis test. **** indicate statistical significance at p � 

5 0.0001. B, bacteria; F, fungi.

6

7

8
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