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The response of okra to drought stress is very complicated, the molecular mechanisms
underlying this process remains ambiguous up to now. In this study, different degrees of
water-stress responses of okra leaf were explained by using transcriptomics and
metabolomic approaches. The photosynthesis and glycometabolism in okra leaf were both
adversely affected by drought stress, leading to inhibition of carbohydrate metabolic
process, and then influencing the secondary plant metabolism. Further, drought stress
disturbed amino acid metabolism, especially for tyrosine-derived pathway as well as
arginine and proline metabolism, which have been shown to be significantly enriched
under water withholding conditions based on multi-omics conjoint analysis (transcriptome,
proteome and metabolome). In-depth analysis of the internal linkages between
differentially expressed transcripts, proteins, and metabolites decidedly indicate that
tyrosine metabolism could confer tolerance to drought stress by influencing carbon and
nitrogen metabolism. These findings provide a whole framework of the regulation and
relationships of major transcripts and peptides related to secondary metabolism,
particularly , the role of critical proteins and metabolite involved in the change of amino
acid metabolism in response to drought stress.
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28 Abstract: 

29 The response of okra plants to drought stress is very complicated, and the molecular mechanisms involved are 

30 currently unknown. In this study, the response of okra plants to different degrees of water stress were explained 

31 using proteomic and metabolomic approaches. The photosynthesis and glycometabolism of okra leaves were 

32 both adversely affected by drought stress, leading to the disruption of the carbohydrate metabolic process, 

33 impacting secondary plant metabolism. Drought stress also disturbed amino acid metabolism, especially in the 

34 tyrosine-derived pathway as well as arginine and proline metabolism, which have both been shown to be 

35 significantly enriched under water withholding conditions based on multi-omics conjoint analyses 

36 (transcriptome, proteome, and metabolome). An in-depth analysis of the internal connections between 

37 differentially expressed transcripts, proteins, and metabolites indicate that tyrosine metabolism could confer 

38 drought stress tolerance to okra plants by influencing carbon and nitrogen metabolism. These findings provide 

39 an understanding of the regulation and relationships of the major transcripts and peptides related to secondary 

40 metabolism, especially the role of the critical proteins and metabolites involved in the amino acid metabolism 

41 changes that occur in response to drought stress.

42
43 Key word: Okra (Abelmoschus esculentus L. Moench); Water stress; Protein expression profile; Metabolome
44
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45 1. Introduction

46 Okra (Abelmoschus esculentus L. Moench), which belongs to the Malvaceae family, originated in Africa and 

47 India and is able to adapt to a wide range of warm climates (Gemede et al., 2016). Okra is an important, healthy 

48 vegetable and is very popular in various parts of the world. The value of one ton of okra varies worldwide, with 

49 2017 prices ranging from $236.8 USD in Mexico to $3,870.6 USD in Fiji. A series of studies have shown that 

50 okra polysaccharide could be used as a potential immunomodulator for the treatment of diabetic nephropathy 

51 (Chen et al., 2016; Peng et al., 2016). The rhamnogalacturonan polysaccharide found in okra is also associated 

52 with hypoglycemic effects (Liu et al., 2018).

53 The growth and development of plants is often compromised by abiotic stresses such as drought. Plants 

54 undergo substantial changes in their physiological and biochemical systems when faced with water deficiency 

55 (Farias et al., 2019). Recent studies have shown that under drought conditions, the biomass of okra as well as 

56 the uptake of phosphorus in its shoot were both significantly reduced, while nitrogen, potassium, iron, and zinc 

57 levels increased in the shoot (Müller et al., 2019). Water deficits affect the physiology and development of okra, 

58 and severe water shortages can significantly reduce okra production. Improving okra irrigation techniques and 

59 cultivating a new drought-resistant variety of okra are two effective ways to solve this problem. Amin et al 

60 (Amin et al., 2009) found that a 1mM concentration of salicylic acid and ascorbic acid can considerably mitigate 

61 the physical damage to plants caused by drought stress. 

62 In recent years, the rise of omics studies has provided an important means of revealing the response of 

63 plants to biotic or abiotic stress. The molecular mechanisms underlying OsDRAP1-mediated salt tolerance in 

64 rice was revealed through comparative transcriptome and metabolome analyses (Wang et al., 2021). Li et al (Li 

65 et al., 2021) reported the mechanisms at play in the molecular and physiological metabolic response of N. sibirica 

66 to salt stress by using comprehensive transcriptome and metabolome profiling. Bavaresco et al (Bavaresco et al., 

67 2020) found that protein hydrolysates modulate the leaf proteome and metabolome of grapevines in response to 

68 water stress. The mechanism of Se accumulation and tolerance in C. violifolia was also identified using 

69 metabolome, transcriptome, and proteome technologies (Rao et al., 2021). The protein turnover and regulatory 

70 classes of proteins and metabolites in Medicago truncatula during drought stress and subsequent recovery were 

71 identified through an integration of proteome and metabolome analyses (Lyon et al., 2016). 

72 Previous studies on okra have focused mainly on the characterization of its genotypes (Ghevariya & 

73 Mahatma, 2017), its medical applications (Erfani et al., 2018), its agronomic characteristics (Meldrum et al., 
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74 2018), and its edible quality (Petropoulos et al., 2018). However, few studies report on the molecular mechanism 

75 of resistance to drought stress in okra plants. The aim of this study is to reveal the drought-resistant mechanism 

76 of okra at the molecular level. The protein expression and metabolic profiles of okra under different water 

77 withholding conditions were obtained using a multi-omics analysis. The functional proteins and metabolites 

78 associated with drought tolerance, and the metabolic pathways involved were also identified using a proteomic 

79 analysis and a metabolomics analysis, respectively.

80 Materials and Methods

81 Plant Materials

82 A drought-tolerant okra cultivar called �Xianzhi� was selected based on a previous physiological and 

83 biochemical experiment (Wang et al., 2018). It was then cultivated in a greenhouse at the Guiyang University in 

84 Guizhou province, China. Blades from seedling cuttings were used to extract total proteins and metabolites. 

85 Drought stress treatment

86 Drought treatment was carried out in a constant temperature incubator. Okra plants were planted in plastic 

87 buckets 20.0 cm in height with a 15.0 cm inner diameter. They were cultivated for 35 days at 70% humidity and 

88 a temperature of 25± 2 °C. First, the okra plants were planted by direct seeding into a basin containing nutrient-

89 enriched soil. After sprouting, the seedlings were watered every 2 days. Then, after an adaptation period of two 

90 weeks, a dehydration treatment was applied to all plants. Leaves were collected from the seedlings after 0 days, 

91 5 days, 7 days, 15 days, and 20 days of water withholding. The collected leaves were then kept in liquid nitrogen 

92 for protein extraction and stored at -80 ℃ in an ultra-low temperature refrigerator. The five different drought 

93 treatments were marked as P1, P2, P3, P4, and P5, respectively, with samples taken from each drought treatment. 

94 Using a randomized block design, 11 pots were used in each treatment with three used for proteomic assays and 

95 the other eight for metabolomic analysis. 

96 Sample processing and TMT quantification

97 The protein was extracted using the methods described by Xiong et al., 2019. After trypsin digestion (where 

98 a protease inhibitor was added at a rate of 50:1), 8M urea was added and an ultrasound was performed for 1s, 

99 and then stopped for 2s, with that pattern repeated for a total of 20s. After centrifugation at 14,000g for 20 min, 

100 5  of the supernatant was kept for quantification, and the rest was frozen at -80 ℃. The protein concentration 

101 was determined using the Bradford method. SDS-page was performed using 20  of each sample with 

102 Coomassie blue staining for 30 min followed by decolorization until the background was clear. FASP (Filter 
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103 Aided Sample Preparation) was then carried out using a TMT® kit (Thermo Scientific, USA). After enzymatic 

104 digestion, 41  of TMT reagent was added to a  sample  per sample), and incubated at room 

105 temperature for 1 h. Then, 8  of 5% quenching reagent (Thermo Scientific, USA) was added and incubated 

106 for 15 min to stop the reaction. The mixed and labeled samples were centrifuged to the bottom of the tube by 

107 vortex, and then dried with centrifugal vacuum freezing.

108 Peptide pre-separation and LC-MS/MS analysis 

109 The tryptic peptides were dissolved in solvent A (2% acetonitrile, PH 10) to 100  then centrifuged at 

110 14,000g for 20 min, and the supernatant was removed and put into a custom-made reverse-phase analytical 

111 column (Durashell-C18, 4.6 mm×250 mm, 5  100 A). It took five minutes for solvent B to move from 5% to 

112 8% (98 % acetonitrile, PH 10), an additional 30 minutes for it to grow from 8% to 18%, another 27 minutes for 

113 it to reach 32%, and then just two minutes for it to move from 32% to 95%. The 95% held for 4 minutes and 

114 then decreased all the way to 5% in the next 4 minutes, all at a constant flow rate of 0.7 ml/min on an RIGOL 

115 L-3000 high performance liquid chromatography system (Beijing Puyuan Jing Electric Technology Co., LTD).

116 The components obtained from high pH reversed phase separation were redissolved in reagent with 2% 

117 methanol and 0.1% formic acid, centrifuged at 12,000 g for 10 minutes, and then the supernatant was loaded 

118 onto an EASY-Spray column (12 cm x 75  C18, 3  The loading pump was running for 15 min at a flow 

119 rate of 350 nL/min. Peptides were separated using the EASY-nLC 1000 System (Nano HPLC, Thermo) at a 

120 constant flow rate of 600 nL/min. The separation gradient is shown in Table 1.

121 The peptides were then injected into an NSI ion source for ionization and analyzed using Orbitrap Fusion 

122 Lumos (Thermo) mass spectrometry. The ion source voltage was set to 2.0 kV, and the capillary temperature 

123 was 320 °C. The mass spectrometer scan range was set to 300-1400 m/z, and the scan resolution was set to 

124 120,000 FWHM. The full scan automatic gain control (AGC) target, and full scan Max.IT (maximum 

125 implantation time) were set to 5.0 e5 and 50 ms, respectively. The dd-MS2 resolution was set to 60,000 FWHM 

126 and 35% fragmentation energy was used for fragmentation according to the higher energy collision dissociation 

127 (HCD) method. The automatic gain control (AGC) target was set to 5.0e4, and the Max.IT was set to 118 ms.

128 The resulting MS/MS data were then analyzed using the Proteome Discoverer (v.2.1). The tandem mass 

129 spectra were searched against the Abelmoschus esculentus L. corresponding transcriptome database (Shi et al., 

130 2020) and the UniProt/NCBI database. The enzyme digestion method was set as trypsin; the max missed 

131 cleavages was set as 2; the tolerances of precursor ion mass and fragment ion mass were set as 15 ppm and 20 
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132 ppm, respectively; the static modification and dynamic modification were set as C carboxyamidomethylation 

133 (57.021 Da) and M Oxidation (15.995 Da), respectively; and the quantitative method was set as iTRAQ-6plex. 

134 Peptide identification and differentially expressed protein (DEP) screening

135 The peptides produced through the enzymatic hydrolysis of the proteins were identified through mass 

136 spectrometry, and then the putative protein was obtained using a bioinformatics analysis. In order to evaluate 

137 the overall picture of the proteomic data, the physical and chemical properties were detected at both the peptide 

138 and protein levels. For peptides, this meant calculating: peptide length, PSM number distribution, score 

139 distribution for identified peptides, and missed cleavage distribution for identified peptides. For proteins: 

140 distribution of identified peptide numbers for proteins, distribution of PSM numbers matched to proteins, MW 

141 distribution for identified proteins, coverage distribution for identified proteins, and pI distribution of identified 

142 proteins were all calculated. 

143 Since the sample was repeated  2 times, a t-test was used for differential analysis. DEPs were defined with a 

144 P-value of < 0.05, and a fold change (FC) of > 1.2 between any two treatments.

145 Functional annotation of proteins

146 The Clusters of Orthologous Groups (COG) analysis was achieved by Blasting KYVA sequences. The Gene 

147 Ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were acquired using 

148 Arabidopsis Thaliana annotated data in Uniprot. The PPI (Protein-Protein Interaction Networks) analysis used 

149 Arabidopsis Thaliana data in the STRING database to search the relationship between the DEPs and their 

150 possible functional groups. 

151 An enrichment analysis was used to determine the over-expressed genes or proteins, allowing further analyses 

152 to identify the functional categories or pathways involved. An over-representation analysis was used to perform 

153 a statistical significance test according to hypergeometric distribution. The P values and false discovery rate 

154 (FDR) values (based on multiple hypothesis testing) of the enrichment degree from differential proteins were 

155 calculated based on the functional categories of GO and Go Slim as well as the KEGG Pathways; the smaller 

156 the P value or FDR value, the higher the enrichment degree.

157 The GO analysis was scattered, and it was difficult to draw overall conclusions based on the overly complex 

158 and detailed classification results. However, GO Slim is a simplified version of GO, which matches most entries 

159 to a few parent entries, making it easy to obtain the protein number and enrichment degree contained in each 

160 large entry. Like the GO analysis, the GO Slim annotation is divided into three major categories: biological 

161 process (BP), cellular component (CC), and molecular function (MF).

162 Protein-protein interaction (PPI) analysis

163 The identified DEPs were used to construct the PPI network to explore the inter-class relationships and 

164 possible functional groups of the DEPs. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) 

165 is part of the Elixir infrastructure, and is one of Elixir's core data resources. The DEPs were uploaded to the 

166 STRING 11.0 database (https://string-db.org/), and the interacting proteins were identified based on Arabidopsis 
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167 thaliana as the model organism. Protein-protein interactions were identified using a combined score of 0.4 as 

168 the threshold. The Cytoscape 3.6.1 software (Shannon et al., 2003) was used to visually construct the protein 

169 interaction network.

170 Metabolite extraction 

171 The metabolites were extracted according to the De Vos RC1 method (De Vos et al., 2007) and the approach 

172 of Sangster et al., 2006. Each of the treatments, containing 6 replicates, were used for this metabolomic analysis. 

173 After weighing, 200 mg (±2%) of each sample was put in a 2 mL EP tube, 0.6 mL 2-chlorophenylalanine (4 

174 ppm) methanol (-20 ℃) was added, and then the sample was vortexed for 30 seconds. After that, 100 mg glass 

175 beads were added to each sample and the samples were put into the TissueLysis II tissue grinding machine and 

176 ground at 25 Hz for 60 s, followed by an ultrasound at room temperature for 15 minutes. The samples were then 

177 centrifuged at 25 ℃ for 10 min at 1,750g, and the supernatant was filtered through a 0.22 µm membrane to obtain 

178 the samples necessary for LC-MS. A 20 µL quality control sample was taken from each sample (Fig. S1) and 

179 used to monitor deviations in the analytical results from the pool mixtures and compare them to the errors caused 

180 by the analytical instrument itself. The remaining part of each sample was used for LC-MS detection.

181 LC-MS analysis

182 Chromatographic separation was completed with a ThermoUltimate 3000 system equipped with an 

183 ACQUITY UPLC® HSS T3 (150×2.1 mm, 1.8 µm, Water) column maintained at 40 ℃. The temperature of the 

184 autosampler was set to 8 ℃. Gradient elution of analytes was implemented with 0.1% formic acid in water (C) 

185 and 0.1% formic acid in acetonitrile (D) or 5 mM ammonium formation water (A) and acetonitrile (B) at a flow 

186 rate of 0.25 mL/min with  of each sample injected after equilibration. An increasing linear gradient of solvent 

187 B (v/v) was carried out as specified in the manufacturer�s instructions.

188 The ESI-MSn experiments were performed on the Thermo Q Exactive mass spectrometer with a spray voltage 

189 of 3.8 kV and -2.5 kV in positive and negative modes, respectively. Auxiliary gas and sheath gas were set at 10 

190 and 30 arbitrary units, respectively. The capillary temperature was set at 325 ℃. The analyzer scanned over a 

191 mass range of m/z 81-1,000 for full scan at a mass resolution of 70,000. The data dependent acquisition of the 

192 MS/MS spectra was carried out using an HCD scan. The normalized collision energy was set to 30 eV. Dynamic 

193 exclusion was used to remove unnecessary information from the MS/MS spectra. The original data obtained by 

194 the ProteWizard software (V3.08789) was converted into the mzXML format. The XCMS program of R was 

195 used to carry out peak identification, peak filtration, and peak alignment, leading to the building of the data 
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196 matrix including mass to change ratio (m/z), retention time (r/t), and intensity. The original LC-MS data of the 

197 metabolites were standardised and used for the principal component analysis (PCA), partial least squares 

198 discriminant analysis (PLA-DA), and orthogonal projections to latent structures-discriminant analysis (OPLA-

199 DA). The metabolomics profiles were investigated as described by Zhong et al (Zhong et al., 2022). Differential 

200 metabolites (DMs) were identified according to P-value (P >0.05) from a two-tailed Student's t-test on the 

201 normalised peak areas. The pheatmap program package in R (V3.3.2) was used to carry out agglomerative 

202 hierarchical clustering. A pathway enrichment analysis was carried out using the KEGG database with P-values 

203 <0.05 considered a significant enriched pathway. A correlation analysis of the differential metabolites was also 

204 performed in this study.

205 Results

206 Protein identification and evaluation

207 A total of 18,875 peptides aligning to 4,151 proteins were identified by means of TMT analysis. The results 

208 were highly reliable in detecting the physiological-biochemical properties of the identified peptide and its 

209 presumptive protein (Fig. S2-10), which could then be used for subsequent analysis. 

210 DEP identification and functional description

211 Quantitative values of different labels in the PD search results were directly extracted, and the global view of 

212 the DEPs (Fig. 1) was obtained after removing the results with 0 value. DEPs were identified through pairwise 

213 comparison between the different treatments (after 0 days, 5 days, 7 days, 15 days, and 20 days of water 

214 withholding). Ten sample pairs and the number of DEPs identified in the pairwise comparison of each sample 

215 pair are shown in Figure 2: P2 versus P1 (126 DEPs), P3 versus P1 (363 DEPs), P4 versus P2 (1,015 DEPs), P4 

216 versus P1 (791 DEPs), P4 versus P2 (46 DEPs), P4 versus P3 (245 DEPs), P5 versus P1 (261 DEPs), P5 versus 

217 P2 (170 DEPs), P5 versus P3 (159 DEPs), and P5 versus P4 (236 DEPs). Most of the DEPs identified were 

218 shared among the ten pairs. In particular, the number of DEPs found between each treatment and the control 

219 (P1) first increased and then decreased with increased levels of water stress. The number of DEPs between 15 

220 days of dehydration (P4) and the control (P1) was the most abundant, followed by P5 versus P1, and then P3 

221 versus P1. However, the number of DEPs found among the different drought treatments were less the number 

222 found between each treatment and control. For example, a total of 363 DEPs were found in P3 versus P1, but 

223 only 46 DEGs were found in P3 versus P2. Moreover, the number of down-regulated DEPs found between each 

224 treatment and control was higher than between the different treatments. More up-regulated DEPs were found in 

225 P4 versus P2, P5 versus P2, P4 versus P3, P5 versus P3, and P4 versus P5 than were found in P3 versus P2.
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226 All the differentially expressed proteins that were identified were annotated by aligning them to the COG 

227 database, which identifies lineal homologous genes through an extensive comparison of protein sequences from 

228 a wide variety of organisms. A total of 2,818 DEPs were grouped into 25 COG categories (Fig. 3). The largest 

229 category was �general function prediction only� containing 406 DEGs (14.41%), followed by �posttranslational 

230 modification, protein turnover, chaperones� (393 DEGs, 13.95%), �translation, ribosomal structure and 

231 biogenesis� (259 DEGs, 9.19%), �energy production and conversion� (221 DEGs, 7.8%), and �carbohydrate 

232 transport and metabolism� (205 DEGs, 7.27 %). Only four DEPs were assigned to the �cell motility� category 

233 and eight to the �cytoskeleton� category. In addition, there were 70 DEPs assigned to �function unknown,� 

234 accounting for 2.24%. 

235 GO analysis of DEPs

236 According to the results of the enrichment analysis, all DEPs in the ten pairs (P2 versus P1, P3 versus P1, P3 

237 versus P2, P4 versus P1, P4 versus P2, P4 versus P3, P5 versus P1, P5 versus P2, P5 versus P3, and P5 versus 

238 P4) were classified into 1,809 subgroups of biological process (BP), 438 subgroups of cellular component (CC), 

239 and 1,341 subgroups of molecular function (MF). Fig. 4 shows the top 20 GO categories of all DEPs. The 

240 �response to cadmium ion� was the largest BP category, involving 286 DEPs. There were 1,225 DEPs involved 

241 in �chloroplast,� which was the largest CC category, and the �structural constituent of ribosome� was largest 

242 MF category, including 243 DEPs. Furthermore, all DEPs were involved in 17 cellular component categories, 7 

243 molecular function categories, and 24 biological process categories through a GO Slim analysis. In this analysis, 

244 the largest BP category was �transport� (420 DEPs), the largest CC category was �cytoplasm� (3,025 DEPs), 

245 and the largest MF category was �metal ion binding� (875 DEPs; Fig. 5). The GO Slim analysis of DEPs was 

246 also performed in the ten pairs (P2 versus P1, P3 versus P1, P3 versus P2, P4 versus P1, P4 versus P2, P4 versus 

247 P3, P5 versus P1, P5 versus P2, P5 versus P3, and P5 versus P4) with �metal ion binding� as the largest MF 

248 category for all ten sample pairs. There were 27, 73, 11, 238, 57, 37, 181, 71, 39, and 46 DEPs enriched in �metal 

249 ion binding� in P2 versus P1, P3 versus P1, P3 versus P2, P4 versus P1, P4 versus P2, P4 versus P3, P5 versus 

250 P1, P5 versus P2, P5 versus P3, and P5 versus P4, respectively. The largest CC category was also �cytoplasm,� 

251 with 100, 259, 39, 752, 178, 128, 597, 199, 120, and 177 DEPs enriched in each of the ten pairs, respectively. 

252 The largest BP category differed by pair: �carbohydrate metabolic process� was the largest in P3 versus P1 (30), 

253 P4 versus P1 (93), P5 versus P1 (75), P3 versus P2 (6), P4 versus P2 (54), P5 versus P2 (26), P4 versus P3 (15), 

254 and P5 versus P4 (22); �signal transduction� was the largest in P2 versus P1 (19); and �transport/Reproduction� 
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255 was the largest in P5 versus P3 (13). More down-regulated GO terms were found in P2 versus P1, P3 versus P1, 

256 P3 versus P2, and P5 versus P1, with the other pairs having more up-regulated GO terms than down-regulated.

257 KEGG pathway of DEPs

258 The KEGG enrichment analysis of the DEPs showed that 125 metabolic pathways were obtained from all 

259 DEPs, 37 of which were significantly (P < 0.01) enriched KEGG pathways (Table 2). There were seven pathways 

260 with enrichment values > 10: �metabolic pathways,� �carbon metabolism,� �carbon fixation in photosynthetic 

261 organisms,� �biosynthesis of amino acids,� �biosynthesis of secondary metabolites,� �photosynthesis,� and 

262 �pyruvate metabolism� (Table S1). In addition, 50 KEGG pathways were enriched in P2 versus P1, 81 in P3 

263 versus P1, 27 in P3 versus P2, 110 in P4 versus P1, 79 in P4 versus P2, 71 in P4 versus P3, 102 in P5 versus P1, 

264 79 in P5 versus P2, 57 in P5 versus P3, and 65 in P5 versus P4, as shown in Fig. S21-S30. Among the ten sample 

265 pairs, the top three enriched pathways were �metabolic pathways,� �biosynthesis of secondary metabolites,� and 

266 �biosynthesis of amino acids.� There were more down-regulated DEP pathways than up-regulated in P2 versus 

267 P1, P3 versus P1, P3 versus P2, and P4 versus P1, and more up-regulated DEP pathways in the rest of the sample 

268 pairs (Table S2). Interestingly, up-regulated DEP pathways linked to �protein processing in endoplasmic 

269 reticulum� were found in P4 versus P3, and in P5 versus P3 (Fig. S31-32), while �ribosom� was the predominant 

270 pathway of up-regulated DEPs in P2 versus P1, P3 versus P1, P4 versus P1, and P5 versus P1. The main pathways 

271 of the down-regulated DEPs in all ten sample pairs were �metabolic pathways� and �biosynthesis of secondary 

272 metabolites.�

273 PPI network for exploring hub proteins associated with drought stress responses in okra

274 In order to search potential proteins associated with drought stress responses, all DEPs in four pairs (P2 

275 versus P1, P3 versus P1, P4 versus P1, P5 versus P1) were used to construct the PPI network. Four large networks 

276 with several smaller networks were obtained from the DEPs in these four sample pairs with 86 DEPs involved 

277 in protein interaction in P2 versus P1, 284 DEPs in P3 versus P1, 884 DEPs in P4 versus P1, and 679 DEPs in 

278 P5 versus P1. Among these interacting proteins, more down-regulated DEPs were detected in all of these pairs 

279 except in P4 versus P1. 

280 The four large networks obtained from the P2 versus P1, P3 versus P1, P4 versus P1, and P5 versus P1 pairs 

281 are shown in Figure 6. The large P2 versus P1 network contained 114 nodes linking 335 edges (Fig. 6A); the P3 

282 versus P1 network comprised 313 nodes connecting 2,202 edges (Fig. 6B); the P4 versus P1 network had 828 

283 nodes and 17,798 edges (Fig. 6C); and the P5 versus P1 network had 660 nodes linking 9,767 edges (Fig. 6D). 

284 The key nodes were obtained through selecting nodes with a high betweenness centrality (BC) value (BC value> 
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285 0.02) or a large degree (D) value (D value >10). In P2 versus P1, 30 nodes had a high BC value, 29 nodes had a 

286 large degree value, and 14 nodes had both a large BC and degree value; in P3 versus P1, 15 nodes had a high 

287 BC value, 118 had a large degree value, and 15 nodes had both a large BC and degree value; in P5 versus P1, 15 

288 nodes had a high BC value, 592 nodes had a large degree value, and seven nodes had both a large BC and degree 

289 value; and in P5 versus P1, 439 nodes had a high BC value, 11 nodes had a large degree value, and 10 nodes had 

290 both a large BC and degree value (Table 3). Among the nodes with both a large degree and high BC value, TPI 

291 was shared in all four pairs, AT3G29320 was shared between three pairs (P2 versus P1, P3 versus P1, P4 versus 

292 P1), CDC5 was shared between three pairs (P3 versus P1, P4 versus P1, P5 versus P1), TP1 was shared between 

293 three pairs (P2 versus P1, P3 versus P1, P4 versus P1), NRPB2 and GAPC1 were shared between two pairs (P2 

294 versus P1, P3 versus P1), GS2 was shared between two pairs (P3 versus P1, P5 versus P1), and P5CS2 was 

295 shared between two pairs (P2 versus P1, P4 versus P1). TPI is a protein with both the highest BC value and CC 

296 value, and emb1473 is a protein with the largest degree in the network of P2 versus P1. TPI had a degree value 

297 of 19, and occupied the central position in the network because of its high degree, BC, and CC values. TPI was 

298 also considered to be centrally located in the network of P4 versus P1, and P5 versus P1 due to its high degree, 

299 BC, and CC values in those networks. In the network of P3 versus P1, the RPL4 protein encoded by AT5G02870 

300 had the largest degree value, the CDC5 protein had the highest BC value, and the Hsp70b protein had the highest 

301 CC value. In the P3 versus P1 network, the CDC5 protein had a degree value of 40 and a CC value of 0.41441441, 

302 and occupied the central position. In the P4 versus P1 network, the PRPL3 protein encoded by AT2G43030 had 

303 degree value of 184, the largest in the network. The CDC5 protein had the highest BC value in P4 versus P1, 

304 and in P5 versus P1. These results indicate that these proteins play a vital role in these large networks.

305 Identification of differential metabolites

306 Based on the results of the QC and QA analyses (Fig. S33), all samples exhibited a high quality, and could be 

307 used for subsequent screening and identification of differential metabolites (DMs). According to the PCA, the 

308 components of the five samples (P1, P2, P3, P4, P5) displayed effective separation (Fig. 7A, B). As a supervised 

309 method, a PLS-DA (Partial Least Squares Discriminant Analysis), the most commonly used classification 

310 method in metabonomics, was performed to confirm the PCA results. PLS-DA also has potential applications in 

311 sample classification. Satisfactory modeling and prediction results were obtained from all sample comparison 

312 groups despite low Q2 values, suggesting metabolomes are distinguishable under water-deficit conditions (Fig. 

313 8A, B, C, D). In addition, the OPLS-DA (orthogonal partial least squares-discriminant analysis) showed a 

314 remarkable separation among the five samples (Fig. 7C, D). Furthermore, based on the parameter VIP (variable 
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315 of importance in prediction) >1, which is a measure of the variable importance in the OPLS-DA, a total of 1,422 

316 differential metabolites (DMs) were identified in all five samples, which were displayed as a heat map (Fig. 7E). 

317 The detailed information of the DMs from this 6-sample group comparisons (P2 versus P1, P3 versus P1, P4 

318 versus P1, P5 versus P1, P3 versus P2, and P4 versus P2) are shown in supplementary table S3-8. The number 

319 of DMs in the P4 versus P1 group was the highest, whereas the P3 versus P2 group had the lowest number of 

320 DMs, which is similar to the DEP results (Fig .9). More up-regulated DMs were identified through metabolomic 

321 analysis compared to the DEPs identified from the same samples through RNA-seq based transcript profiling. 

322 The metabolite levels of five comparison groups are shown in supplementary Figure S34. A total of five 

323 metabolites,including Ubiquinone-1, perrlly aclohol, phosphoserine, d-Limonene, and 2-Amino-2-dexy-D -

324 gluconate, exhibited higher levels in samples under water withholding conditions compared to control. 

325 KEGG pathways of DMs

326 A total of 331 DMs from all five samples were identified in the KEGG database: 95 DMs were found in P2 

327 versus P1, 60 DMs in P3 versus P1, 172 DMs in P4 versus P1, 135 DMs in P5 versus P1, 53 DMs in P3 versus 

328 P2, and 82 DMs in P4 versus P2 (Supplementary table S 9-14). There were 22, 11, 41, 32, 1, and 9 up-regulated 

329 DMs with a fold change >5 in each pair, respectively. Among them, ubiquinone-1 and xanthoxic acid were 

330 shared in P2 versus P1, P3 versus P1, P4 versus P1, and P5 versus P1, and L-isoleucine was shared in P3 versus 

331 P2 and P4 versus P2. Some DMs were only found in the samples under water-deficient conditions. Dimethyl 

332 sulfone was unique to the samples after 5 days (P2), 15 days (P4), and 20 days (P5) of water withholding. 

333 Xanthine, dihydrouracil, and 13(S)-HOT were only observed in the P2 and P4 samples. The accumulation of 

334 some DMs was reduced in samples under conditions of water deficiency compared to controls, including: 3-

335 methylthiopropionic acid, cyclic AMP, 3-dehydroshikimate, L-arginine, CMP, 3-hydroxyphenylacetic acid, 

336 galactose 1-phosphate, and deoxycytidine. Based on the pathway enrichment assessment, tyrosine metabolism 

337 was the only significantly enriched pathway (FDR<0.05, pathway impact values  0.2) in the P5 versus P1 group 

338 comparison (Supplementary table S12). The only significantly enriched pathway in the P3 versus P2 group 

339 comparison was arginine and proline metabolism (Supplementary table S13), whereas the rest of group 

340 comparisons had no significantly enriched pathways. Tyrosine metabolism includes nine components: 6 up-

341 regulated MDs (3,4-dihydroxyphenylethyleneglycol, 3,4-dihydroxy-L-henylalanine, L-tyrosine, succinate 

342 semialdehyde, dopamine, fumarate, acetoacetate, 4-hydroxy-phenylacetaldehyde) and one down-regulated MD 

343 (tyramine; Supplementary Table S12). A total of 11 components were linked to arginine and proline metabolism: 

344 glyoxylate, L-Ornithine, L-glutamate, L-proline, L-1-pyrroline-3-hydroxy-5- carboxylate, S-adenosyl-L-
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345 methionine, L-arginine, pyruvate, hydroxyproline, (4R)-4-hydroxy-2-oxoglutarate, and spermidine 

346 (Supplementary Table S13). Furthermore, a correlation analysis of the differential metabolites showed that 

347 ubiquinone-1 accumulation was the most positively correlated to L-tyrosine accumulation, and xanthoxic acid 

348 content was positively correlated with ubiquinone-1 and L-tyrosine in the P5 versus P1 group. L-tyrosine 

349 composition in the P5 versus P1 group was also negatively correlated with cyclic AMP, 3-dehydroshikimate, 

350 CMP, 3-hydroxypheny-lacetic acid, and deoxycytidine. In the P3 versus P2 group, a significant positive 

351 correlation was found between L-proline and L-isoleucine accumulation. As a marked osmotic modulation in 

352 response to drought stress, the proline accumulation in each sample was investigated more closely. L-Proline 

353 showed a significant accumulation after 20 days of water withholding (P5) compared with control (P1; 

354 Supplementary Table S6) and 4-Hydroxyproline content was increased in P3 versus P1, and in P4 versus P1 

355 (Supplementary Table S4, S5). The concentration of 4-hydroxyproline and L-proline were both increased in P3 

356 versus P2, and in P4 versus P2 (Supplementary Table S7, S8).

357 Discussion

358 The decline of photosynthesis and glycometabolism-related proteins and metabolites resulting in 

359 water stress.

360 Water stress affects protein biosynthesis and degradation, and the photosynthetic process (Amin et al., 

361 2009). Similar to those found in wheat (Michaletti et al., 2018), some photosynthetic-related proteins, mainly 

362 photosystem II oxygen-evolving enhancer protein 1, photosystem I reaction center subunit (psaK), photosystem 

363 II Psb27 protein, and ribulose-bisphosphate carboxylase, were down-regulated in samples under water deficiency 

364 conditions. The expression patterns of these proteins were confirmed in our study by the significant reduction of 

365 sorbitol observed during water stress, which is the main end-product of photosynthesis, and is essential for 

366 stamen development in apple trees (Meng et al., 2018). However, the levels of photosystem I subunit IV and 

367 photosystem II oxygen-evolving enhancer protein 2 increased in water deficit conditions, implying these 

368 substrates, components of the photosynthetic system, exhibit different roles in response to photosynthesis 

369 impairment induced by drought stress. As reported in the water-stressed leaves of apple trees (Yang et al., 2019), 

370 a significant reduction in photosynthesis is generally correlated with changes in sugar metabolism.

371 In this study, six of the top KEGG pathways connected to glycometabolism were also influenced by water 

372 stress, including glycolysis/gluconeogenesis, pyruvate metabolism, glyoxylate and dicarboxylate metabolism, 

373 citrate cycle (TCA cycle), fructose and mannose metabolism, and the pentose phosphate pathway. Declines were 

374 mainly seen in ribose 5-phosphate isomerase A, alpha-N-acetylglucosaminidase, pyruvate dehydrogenase E1 

375 component alpha subunit [EC:1.2.4.1], triosephosphate isomerase (TPI), and glycosyltransferase (AT3G29320). 

PeerJ reviewing PDF | (2022:07:75098:2:0:NEW 29 Sep 2022)

Manuscript to be reviewed

javascript:;
javascript:;
javascript:;


376 TPI occupied the central position in both the P4 versus P1 network and the P5 versus P1 network due to its high 

377 degree, BB, and CC values, as it plays an important role in the glycolysis pathway. A recent study in Barley 

378 indicated TPI could be linked to drought tolerance in a comparative proteome-transcriptome analysis (Wójcik-

379 Jaga et al., 2020). However, the expression pattern of the TPI protein was not consistent with the direction of 

380 changes seen in transcript accumulation during water stress. This could be partly due to the instability of 

381 transcripts, which are prone to RNAse degradation (Wójcik-Jaga et al., 2020). For the glycosyltransferase gene, 

382 the pattern of changes in protein and transcript accumulation was very similar under water stress conditions. 

383 Zheng et al., (Zheng et al., 2017) confirmed that QUA1, which has been identified as a glycosyltransferase in 

384 Arabidopsis, increases drought tolerance by regulating chloroplast-associated calcium signaling. Similar 

385 findings have also been shown in rice (Oryza sativa L.; Dinesh et al., 2017). The following pathways involved 

386 in carbohydrate metabolism were found to be down-regulated in our KEGG-based metabonomics analyses 

387 despite high FDR values: fructose and mannose metabolism, glyoxylate and dicarboxylate metabolism, pyruvate 

388 metabolism, glycolysis/gluconeogenesis, pentose phosphate pathway, and starch and sucrose metabolism. These 

389 results are not only consistent with our proteome data, but also match the results of previous transcriptome 

390 analyses (Shi et al., 2020). Similar results have also been observed in other plants, such as Medicago truncatula 

391 (Lyon et al., 2016) and spring-wheat (Michaletti et al., 2018).

392 The disturbance of amino acid metabolism was induced by water stress.

393 Most DEPs identified in this study were enriched in �biosynthesis of secondary metabolites� and 

394 �biosynthesis of amino acids,� which is consistent with previous RNA-seq results (Shi et al., 2020). However, 

395 only �tyrosine metabolism� and �arginine and proline metabolism� were considered significantly enriched 

396 pathways in our metabolomic analysis. It is well known that secondary metabolism is critical to plant growth 

397 and development, and can be induced by both biotic and abiotic stresses (Fox et al., 2017). The involvement of 

398 secondary metabolites in response to drought stress is extremely complicated and depends on various parameters, 

399 such as high temperature and photoinhibition, which typically accompany drought stress (Niinemets & Way, 

400 2016). Previous studies have demonstrated that water deficiency can damage the biosynthesis of secondary 

401 metabolites in plants, interfering with normal growth and generating chlorosis, which reduces plant production 

402 or even causes the plant to die (Afshar et al., 2012; Bitarafan et al., 2019).  Transcriptomic analyses have shown 

403 that secondary metabolism in plants is regulated by a large number of transcription factors, most of which belong 

404 to the bHLH, MYB, MYB-like, C2H2, and bZIP families and are down-regulated during water stress (Shi et al., 

405 2020). The down-regulation of MYB-related transcription factor LHY (MYB-like families) and transcription 
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406 factor MYC2 (bHLH families) in drought conditions have been further confirmed using proteomic approaches, 

407 suggesting that they might be pivotal candidate genes for subsequent verification. 

408 This study also found that the reduction in proteins linked to secondary metabolites mainly involved NADH-

409 dependent glutamate synthase 1 isoform 1 (K00264 glutamate synthase (NADPH/NADH) [EC:1.4.1.13 

410 1.4.1.14]), lipoxygenase (K00454 lipoxygenase [EC:1.13.11.12]), allene oxide synthase, (K01723 

411 hydroperoxide dehydratase [EC:4.2.1.92]), and the peroxidase superfamily protein (K00430 peroxidase 

412 [EC:1.11.1.7]). The genes corresponding to these proteins all had reduced expression levels except the 

413 peroxidase superfamily protein.Four genes related to glutamate synthase (NADPH/NADH) [EC:1.4.1.13 

414 1.4.1.14]) were down-regulated in the water shortage samples (P5); this down-regulation aligned with the 

415 reduction of L-glutamic content during water stress. The NADH-dependent glutamate synthase (NADH-

416 GOGAT), which uses NADH as the electron donor, is present mostly in non-photosynthesizing cells, where the 

417 reductant is supplied by the pentose phosphate pathway (Forde & Lea, 2007). The importance of NADH-

418 GOGAT in ammonium assimilation has previously been reported in various species (Konishi et al., 2014), as 

419 well as its potential links to drought response through amino acid metabolism. It has been demonstrated that 

420 disruptions in the amino acid metabolism of plants can be attributed to decreases in NADH-GOGAT activity 

421 (Forde & Lea, 2007). A special regulation mode of amino acid metabolism associated with drought stress 

422 tolerance has been reported in wheat (Aidoo et al., 2017), Lotus japonicus (Sanchez et al., 2012), and maize 

423 plants (Alvarez et al., 2008). A total of 20 types of amino acids were obtained in our metabonomics analysis 

424 (Supplementary Table S15). The changes in the patterns of the different amino acids varied under different water 

425 stress conditions, similar to the changes observed in the Lotus japonicus species (Sanchez et al., 2012) and in 

426 maize plants (Alvarez et al., 2008). Phosphoserine content increased in all water shortage samples compared 

427 with control, and the concentration of both L-arginine and L-glutamic acid decreased. Notably, the L-proline 

428 content, which is a well-known bio-marker for water deficit, was significantly higher in the sample after 20 days 

429 of water withholding (P5) compared with control (P1), but this increase was not observed in the other water 

430 shortage samples.   An accumulation of 4-hydroxyproline was observed in P3 versus P1, and in P4 versus P1, 

431 while the arginine and proline metabolism pathway, which involves 11 components, was only enriched in P3 

432 versus P2. Among these 11 components, L-proline and 4-hydroxyproline amounts were increased in samples 

433 after seven days of water withholding (P3). Proline changes are associated with extreme water scarcity in many 

434 plant species (Witt et al., 2012; Pirzad et al., 2011), but these changes are genotype specific and also related to 

435 the extent of the water stress ( Bowne et al., 2012). Proline is known as a compatible solute essential for osmotic 
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436 adjustments. It protects cellular structures during water stress and also plays an important role in ROS (reactive 

437 oxygen species) scavenging (Shorangiz et al., 2014), thus alleviating the adverse effects of drought stress on 

438 plant metabolism. It is thus reasonable to conclude that disturbances in the amino acid metabolism observed in 

439 this study was due to the enhanced protein breakdown induced by corresponding down-regulated genes.

440 The tyrosine-derived pathway is important for drought tolerance.

441 Our results highlight the importance of tyrosine metabolism, which was a unique significantly enriched 

442 pathway in the comparison of water stress conditions (P5) and control (P1) in our study. As a key enzyme in the 

443 tyrosine-derived pathway, tyrosine aminotransferase (TAT) catalyzes the reversible interconversion of tyrosine 

444 and 4-hydroxyphenylpyruvate for the biosynthesis of secondary metabolites. According to a previous 

445 transcriptome analysis (Shi et al., 2020), the TAT gene is up-regulated during water deficit, which is in agreement 

446 with the corresponding enzyme in our proteomic analysis. A recent study in apple trees (Malus domestica) found 

447 the same accumulation pattern of ubiquinone-1 in the metabolome, reinforcing the hypothesis that TAT genes 

448 confer drought tolerance (Hwa et al., 2018). Ubiquinone (UQ) is an important prenyl quinone whose core cyclic 

449 scaffold is provided by the tyrosine-derived pathway. UQ functions as an electron transporter in the respiratory 

450 chain and is indispensable in a plant�s response to abiotic stress (Liu & Lu, 2016). We found a significant 

451 accumulation of dopamine after 20 days of water withholding compared to control. Some studies have reported 

452 that dopamine confers drought tolerance in plants. According to a correlation analysis of metabolites, the 

453 contents of dopamine and ubiquinone-1 were all significantly positively correlated with L-tyrosine 

454 accumulation, implying that okra plants could improve resistance to drought and prevent drought-induced 

455 damage by enhancing tyrosine metabolism and its derivatives. 

456 We observed significant decreases in the abundance of glutamine synthetase (GS) proteins after 7 days and 

457 20 days of water withholding. The corresponding GS gene was also down-regulated in water stress samples. The 

458 decline of L-glutamic acid during water stress was consistent with the expression pattern of the GS gene and 

459 protein. GS2 was also shown to be important in protein interaction networks because of its large degree and high 

460 BC values. The reduction of L-glutamic acid observed could be linked to tyrosine metabolism accumulation and 

461 the synthesis of arginine. Similar findings have been reported in the metabolome of wheat (Michaletti et al., 

462 2018). Glutamic acid (Glu) can supply amino groups for photorespiratory metabolism, and also ornithine to 

463 produce arginine (Arg) for carbon (C) and nitrogen (N) assimilation and partitioning (Díaz et al., 2005). GS is 

464 also known as a metabolic indicator for drought stress tolerance in wheat (Nagy et al., 2013), which is further 

465 supported by previous studies of GS protein abundance in many plant species (Wang et al., 2018). Water stress 
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466 conditions affects the balance between photosynthetic carbon uptake and the use of photoassimilates, causing 

467 alterations in the sugar pools (Michaletti et al., 2018). This further supports the hypothesis that tyrosine 

468 metabolism could confer drought tolerance to plants by influencing carbon and nitrogen metabolism. Further 

469 research should focus on the regulation mechanism of the GS2-mediated protein interaction network in the 

470 response of okra plants to drought stress. 

471 Conclusion 

472 Comparing transcriptomic, proteomic, and metabolomic data showed an obvious connection between all three, 

473 especially the metabolome and proteome. Water stress disrupts the biosynthesis of secondary metabolites, 

474 especially in amino acid metabolism, which is associated with the inhibition of photosynthesis and 

475 glycometabolism. The components of the tyrosine-derived pathway play key roles in improving drought 

476 tolerance in okra plants.
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482
483
484 Figure 1 Heat map of all DEPs among five samples
485 Figure 2 Statistics of DEPs from the ten sample pairs: P2 versus P1, P3 versus P1, P3 versus P2, P4 versus P1, 
486 P4 versus P2, P4 versus P3, P5 versus P1, P5 versus P2, P5 versus P3, and P5 versus P4. Red: up-regulated 
487 expressed proteins, blue: down-regulated expressed proteins.
488 Figure 3 COG functional classification of all DEPs. Different colors represent different categories in the COG 
489 database.
490 Figure 4 Top 20 GO categories of all DEPs
491 Figure 5 The most enriched GO terms in GO Slim
492 Figure 6 Illustration of the PPI network
493 A: The network of P2 versus P1, B: The network of P3 versus P1, C: The network of P4 versus P1, D: The 
494 network of P5 versus P1. Network nodes represent proteins. Edges represent protein-protein associations. The 
495 green nodes represent down-regulated DEPs, red nodes represent up-regulated DEPs. The size of the node 
496 indicates its degree value: the larger the radius, the greater the degree value.
497 Figure 7 A: PCA score plot in positive ion mode. B: PCA score plot in negative ion mode. C: OPLS-DA score 
498 plot in positive ion mode. D: OPLS-DA score plot in negative ion mode. E: 10 Statistics of DMs from six sample 
499 pairs: P2 versus P1, P3 versus P1, P3 versus P2, P4 versus P1, P4 versus P2, and P5 versus P1. Red: up-regulated 
500 expressed proteins, blue: down-regulated expressed proteins.
501 Figure 8 PLS-DA score plot and permutation test plot
502 A: PLS-DA score plot in positive ion mode. B: PLS-DA score plot in negative ion mode.
503 C: OPLS-DA permutation test plot in positive ion mode. D: OPLS-DA permutation test plot in negative ion 
504 mode. 
505 Figure 9 The heat map of differential metabolites among five samples. The columns represent samples, the rows 
506 represent metabolites, and different colors indicate the relative content of the differential metabolites.
507
508
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509 Supplementary data

510 Figure S1 Metabolite extraction
511 Figure S2 Peptide length statistics
512 Figure S3 PSM number distribution
513 Figure S4 Score distribution for identified peptides
514 Figure S5 The distribution of missed cleavage sites for the identified peptides
515 Figure S6 Peptide-to-protein distribution
516 Figure S7 The distribution of PSM numbers for each protein
517 Figure S8 MW distribution of the identified proteins
518 Figure S9 The coverage distribution for the identified proteins 
519 Figure S10 The pI distribution of the identified proteins 
520 Figure S11-20 Enriched GO terms of the ten sample pairs based on proteomic analysis
521 Figure S21-30 KEGG Pathways of the ten sample pairs based on proteomic analysis
522 Figure S31 KEGG Pathway enrichment of up-regulated DEPs in P4 versus P3
523 Figure S32 KEGG Pathway enrichment of up-regulated DEPs in P5 versus P3
524 Figure S33 QC (A) and QA (B) analysis of all samples
525 Figure S34 The metabolite levels in five comparison groups (P2 versus P1, P3 versus P1, P3 versus P2, P4 
526 versus P1, P4 versus P2, P5 versus P1). Different colors represent different samples.
527 Figure S34 The principal component analysis from six sample pairs (P2 versus P1, P3 versus P1, P3 versus P2, 
528 P4 versus P1, P4 versus P2, P5 versus P1.)
529 Table S1 The pathways with enrichment values >10 
530 Table S3-8 The DMs identified in the six sample pairs 
531 Table S9-14 KEGG Pathway enrichment of six sample pairs based on the metabonomics analysis
532 Table S15 Expression of identified amino acids in four comparison groups (P2 versus P1, P3 versus P1, P4 
533 versus P1, P5 versus P1)
534
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Figure 1
Global heatmap
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Figure 2
Statistics of DEPs from ten sample-pairs, being namely P2 versus P1, P3 versus P1, P3
versus P2, P4 versus P1, P4 versus P2, P4 versus P3, P5 versus P1, P5 versus P2, P5
versus P3, and P5 versus P4. Red: upregulated expressed proteins, blue : down-reg
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Figure 3
COG annotation
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Figure 4
Top 20 GO categories of all DEPs
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Figure 5
The most enriched GO terms in GO Slim
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Figure 6
Illustration of the PPI network A: The network of P2 versus P1, B: The network of P3
versus P1, C: The network of P4 versus P1, D: The network of P5 versus P1. Network
nodes represent proteins. Edges represent protein-protein associations. The green
nodes
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Figure 7
Principal Component Analysis (PCA) of metabolite profiles A: PCA score plot in positive
ion mode. B: PCA score plot in negative ion mode.

PeerJ reviewing PDF | (2022:07:75098:2:0:NEW 29 Sep 2022)

Manuscript to be reviewed



Figure 8
Plots of PLS-DA score and permutation test. A: PLS-DA score plot in positive ion mode. B:
PLS-DA score plot in negative ion mode.C: OPLS-DA permutation test plot in positive ion
mode. D:OPLS-DA permutation test plot in negative ion mode.
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Figure 9
Plots of OPLS-DA scoreA: OPLS-DA score plot in positive ion mode. B:OPLS-DA score plot
in negative ion mode.
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Table 1(on next page)

Separation gradient
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1 Table 1 Separation gradient

Time

(min)

Mobile phase A

(0.1%FA/H2O)

Mobile phase B 

(0.1%FA/ACN)

0 93% 7%

11 85% 15%

48 75% 25%

68 60% 40%

69 0% 100%

75 0% 100%

2
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Table 2(on next page)

The significantly (P < 0.01) enriched KEGG pathways
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1 Table 2  The significantly (P < 0.01) Enriched KEGG Pathways 

Term ID Term description Termnum P-value Ratio Enrichment FDR

path:ath01100 Metabolic pathways 937 0.157346767 1.93E-26 25.7150997 2.41E-24

path:ath01110 Biosynthesis of secondary metabolites 557 0.163391024 2.15E-16 15.66656637 5.39E-15

path:ath01200 Carbon metabolism 238 0.234714004 2.88E-25 24.54112048 1.80E-23

path:ath03010 Ribosome 203 0.169449082 3.25E-07 6.487789383 2.90E-06

path:ath01230 Biosynthesis of amino acids 183 0.220481928 1.68E-16 15.77493564 5.25E-15

path:ath03040 Spliceosome 103 0.161189358 0.001667046 2.778052308 0.007185545

path:ath00010 Glycolysis / Gluconeogenesis 96 0.207343413 8.59E-08 7.065859234 9.76E-07

path:ath00620 Pyruvate metabolism 95 0.246753247 6.53E-12 11.18495109 1.17E-10

path:ath00710 Carbon fixation in photosynthetic organisms 85 0.307971014 1.15E-16 15.93857506 4.80E-15

path:ath00190 Oxidative phosphorylation 77 0.168859649 0.001769333 2.752190339 0.007372222

path:ath00630 Glyoxylate and dicarboxylate metabolism 73 0.253472222 5.13E-10 9.28984492 8.02E-09

path:ath00020 Citrate cycle (TCA cycle) 63 0.259259259 3.03E-09 8.518991062 4.20E-08

path:ath00260 Glycine, serine and threonine metabolism 60 0.256410256 1.12E-08 7.951195634 1.40E-07

path:ath00270 Cysteine and methionine metabolism 59 0.184952978 0.000659883 3.180532956 0.003299416

path:ath00195 Photosynthesis 58 0.364779874 2.14E-15 14.66871 4.47E-14

path:ath00230 Purine metabolism 56 0.178913738 0.001965531 2.706520092 0.007925528

path:ath00051 Fructose and mannose metabolism 54 0.215139442 1.93E-05 4.714206495 0.000127043

path:ath00970 Aminoacyl-tRNA biosynthesis 52 0.254901961 1.29E-07 6.891076785 1.34E-06

path:ath00480 Glutathione metabolism 52 0.228070175 4.85E-06 5.314302303 3.57E-05

path:ath01210 2-Oxocarboxylic acid metabolism 49 0.212121212 6.71E-05 4.173445821 0.000419212

path:ath03050 Proteasome 49 0.210300429 8.41E-05 4.074974554 0.00050086

path:ath01212 Fatty acid metabolism 49 0.17562724 0.005242324 2.280476165 0.019273249

path:ath00250 Alanine, aspartate and glutamate metabolism 47 0.262569832 1.99E-07 6.701294506 1.91E-06

path:ath00030 Pentose phosphate pathway 46 0.196581197 0.000666312 3.176322631 0.003203421

path:ath00053 Ascorbate and aldarate metabolism 39 0.276595745 5.08E-07 6.293861872 4.24E-06

path:ath00860 Porphyrin and chlorophyll metabolism 37 0.26618705 2.70E-06 5.568891264 2.11E-05

path:ath00280 Valine, leucine and isoleucine degradation 37 0.185 0.006096775 2.214899808 0.021774198

path:ath00061 Fatty acid biosynthesis 37 0.183168317 0.007176271 2.14410114 0.024917609

path:ath00592 alpha-Linolenic acid metabolism 36 0.204545455 0.001176924 2.929251557 0.005254125

path:ath00220 Arginine biosynthesis 28 0.24137931 0.000264729 3.577197832 0.001438747

path:ath00640 Propanoate metabolism 27 0.197080292 0.007622503 2.117902407 0.025751699

path:ath00670 One carbon pool by folate 20 0.298507463 9.32E-05 4.030622411 0.000529499

path:ath00290 Valine, leucine and isoleucine biosynthesis 18 0.25 0.002061633 2.685788684 0.008053253

path:ath00196 Photosynthesis 14 0.4375 8.45E-06 5.073151505 5.87E-05

path:ath00650 Butanoate metabolism 14 0.259259259 0.004375359 2.358986273 0.016573331

path:ath00300 Lysine biosynthesis 10 0.37037037 0.000836778 3.077389825 0.003873972

path:ath00261 Monobactam biosynthesis 9 0.409090909 0.000654796 3.183893939 0.003410396

2

PeerJ reviewing PDF | (2022:07:75098:2:0:NEW 29 Sep 2022)

Manuscript to be reviewed

file:///C:/Users/acute2803764/AppData/Local/youdao/dict/Application/8.9.6.0/resultui/html/index.html%23/javascript:;


Table 3(on next page)

The list of nodes with both a high BC value (>0.02) and high degree value (>10)
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1 Table 3 The list nodes with both high BC(>0.02) and degree values(>10)

2

Pairs Gene BC value D avlue

TPI a 0.1870093 19

AT1G11860 0.17621229 17

AT3G29320 b 0.12413995 13

NRPB2 d 0.098109 17

emb1473 0.09009896 25

ACP4 0.08761633 18

P5CS2 f 0.04926569 13

NDPK2 0.04680682 13

AT1G12230 0.0442739 15

LOS2 0.04314511 15

rps15 0.04216912 16

AT2G43030 0.03732062 24

PP2AA2 0.03569743 11

P2 versus P1

GAPC1 d 0.03315947 13

CDC5c 0.14663404 40

Hsp70b 0.10052988 38

TPI a 0.05953945 41

PSP 0.04886272 16

AT3G29320 b 0.0481939 21

NRPB2 d 0.04459201 41

GS2 e 0.04413029 25

CPN10 0.04098666 39

LOX2 0.03694796 14

mtLPD1 0.03669113 24

AT1G09640 0.0346852 55

CDPMEK 0.03296113 18

GAPC1 d 0.03215865 26

P3 versus P1

PUR5 0.0311079 38

CDC5 c 0.04350023 125

TPI a 0.03028585 160

AT3G29320 b 0.02679787 23

P5CS2 f 0.02186006 118

P4 versus P1

HSP70 0.02005322 158

CDC5 c 0.04774593 87

AT5g06290 0.03391341 118

TPI a 0.02928484 145
P5 versus P1

HEME2 0.02682115 124
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HSC70-1 0.0264096 84

AT3G54470 0.02636206 102

AT5G51970 0.02472014 67

GS2 e 0.02222725 70

3 Note  a: Gene shared in all pairs.b: Gene shared in P2 versus P1, P3 versus P1, P4 versus P1. c: Gene shared in P3 versus P1, P4 versus P1, P5 versus P1. 

4 d:Gene shared in P2 versus P1, P3 versus P1. e:Gene shared in P3 versus P1 and P5 versus P1. f: Gene shared in P2 versus P1 and P4 versus P1.
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