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Remote sensing of inland waters is challenging, but also important, due to the need to
monitor the ever-increasing harmful algal blooms (HABs), which have serious eûects on
water quality. The Ocean and Land Color Instrument (OLCI) of the Sentinel-3 satellites
program is capable of providing images for the monitoring of such waters. Atmospheric
correction is a necessary process in order to retrieve the desired surface-leaving radiance
signal and several atmospheric correction methods have been developed through the
years. In this study, we evaluated the possible diûerences between a partial atmospheric
correction method accounting for Rayleigh scattering and a full atmospheric correction
method (iCOR), applied on Sentinel-3/OLCI images of a shallow, highly eutrophic water
reservoir. For the complete evaluation of the two methods, in addition to the comparison
of the band values, chlorophyll (CHL) and cyanobacteria (CI) indices were also calculated
and their values were intercompared. The results showed, that although the absolute
values between the two correction methods did not coincide, there was a very good
correlation between the bands and the CHL and CI indices values. Therefore, since iCOR
correction image processing time is 25 times longer than Rayleigh correction, it seems
that the Rayleigh partial correction method may be suûcient for seasonal water
monitoring, especially in cases of long time-series, enhancing time and resources use
eûciency.
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18 Abstract

19 Remote sensing of inland waters is challenging, but also important, due to the need to monitor the 

20 ever-increasing harmful algal blooms (HABs), which have serious effects on water quality. The 

21 Ocean and Land Color Instrument (OLCI) of the Sentinel-3 satellites program is capable of 

22 providing images for the monitoring of such waters. Atmospheric correction is a necessary process 

23 in order to retrieve the desired surface-leaving radiance signal and several atmospheric correction 

24 methods have been developed through the years. In this study, we evaluated the possible 

25 differences between a partial atmospheric correction method accounting for Rayleigh scattering 

26 and a full atmospheric correction method (iCOR), applied on Sentinel-3/OLCI images of a 

27 shallow, highly eutrophic water reservoir. For the complete evaluation of the two methods, in 

28 addition to the comparison of the band values, chlorophyll (CHL) and cyanobacteria (CI) indices 

29 were also calculated and their values were intercompared. The results showed, that although the 

30 absolute values between the two correction methods did not coincide, there was a very good 

31 correlation between the bands and the CHL and CI indices values. Therefore, since iCOR 

32 correction image processing time is 25 times longer than Rayleigh correction, it seems that the 

33 Rayleigh partial correction method may be sufficient for seasonal water monitoring, especially in 

34 cases of long time-series, enhancing time and resources use efficiency.
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35 Introduction

36 Harmful algal blooms (HABs)

37 Recurrent blooms of harmful algae and cyanobacteria (HABs) in coastal and inland water 

38 systems are a major concern for environmental and public health authorities worldwide. They are 

39 associated with eutrophication and in particular with phosphorus and nitrogen loading due to 

40 runoff from rural areas (Anderson et al., 2008; Heisler et al., 2008; Mazard et al., 2016; O�Neil et 

41 al., 2012) and also with climate change and CO¢ concentration and temperature increase (Glibert, 

42 2020; Gobler, 2020; Griffith and Gobler, 2020; O�Neil et al., 2012; Raven et al., 2020). Other 

43 factors are high pH and light (Bartosh and Banks, 2006; Ni et al., 2012). 

44 The effects of these blooms may concern changes in taste and smell of water supply 

45 sources, development of a thick crust on the surface of the lake and lack of water purity (Chorus 

46 and Bartram, 1999). Additionally, from a biological perspective, possible toxic effects on other 

47 algae, invertebrates and fish and anoxic conditions that alter the structure of benthic macro-

48 invertebrates may appear (Havens, 2008). Finally, the toxic secondary metabolites produced by 

49 blue-green algae may cause serious health problems in mammals and wildlife, because they affect 

50 the endocrine, dermal and nervous systems (Carmichael, 2001).

51 Sentinel-3/OLCI

52 The advancements in satellite remote sensing during the last decades has led to its 

53 significant contribution in numerous environmental applications. The Sentinel-3 satellites are a 

54 mission organized by the European Space Agency (ESA) and the European Meteorological 

55 Satellite Exploitation Agency (EUMETSTAT) under the Copernicus program, formerly known as 

56 the Global Monitoring for Environment and Security (GMES). The Sentinel-3 mission comprises 

57 two similar satellites A and B, with launch dates February 16, 2016 and April 25, 2018 

58 respectively. Both satellites are solar-synchronous with a polar orbit, operating at an average 

59 altitude of 815 km and with an inclination of 98.6° (Yang et al., 2019). Among others, they carry 

60 an Ocean and Land Color Instrument (OLCI) which covers a spectral range from 400 to 1020 nm 

61 (21 spectral bands), with 300 m spatial resolution and approximately daily revisit cycle. 

62 Ocean Color images have been available since 1978 thanks to the Coastal Zone Color 

63 Scanner (CZCS) mission. From 2002 to 2012, the Medium Resolution Imaging Spectrometer 

64 (MERIS) on ESA's ENVISAT platform provided unprecedented monitoring capability for coastal 

65 and inland water systems (Kravitz et al., 2020). The OLCI Instrument onboard the Sentinel-3 

66 satellites is based on the mechanical and imaging design of ENVISAT MERIS and may be 

67 considered as MERIS heritage for ocean and land color monitoring. It includes six more spectral 

68 bands than MERIS (21 to 15), which are centered at 400 and 674 nm (water constituents retrieval 

69 improvement), 761, 764, and 768 nm (O2 gas absorption correction improvements), and 1020 nm 

70 (atmospheric correction improvement) (Mograne et al., 2019).

71 Atmospheric correction
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72 Satellite sensors measure the top-of-atmosphere (TOA) signal from the surface-atmosphere 

73 system in visible and near-infrared parts of the spectrum. The atmospheric path radiance received 

74 by a sensor at the TOA can be mainly decomposed into Rayleigh and aerosol scattering (Feng et 

75 al., 2018), with the Rayleigh-scattering radiance being the most dominant component of the TOA 

76 signal (Shanmugam et al., 2019). The process of removing the atmospheric path signal from the 

77 TOA signal in order to retrieve the desired surface-leaving radiance signal is referred to as 

78 atmospheric correction (Gordon, 1997). It is worth noting, that after five years of Sentinel-3 

79 operation, ESA is still providing only limited atmospherically corrected (Level 2) data. So, for 

80 acquiring information about the environment (for example monitoring of cyanobacterial blooms) 

81 from the satellite images, atmospheric correction is necessary and several atmospheric correction 

82 algorithms have been developed through the years. 

83 iCOR & Rayleigh atmospheric correction methods

84 iCOR is a free open-source atmospheric correction software (Ibrahim et al., 2018; 

85 Nurgiantoro et al., 2019) that can be used as an ESA Sentinel Application Platform (SNAP) plug-in 

86 for processing Landsat-8/OLI, Sentinel-2/MSI and Sentinel-3/OLCI images. iCOR runs without 

87 user interaction, derives the required input parameters from the image and is designed to be 

88 applicable to inland waters, coastal waters and land. 

89 The iCOR workflow includes four steps (�Atmospheric correction software for Sentinel-3 

90 | Vito remote sensing,� n.d.; König et al., 2019; Stefan et al., 2018): (1) classification of land/water 

91 pixels (2) AOT retrieval over land following the approach of (Guanter et al., 2007) and extension 

92 to black water pixels in the Short Wave InfraRed (SWIR) (3) adjacency correction and (4) 

93 atmospheric correction using pre-calculated MODTRAN 5 Look Up Tables based on a rural 

94 aerosol model (De Keukelaere et al., 2018). Above water the SIMilarity Environment Correction 

95 (SIMEC) is used, which is based on the correspondence with the Near InfraRed (NIR) similarity 

96 spectrum and is described in (Sterckx et al., 2015, 2011). Above land, fixed background ranges 

97 are used. 

98 A Rayleigh atmospheric correction algorithm, was originally designed for MERIS, is 

99 included in SNAP software. The current version of SNAP software also supports OLCI and 

100 Sentinel-2 MSI instruments. Specifically, Rayleigh correction can be applied to: MERIS bands 1 

101 to 15 (N1 format or MERIS 4th reprocessing format), Sentinel-3 OLCI L1B bands 1-21 and 

102 Sentinel-2 MultiSpectral Instrument (MSI) L1C bands 1 to 9. The Rayleigh correction processor 

103 as its described in S3TBX - Rayleigh Correction Tutorial (2021) (Ruescas and Müller, n.d.) has 

104 five different outputs: Rayleigh optical thickness (ROT), Bottom of Rayleigh Reflectance (BRR), 

105 gaseous corrected TOA reflectance, TOA reflectance bands and air mass (the air mass term is 

106 written to the target product, otherwise is set to False). 

107 Aim of the study

108 The aim of this study is to evaluate the possible differences between a partial atmospheric 

109 correction method accounting for Rayleigh scattering and a full atmospheric correction method 
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110 (iCOR), applied on Sentinel-3/OLCI images for the study of shallow eutrophic lakes. Even though 

111 a full atmospheric correction method may be obviously considered better compared to Rayleigh 

112 correction, possible large differences in processing time between the two methods, may be 

113 especially critical in cases of studies involving large time-series datasets.                                                                                                                        

114 Materials and Methods

115 Study site

116 The study area is the Karla Reservoir, Thessaly, Greece (39°29'27"N 22°49'19"E) that has 

117 maximum water depth of 4.5 - 5 m and the maximum allowable water volume of the reservoir can 

118 reach 200 x 106 m3, but only half can be extracted. Some important environmental problems of the 

119 Karla Reservoir are the eutrophication and the very frequent and prolonged cyanobacterial blooms 

120 that produce toxins (Gkelis et al., 2017; Oikonomou et al., 2012) as well as the high mortality and 

121 quite large amounts of microcystins in the reservoir�s major fish species (Papadimitriou et al., 

122 2013) but also migrating birds (Papadimitriou et al., 2018).

123 Satellite images

124 The satellite images, which were used in this study, were downloaded from the Copernicus 

125 Open Access Hub (https://scihub.copernicus.eu/), which provides full and free access to images of 

126 the Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P satellites. 53 cloud free, full resolution (300 

127 m pixel size) Level-1B Sentinel-3/OLCI images (OL_1__EFR__ products), providing 

128 radiometrically calibrated, ortho-geolocated and spatially re-gridded Top Of Atmosphere (TOA) 

129 radiances, were used. 

130 Atmospheric correction application

131 Data from all images were converted from TOA radiances to Bottom Of Atmosphere 

132 (BOA) reflectance using both a partial atmospheric correction method accounting for Rayleigh 

133 scattering and a full atmospheric correction method (iCOR) and the results obtained with the two 

134 methods were intercompared. Image processing was performed with SNAP - ESA Sentinel 

135 Application Platform v8.0 (http://step.esa.int), which includes a Rayleigh correction algorithm, 

136 while iCOR is available as a SNAP plugin. Rayleigh correction is a straightforward procedure in 

137 SNAP, completing rather fast, i.e. in approximately 5 min for a Sentinel-3 image. On the other 

138 hand, for the iCOR correction, several options have to be selected by the user and the procedure is 

139 rather time-consuming, taking about 2 hours to be completed in a personal computer with a 7th 

140 Generation Intel® Core� i5 4 core / 4 threads processor and 16 GB of RAM. In this study, for the 

141 iCOR correction the Atmospheric Optical Transmittance (AOT), water vapor and ozone 

142 concentrations were estimated from the corresponding data included in the Sentinel-3 images per 

143 ce.

144 From the 21 spectral bands (400 � 1020 nm) that exist in the Level 2B Sentinel-3 images 

145 and the Rayleigh corrected ones, 16 bands are included in the iCOR corrected images, since bands 
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146 13 (761.25 nm), 14 (764.375 nm), 15 (767.5 nm), 19 (900 nm) and 20 (940 nm) are used during 

147 the correction processing (Figure 1). Accordingly, band intercomparison between Rayleigh and 

148 iCOR corrected images was performed for the bands common in both processes.

149 From all atmospherically corrected images with both methods data were extracted for 49 

150 pixels (7x7 rectangle) located approximately in the center of the Karla Reservoir (Figure 2).

151 Indices calculation

152 One of the most common problems in lake monitoring through remote sensing techniques 

153 is the phytoplankton abundance. Accordingly, to further evaluate the above-described correction 

154 methods, two indices, i.e. for chlorophyll (CHL) and phycocyanin (CI), were calculated from the 

155 atmospherically corrected spectral data from both methods, according to the following formulas, 

156 which provide accurate estimations in eutrophic waters (Gitelson et al., 2008; Wynne et al., 2008): 

157 ÷ ÿÿÿ =   ( 1ÿ665
2 1ÿ708

) ×  ÿ753                     

158 ÷  )ÿý =  2  (ÿ681 � ÿ665 � (ÿ708 � ÿ665) ×  (ÿ681 � ÿ665) / (ÿ708 � ÿ665)

159 where r is the spectral reflectance at the indicated wavelength and » is the wavelength.

160 Statistics

161 For the comparison of the two correction methods a correlation analysis was performed 

162 using the JASP v. 0.14 software (JASP Team (2021). JASP (v. 0.14) [Windows 10].)  and the 

163 Pearson�s correlation coefficient (r), significance level (P) and intercept and slopes of their linear 

164 relationships are given. Comparisons were made for all 53 images both at pixel level and at pixel 

165 average level for each image/date (49 pixels per image). Correlations for each band common 

166 between the two correction methods (16 bands) and for chlorophyll (CHL) and phycocyanin (CI) 

167 indices were performed.

168 Results

169 Band comparison

170 Band intercomparison revealed good correlations both at pixel level and pixel average level 

171 (Table 1), with correlation coefficients higher than 0.7. Especially for the bands used in chlorophyll 

172 and phycocyanin indices calculation, correlation coefficients higher than 0.8 were obtained (Figure 

173 3). As expected, for all bands Rayleigh corrected data show higher values compared to iCOR, 

174 since the former method concerns a partial atmospheric correction. However, the differences 

175 between the two methods are rather small, confirming that the Rayleigh correction accounts for 

176 the most dominant component of the TOA signal (Shanmugam et al., 2019).

177 Indices comparison

178 High correlation patterns were also found for the chlorophyll and cyanobacteria indices, 

179 with the later performing slightly better (Figures 4 and 5). As in the case of band intercomparison, 
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180 there are differences in the indices absolute values between the two methods, with the Rayleigh 

181 underestimating both indices, especially at high range values.

182 Discussion

183 iCOR has been systematically evaluated in comparison with several other full atmospheric 

184 correction methods (Acolite, C2RCC, l2gen, Polymer, Sen2Cor, ATCOR) for land images of 

185 Sentinel-2 and Sentinel-3/OLCI (Rumora et al., 2020; Wolters et al., 2021), for inland water 

186 images of Sentinel-2 MSI and Sentinel-3/OLCI (Kravitz et al., 2020; Pahlevan et al., 2021; Pereira-

187 Sandoval et al., 2019; Renosh et al., 2020; Warren et al., 2019), even in arctic sea ice images of 

188 Sentinel-2 MSI (König et al., 2019). Overall, it gives good results and is a reliable method for 

189 inland water images atmospheric correction.

190 The comparison of the two atmospheric correction methods in this study revealed very 

191 good correlations for all bands and indices (CHL and CI). Considering these results, it appears that 

192 for Sentinel-3/OLCI images in a shallow eutrophic reservoir such as Karla Reservoir, both 

193 methods can be used to calculate the CHL and CI indices with similar success. Therefore, one can 

194 use either of the two atmospheric corrections for the seasonal monitoring of the reservoir, without 

195 though the absolute values coinciding between the two methods. Practically, since iCOR 

196 correction is much more demanding and needs much more computational power and time to 

197 process an image, it seems that the partial correction of the Rayleigh method is sufficient, with 

198 obvious benefits in time and resource use efficiency, especially in cases of long time-series data.

199 Similar results have been reported by Matthews et al. (2012), examining an algorithm for 

200 the calculation of chlorophyll-a in MERIS inland water images and stating that for broad trophic 

201 status assessment, simple Rayleigh atmospheric corrections are likely sufficient and avoid the 

202 more complicated and error-prone aerosol atmospheric corrections in turbid case II waters (waters 

203 which cannot be described by only one optical constituent of the water column). To the best of our 

204 knowledge, there has been no other research comparing a complete atmospheric correction with a 

205 partial atmospheric correction for Rayleigh scattering in a shallow eutrophic reservoir.

206 Conclusions

207 In conclusion, even though it is not recommended to replace the full atmospheric correction 

208 algorithms, the application of only a partial correction for Rayleigh scattering in a shallow 

209 eutrophic reservoir seems sufficiently functional, with obvious advantages from time and resource 

210 use perspective. The 25 times faster and/or less resource demanding image processing of the 

211 Rayleigh correction method compared to iCOR may be of critical importance, especially in cases 

212 of long timeseries for monitoring algal blooms and water quality characteristics in shallow 

213 reservoirs. Additional research is needed to confirm our results in other shallow eutrophic lakes 

214 and probably examine and extend the applicability of the Rayleigh correction in general. To that 

215 purpose, comparisons with in-situ data for a full assessment of the prospects of applying only a 

216 partial atmospheric correction for Rayleigh scattering should be addressed.
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Table 1(on next page)

Band intercomparison statistics (intercept, slope and correlation coeûcient r) between
iCOR and Rayleigh corrected data.

For all bands P<0.0001 and N=2597.
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Band Wavelength, nm Intercept Slope r

1 400 0.0410 0.6559 0.734

2 412.5 0.0431 0.6759 0.762

3 442.5 0.0379 0.6881 0.760

4 490 0.0326 0.7553 0.807

5 510 0.0288 0.8094 0.849

6 560 0.0162 0.9057 0.933

7 620 0.0180 0.8620 0.904

8 665 0.0194 0.8882 0.910

9 673.75 0.0199 0.8809 0.896

10 681.25 0.0198 0.8809 0.896

11 708.75 0.0170 0.8586 0.972

12 753.75 0.0172 0.9272 0.947

16 778.75 0.0162 0.9284 0.951

17 865 0.0144 0.9191 0.945

18 885 0.0140 0.9092 0.944

21 1020 0.0114 0.9122 0.952

1
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Figure 1
Band data from the original Level-1B image (Radiance) and the corresponding Rayleigh
and iCOR corrected images (Reûectance) for 16/09/2017.

Data are average ± SD from 49 pixels.
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Figure 2
The Karla Reservoir with the centres of the 49 pixels used in the study indicated with
red dots.
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Figure 3
Correlations between the bands used in the calculation of chlorophyll and cyanobacteria
indices.

For all bands P<0.0001 and N=2597.
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Figure 4
Correlations between iCOR and Rayleigh corrected data for chlorophyll and
cyanobacteria indices at pixel level (2597 pixels).

For both indices P<0.0001 and N=2597.

PeerJ reviewing PDF | (2022:06:74477:0:0:NEW 14 Jun 2022)

Manuscript to be reviewed



Figure 5
Correlations between iCOR and Rayleigh corrected data for chlorophyll and
cyanobacteria indices at pixel average level (53 dates).

For both indices P<0.0001 and N=53.
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