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ABSTRACT
Remote sensing of inland waters is challenging, but also important, due to the need to
monitor the ever-increasing harmful algal blooms (HABs), which have serious effects on
water quality. The Ocean and Land Color Instrument (OLCI) of the Sentinel-3 satellites
program is capable of providing images for themonitoring of such waters. Atmospheric
correction is a necessary process in order to retrieve the desired surface-leaving radiance
signal and several atmospheric correction methods have been developed through the
years. However, many of these correction methods require programming language
skills, or function as commercial software plugins, limiting their possibility of use
by end users. Accordingly, in this study, the free SNAP software provided by the
European Space Agency (ESA) was used to evaluate the possible differences between
a partial atmospheric correction method accounting for Rayleigh scattering and a
full atmospheric correction method (iCOR), applied on Sentinel-3 OLCI images of
a shallow, highly eutrophic water reservoir. For the complete evaluation of the two
methods, in addition to the comparison of the band reflectance values, chlorophyll
(CHL) and cyanobacteria (CI) indices were also calculated and their values were
intercompared. The results showed, that although the absolute values between the two
correction methods did not coincide, there was a very good correlation between the
two methods for both bands’ reflectance (r > 0.73) and the CHL and CI indices values
(r > 0.95). Therefore, since iCOR correction image processing time is 25 times longer
than Rayleigh correction, it is proposed that the Rayleigh partial correction method
may be alternatively used for seasonal water monitoring, especially in cases of long
time-series, enhancing time and resources use efficiency. Further comparisons of the
two methods in other inland water bodies and evaluation with in situ chlorophyll and
cyanobacteria measurements will enhance the applicability of the methodology.
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INTRODUCTION
Harmful algal blooms (HABs)
Recurrent blooms of harmful algae and cyanobacteria (HABs) in coastal and inland water
systems are a major concern for environmental and public health authorities worldwide.
HABs are associated with eutrophication and in particular with phosphorus and nitrogen
loading due to runoff from rural areas (Anderson et al., 2008; Heisler et al., 2008; Mazard
et al., 2016; O’Neil et al., 2012) and also with climate change and CO2 concentration and
temperature increase (Glibert, 2020; Gobler, 2020; Griffith & Gobler, 2020; O’Neil et al.,
2012; Raven, Gobler & Hansen, 2020). Other environmental factors are high pH and light
(Bartosh & Banks, 2007; Ni et al., 2012).

The effects of these blooms may concern changes in taste and smell of water supply
sources, development of a thick crust on the surface of the lake and lack of water clarity
(Chorus & Bartram, 1999). Additionally, from a biological perspective, possible toxic
effects on other algae, invertebrates and fish and anoxic conditions that alter the structure
of benthic macro-invertebrates may appear (Havens, 2008). Finally, the toxic secondary
metabolites produced by blue–green algae may cause serious health problems in mammals
and wildlife, because they affect the endocrine, dermal and nervous systems (Carmichael,
2001).

Effective HAB monitoring remains a challenge, as in-situ samplings are time-intensive
and costly and provide information only at discrete locations in space and time
(Pokrzywinski et al., 2022). As a common practice, in small inland waters, samples are
taken either in the middle of the waterbodies by boat or near the shore and then analyzed
in the laboratory. Therefore, remote sensing techniques, with their advantages on spatial
and temporal resolution, are increasingly used to record and monitor HABs in inland
waters, as seen in several recent studies (Cicerelli, Galo & Roig, 2017; Duan et al., 2022; Ho
et al., 2017; Kislik et al., 2022; Kudela et al., 2015; Ogashawara et al., 2013; Pompêo et al.,
2021).

Sentinel-3 OLCI
The advancements in satellite remote sensing during the last decades has led to its significant
contribution in numerous environmental applications. The Sentinel-3 satellites are a
mission organized by the European Space Agency (ESA) and the European Meteorological
Satellite Exploitation Agency (EUMETSAT) under the Copernicus program, formerly
known as the Global Monitoring for Environment and Security (GMES). The Sentinel-3
mission comprises two similar satellites A and B, with launch dates February 16, 2016
and April 25, 2018 respectively. Both satellites are solar-synchronous with a polar orbit,
operating at an average altitude of 815 km and with an inclination of 98.6◦ (Yang, Zhang
& Wang, 2019). Among others, they carry an Ocean and Land Color Instrument (OLCI),
which covers a spectral range from 400 to 1020 nm (21 spectral bands), with 300 m spatial
resolution and approximately daily revisit cycle.

Ocean Color images have been available since 1978 thanks to the Coastal Zone
Color Scanner (CZCS) mission. From 2002 to 2012, the Medium Resolution Imaging
Spectrometer (MERIS) on ESA’s ENVISAT platform provided unprecedented monitoring
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capability for coastal and inland water systems (Kravitz et al., 2020). The OLCI Instrument
onboard the Sentinel-3 satellites is based on themechanical and imaging design of ENVISAT
MERIS and may be considered as MERIS heritage for ocean and land color monitoring. It
includes six more spectral bands than MERIS (21 to 15), which are centered at 400 and 674
nm (water constituents retrieval improvement), 761, 764, and 768 nm (O2 gas absorption
correction improvements), and 1020 nm (atmospheric correction improvement) (Mograne
et al., 2019). According to Shi et al. (2019), analysing the latest research for cyanobacterial
bloom remote sensing in inland waters, MERIS was the optimal past sensor for providing
detailed cyanobacterial bloom information products due to its radiometric, spectral,
temporal, and spatial resolutions and OLCI has the same suitability as MERIS in deriving
cyanobacterial bloom information in inland waters.

Atmospheric correction
Satellite sensorsmeasure the top-of-atmosphere (TOA) signal from the surface-atmosphere
system in visible and near-infrared parts of the spectrum. The atmospheric path radiance
received by a sensor at the TOA can be mainly decomposed into Rayleigh and aerosol
scattering (Feng et al., 2018), with the Rayleigh-scattering radiance being the most
dominant component of the TOA signal (Shanmugam, Shanmugam & He, 2019). The
process of removing the atmospheric path signal from the TOA signal in order to retrieve
the desired surface-leaving radiance signal is referred to as atmospheric correction (Gordon,
1997). It is worth noting, that after five years of Sentinel-3 operation, ESA is still providing
only limited atmospherically corrected (Level 2) data. So, for acquiring information about
the environment (for example monitoring of cyanobacterial blooms) from the satellite
images, atmospheric correction is necessary and several atmospheric correction algorithms
have been developed through the years.

iCOR & Rayleigh atmospheric correction methods
iCOR is a free open-source atmospheric correction software (Ibrahim et al., 2018;
Nurgiantoro et al., 2019) that can be used as an ESA Sentinel Application Platform (SNAP)
plug-in for processing Landsat-8 OLI, Sentinel-2 MSI and Sentinel-3 OLCI images. iCOR
runs withminimum user interaction, derives the required input parameters from the image
and is designed to be applicable to inland waters, coastal waters and land.

The iCOR workflow includes four steps (König, Hieronymi & Oppelt, 2019; Stefan et
al., 2018): (1) classification of land/water pixels (2) AOT retrieval over land following the
approach of Guanter, González-Sanpedro & Moreno (2007) and extension to black water
pixels in the Short Wave InfraRed (SWIR) (3) adjacency correction and (4) atmospheric
correction using pre-calculated MODTRAN 5 Look Up Tables based on a rural aerosol
model (De Keukelaere et al., 2018). Above water the SIMilarity Environment Correction
(SIMEC) is used, which is based on the correspondence with the Near InfraRed (NIR)
similarity spectrum and is described in Sterckx et al. (2015) and Sterckx, Knaeps & Ruddick
(2011). Above land, fixed background ranges are used.

A Rayleigh atmospheric correction algorithm, originally designed for MERIS, is also
included in SNAP software. The current version of SNAP software also supports Sentinel-3
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OLCI and Sentinel-2 MultiSpectral Instrument (MSI). Specifically, Rayleigh correction
can be applied to: MERIS bands 1 to 15 (N1 format or MERIS 4th reprocessing format),
Sentinel-3 OLCI L1B bands 1-21 and Sentinel-2 MSI L1C bands 1 to 9. The Rayleigh
correction processor as it is described in S3TBX - Rayleigh Correction Tutorial (Ruescas
& Müller, 2021) has five different outputs: Rayleigh optical thickness (ROT), Bottom of
Rayleigh Reflectance (BRR), gaseous corrected TOA reflectance, TOA reflectance bands
and air mass.

Aim of the study
The aim of this study was dual: (1) to evaluate the possible differences between a partial
atmospheric correction method accounting for Rayleigh scattering and a full atmospheric
correction method (iCOR), applied on Sentinel-3 OLCI images for the study of shallow
eutrophic lakes. Even though a full atmospheric correction method may be more suitable
compared to Rayleigh correction for the calculation of water-leaving reflectance, possible
large differences in processing time between the two methods, may be especially critical
in cases of studies involving large time-series datasets. (2) to perform the atmospheric
correction processing with free software (ESA’s SNAP) in order to enhance the applicability
of the methods. Even though several atmospheric correction software packages exist, many
of them require programming language skills, or function as commercial software plugins,
limiting their usability by end users.

MATERIALS AND METHODS
Study site
The study area is the Karla Reservoir, Thessaly, Greece (39◦29′27′′N 22◦49′19′′E, Fig. 1).
Karla was a natural lake, which was drained in 1962. However, a series of negative
consequences resulting from its drainage has led to its reconstruction in 2010, in an
attempt to alleviate the negative effects (Laspidou et al., 2017). In its current state, the
reservoir occupies a surface of 34 km2 with a maximum water depth of 2 m (Falaras,
Koilakou & Tsoukalas, 2020; Papadimitriou et al., 2022). As a shallow reservoir, Karla
appears some important environmental implications, such as eutrophication and frequent
and prolonged cyanobacterial blooms that produce toxins (Gkelis et al., 2017; Oikonomou
et al., 2012; Papadimitriou et al., 2022). Occasionally, the severity of such blooms has
been associated to mass kills of fish (Papadimitriou et al., 2013) and migrating birds
(Papadimitriou et al., 2018).

Satellite images
The satellite images, which were used in this study, were downloaded from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/), which provides full and free access to
images of the Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P satellites. 53 cloud free, full
resolution (300 m pixel size) Level-1B Sentinel-3 OLCI images (OL_1__EFR__ products),
providing radiometrically calibrated, ortho-geolocated and spatially re-gridded Top Of
Atmosphere (TOA) radiances, were used.
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Figure 1 Google Satellite image of the Karla Reservoir with the centres of the 49 pixels used in the
study indicated with red dots (Imagery c©2022 CNES/Airbus, European Space Imaging, Landsat/Coper-
nicus, Maxar Technologies, Map data c©2022).

Full-size DOI: 10.7717/peerj.14311/fig-1

Atmospheric correction application
Data from all images were converted fromTOA radiances to BottomOf Atmosphere (BOA)
reflectance using both a partial atmospheric correction method accounting for Rayleigh
scattering and a full atmospheric correction method (iCOR) and the results obtained
with the two methods were intercompared (Fig. 2). Image processing was performed with
SNAP-ESA Sentinel Application Platform v8.0 (http://step.esa.int) free software, which
includes a Rayleigh correction algorithm, while iCOR is available as a SNAP plugin.
Rayleigh correction is a straightforward procedure in SNAP, completing rather fast, i.e., in
approximately 5 min for a Sentinel-3 image. On the other hand, for the iCOR correction,
several options have to be selected by the user. In this study, the Atmospheric Optical
Transmittance (AOT), water vapor and ozone concentrations were estimated from the
corresponding data included in the Sentinel-3 images per ce. In contrast to the Rayleigh
correction, the iCOR procedure is rather time-consuming, taking about 2 h to be completed
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Figure 2 Flowchart of the image processing with the two atmospheric correction methods (Rayleigh,
iCOR).

Full-size DOI: 10.7717/peerj.14311/fig-2

in a personal computer with a 7th Generation Intel
R©
CoreTM i5 4 core/4 threads processor

and 16 GB of RAM.
From the 21 spectral bands (400–1020 nm) that exist in the Level-1B Sentinel-3 images

and the Rayleigh corrected ones, 16 bands are included in the iCOR corrected images,
since bands 13 (761.25 nm), 14 (764.375 nm), 15 (767.5 nm), 19 (900 nm) and 20 (940
nm) are used during the correction processing (Fig. 3). Accordingly, band intercomparison
between Rayleigh and iCOR corrected images was performed for the bands common in
both processes.

From all atmospherically corrected images with both methods, data were extracted
for 49 pixels (7×7 rectangle) located approximately in the center of the Karla Reservoir
(Fig. 1).

Indices calculation
One of the most common variables used in lake monitoring through remote sensing
techniques is the phytoplankton abundance. Accordingly, to further evaluate the above-
described correction methods, two indices, i.e., for chlorophyll (CHL) and phycocyanin
(CI), were calculated from the atmospherically corrected spectral data from both methods,
according to the following formulas, which provide accurate estimations in eutrophic
waters (Gitelson et al., 2008;Wynne et al., 2008):

• CHL=
(

1
r665
−

1
r708

)
× r753

• CI =−(r681− r665− (r708− r665)× (λ681−λ665)/(λ708−λ665))

where r is the spectral reflectance at the indicated wavelength and λ is the wavelength.
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Figure 3 Band data from the original Level-1B image (Radiance) and the corresponding Rayleigh and
iCOR corrected images (Reflectance) for 16/09/2017.Data are average± SD from 49 pixels.

Full-size DOI: 10.7717/peerj.14311/fig-3

Statistics
For the comparison of the two correction methods a correlation analysis was performed
using the JASP v. 0.14 software (JASP Team (2021). JASP (v. 0.14)). The Pearson’s
correlation coefficient (r), significance level (P) and intercept and slopes of their linear
relationships are given. Comparisons were made for all 53 images both at pixel level and
at pixel average level for each image/date (49 pixels per image). Correlations for each
common band between the two correction methods (16 bands) and for chlorophyll (CHL)
and phycocyanin (CI) indices were performed.

RESULTS
Band comparison
Band intercomparison revealed good correlations both at pixel level and pixel average
level (Table 1), with correlation coefficients higher than 0.73. Especially for the bands
used in chlorophyll and phycocyanin indices calculation, correlation coefficients higher
than 0.89 were obtained (Fig. 4). As expected, for all bands Rayleigh corrected data show
higher values compared to iCOR, since the former method concerns a partial atmospheric
correction. However, the differences between the twomethods are rather small, confirming
that the Rayleigh correction accounts for the most dominant component of the TOA signal
(Shanmugam, Shanmugam & He, 2019).
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Table 1 Band intercomparison statistics (intercept, slope and correlation coefficient r) between iCOR
and Rayleigh corrected data. For all bands P < 0.0001 and N = 2597.

Band Wavelength, nm Intercept Slope r

1 400 0.0410 0.6559 0.734
2 412.5 0.0431 0.6759 0.762
3 442.5 0.0379 0.6881 0.760
4 490 0.0326 0.7553 0.807
5 510 0.0288 0.8094 0.849
6 560 0.0162 0.9057 0.933
7 620 0.0180 0.8620 0.904
8 665 0.0194 0.8882 0.910
9 673.75 0.0199 0.8809 0.896
10 681.25 0.0198 0.8809 0.896
11 708.75 0.0170 0.8586 0.972
12 753.75 0.0172 0.9272 0.947
16 778.75 0.0162 0.9284 0.951
17 865 0.0144 0.9191 0.945
18 885 0.0140 0.9092 0.944
21 1020 0.0114 0.9122 0.952

Indices comparison
High correlation patterns (r > 0.95) were also found for the chlorophyll and cyanobacteria
indices, with the later performing slightly better (Figs. 5 and 6). As in the case of band
intercomparison, there are differences in the indices’ absolute values between the two
methods, with the Rayleigh correction underestimating both indices, especially at high
range values. However, the good correlations between the two methods, indicate that the
Rayleigh corrected indices may be used alternatively for monitoring long term seasonal
fluctuations of chlorophylls and phycocyanins and for accurate in-time detection of algal
blooms.

In Fig. 7, maps for CHL and CI indices produced from Rayleigh corrected Sentinel-3
images are shown for two dates: June 1, 2018, a period of low pigments concentrations
and July 21, 2019, a bloom period. Both indices are depicting well the spatial variability
of the lake, providing the possibility to specify regions of special interest for monitoring
or managerial purposes. For example, in the middle left parts of Figures a and b, high
chlorophyll regions are apparent, due to their proximity to a channel which inputs—via a
pumping station—already eutrophicated water with high pigment content.

DISCUSSION
Atmospheric correction is a necessary processing step for the use of remote sensed data in
ecosystem monitoring. Even though several correction software packages exist, many of
them require programming language skills, or function as commercial software plugins.
However, many end users would prefer free and simple to use software for the relevant
image processing. Short processing time would be an additional advantage, in cases of
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Figure 4 Correlations between the bands used in the calculation of chlorophyll and cyanobacteria in-
dices. For all bands P < 0.0001 and N = 2597.

Full-size DOI: 10.7717/peerj.14311/fig-4

large time-series ecosystem monitoring, whenever such data are available. The Sentinel-3
ESA satellites (and its predecessor MERIS) provide almost daily images globally since late
2016 and may be used for such purposes. Accordingly, in the present study the SNAP free
software provided by ESA, was used to test two different atmospheric correction methods
on Sentinel-3 OLCI images: a partial one accounting for Rayleigh scattering and a full one
(iCOR) provided as a SNAP plugin.

iCOR has been systematically evaluated in comparison with several other full
atmospheric correction methods (Acolite, C2RCC, l2gen, Polymer, Sen2Cor, ATCOR)
for land images of Sentinel-2 and Sentinel-3 OLCI (Rumora, Miler & Medak, 2020;Wolters
et al., 2021), for inland water images of Sentinel-2 MSI and Sentinel-3 OLCI (Kravitz et al.,
2020; Pahlevan et al., 2021; Pereira-Sandoval et al., 2019; Renosh et al., 2020; Warren et al.,
2019), even in arctic sea ice images of Sentinel-2 MSI (König, Hieronymi & Oppelt, 2019).
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Figure 5 Correlations between iCOR and Rayleigh corrected data for chlorophyll and cyanobacteria
indices at pixel level (2,597 pixels). For both indices P < 0.0001 and N = 53.

Full-size DOI: 10.7717/peerj.14311/fig-5

Figure 6 Correlations between iCOR and Rayleigh corrected data for chlorophyll and cyanobacteria
indices at pixel average level (53 dates). For both indices P < 0.0001 and N = 53.

Full-size DOI: 10.7717/peerj.14311/fig-6

Overall, it gives good results and is a reliable method for inland water images atmospheric
correction.

The best practice for the validation of our results would be a direct comparison of the
satellite derived CHL and CI indices with field measured chlorophyll and phycocyanin
concentrations. However, this is a laborious and time-consuming task, which is beyond
the aims of the current paper. Our strategy is to first compare which correction approach
is more effective without losing relevant information and then focus on the comparison
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Figure 7 Chlorophyll (A, B) and phycocyanin (C, D) indices maps produced from Rayleigh corrected
images for a low (A, C: June 1, 2018) and a high (B, D: July 21, 2019) pigment concentration date.
Chlorophyll (A, B) and phycocyanin (C, D) indices maps produced from Rayleigh corrected images for a
low (A, C: June 1, 2018) and a high (B, D: July 21, 2019) pigment concentration date. A Google Satellite
image is shown in the background (Imagery c©2022 CNES / Airbus, European Space Imaging, Landsat /
Copernicus, Maxar Technologies, Map data c©2022).

Full-size DOI: 10.7717/peerj.14311/fig-7

with field data. Such a task would require a very specific sampling strategy covering at least
1 calendar year, including episodic events, several sampling stations covering the spatial
differences in the reservoir etc. Accordingly, since iCOR has already been evaluated against
other correction algorithms and is considered a reliable atmospheric correction method, as
mentioned above, our comparison of Rayleigh to iCOR may be considered as an indirect
evaluation, which remains to be validated by combining in situ data.

In the above-described framework, the comparison of the two atmospheric correction
methods in this study revealed very good correlations for all bands and indices (CHL
and CI). Considering these results, it appears that for Sentinel-3 OLCI images in a shallow
eutrophic reservoir such as Karla Reservoir, both methods can be used to calculate the CHL
and CI indices with similar success. Therefore, one can use either of the two atmospheric
corrections for the seasonal monitoring of the reservoir, without though the absolute values
coinciding between the two methods. However, since the iCOR correction is much more
demanding in terms of computational power and image processing time, it seems that the
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partial correction of the Rayleigh method may be used alternatively, with obvious benefits
in time and resource use efficiency, especially in cases of long time-series data.

Similar results have been reported by Matthews, Bernard & Robertson (2012) and
Matthews & Odermatt (2015), examining an algorithm for the calculation of chlorophyll-a
in MERIS inland water images and stating that for broad trophic status assessment, simple
Rayleigh atmospheric corrections are likely sufficient and avoid the more complicated
and error-prone aerosol atmospheric corrections in turbid case II waters (waters which
cannot be described by only one optical constituent of the water column). To the best
of our knowledge, there has been no other research comparing a complete atmospheric
correction with a partial atmospheric correction for Rayleigh scattering in a shallow
eutrophic reservoir.

CONCLUSIONS
The ESA’s SNAP software used in this study, provides a free and user-friendly alternative
for atmospheric correction of satellite images. Among others, it provides two correction
methods, a partial one accounting for Rayleigh scattering and a full one (iCOR). The
comparison of these two methods for Sentinel-3 OLCI images showed very good
correlations for all bands (r > 0.73) and CHL and CI indices (r > 0.95). However,
the 25 times faster and/or less resource demanding image processing of the Rayleigh
correction method compared to iCOR may be of critical importance, especially in cases of
long timeseries for monitoring algal blooms and water quality characteristics in shallow
reservoirs. Even though it is not recommended to replace the full atmospheric correction
algorithms, the application of only a partial correction for Rayleigh scattering in a shallow
eutrophic reservoir seems sufficiently functional, with obvious advantages from time and
resource use perspective. Additional research is needed to confirm our results in other
shallow eutrophic lakes and probably examine and extend the applicability of the Rayleigh
correction in general. To that purpose, comparisons with in-situ data for a full assessment
of the prospects of applying only a partial atmospheric correction for Rayleigh scattering
should be addressed.
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