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ABSTRACT
Background. Rheum tanguticum Maxim. ex Balf is a traditional Chinese medicinal
plant that is commonly used to treat many ailments. It belongs to the Polygonacae
family and grows in northwest and southwest China. At high elevations, the color of the
plant’s young leaves is purple, which gradually changes to green during the growth cycle.
Anthraquinone, which is known for various biological activities, is the main bioactive
compound in R. tanguticum. Although a significant amount of research has been done
on R. tanguticum in the past, the lack of transcriptome data limits our knowledge of the
gene regulatory networks involved in pigmentation and in the metabolism of bioactive
compounds in Rheum species.
Methods. To fill this knowledge gap, we generated high-quality RNA-seq data and
performed multi-tissue transcriptomic analyses of R. tanguticum.
Results. We found that three chlorophyll degradation enzymes (RtPPH, RtPao and
RtRCCR) were highly expressed in purple samples, which suggests that the purple
pigmentation is mainly due to the effects of chlorophyll degradation. Overall, these
data may aid in drafting the transcriptional network in the regulation and biosynthesis
of medicinally active compounds in the future.

Subjects Agricultural Science, Bioinformatics, Molecular Biology, Plant Science
Keywords Rheum tanguticum, Color, RNA-seq, Chlorophyll

INTRODUCTION
Rheum tanguticum Maxim. ex Balf is a traditional Chinese medicinal plant belonging
to the Polygonaceae family. Because its young leaves are shaped like chicken feet,
R. tanguticum is also known as ‘‘Tangut Rheum’’ or ‘‘chicken feet Rheum’’ (Wang, 2009).
The roots and rhizomes of this species are commonly called Chinese rhubarb, and are
generally used as traditional Chinese medicine due to their strong antibacterial (Lu et
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al., 2011), antineoplastic (Huang et al., 2007), and anti-inflammatory (Choi et al., 2013)
effects. National Medical Products announced Lian-hua-qing-wen (LHQW) as a certified
traditional Chinese formulation to treat fever, cough, or fatigue caused by the mild or
common types of COVID-19 in the ‘‘Pharmaceutical Supplement Application Document’’
(Chen et al., 2021). As one of the LHQW ingredients, rhein from Dahuang Rhei Radix et
Rhizoma extracts was identified as having potential ACE2 binding activity (Chen et al.,
2021). Because of its medicinal importance, Rheum is facing overexploitation (Zhou et
al., 2014; Wang et al., 2016), leading to such a rapid decline in wild Rheum that it is now
considered endangered (Yang et al., 2001). To facilitate conservation, previous studies have
provided preliminary assessments on the genetic variation of wild R. tanguticum using
SSR and ISSR analyses (Chen et al., 2009; Hu et al., 2010; Wang et al., 2012). In addition, a
karyotype analysis showed that R. tanguticum is a diploid (2n= 22) and no polyploidy was
found (Yanping, Wang & Li, 2011). The genetic diversity of R. tanguticum has also been
reported, but based on very limited samples (only collected from the Qinghai-Tibet Plateau
(Chen et al., 2009) or the Qinghai province Hu et al., 2010).

Plant pigments are vital in signaling, protecting, anddetermining the colors of plants (Lee,
2005). These pigments can be classified into four categories: chlorophylls, anthocyanins,
carotenoids, and betacyanins (Dikshit & Tallapragada, 2018). Anthocyanins, carotenoids,
and betacyanins are responsible for the natural red colors found in plants (Fernández-López,
Fernández-Lledó & Angosto, 2020). Anthocyanin can generate many different colors, such
as red, purple, blue, yellow, and orange (Castañeda Ovando et al., 2009). Chlorophyll plays
an important photosynthetic role in plants, contributing to plant growth (Li et al., 2018)
as well as the characteristic green color (Croft & Chen, 2018) of plants. A previous study
on Camellia sinensis (L.) O. Kuntze, a cultivated tea with purple young leaves and green
mature leaves, showed that the purple tea leaves have higher levels of anthocyanin, total
polyphenols, and total catechins, but lower chlorophyll, carotenoid, and soluble sugar
(Zhou, Sun & Lai, 2016).

R. tanguticum is known to grow under harsh environmental conditions such as low
atmospheric pressure, low temperature, and high solar radiation. Plants produce vast and
versatile phytochemical constituents which play key roles in mediating plant–environment
interactions. According to field observations, when R. tanguticum grows at high elevations,
it generates purple leaves that progressively turn green as the plant matures. However,
no color changes are observed when these plants are cultured at lower elevations.
Another Rheum species, Rheum palmatum L, which has a close phylogenetic relationship
with R. tanguticum, has large, rough, palmate leaves that are greenish-purple in color
(https://www.botanical-online.com/en/botany/rhubard-chinese). Recently, a comparative
transcriptome analysis of Rheum austral was done to understand the adaptive strategies
of R. australe in its niche (Mala et al., 2021). Despite previous studies, a scarcity of
transcriptome data hinders our understanding of the gene regulatory networks involved in
the different pigmentations at high elevation and the metabolism of bioactive compounds
in Rheum plants. Here, we present another valuable RNA-seq data set to establish an initial
regulatory network in R. tanguticum and to help fill these knowledge gaps.
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MATERIALS & METHODS
Plant materials, sample collection, and preparation of total RNA
Fresh tissues from both purple and green R. tanguticum (Voucher Number
51322420120805441) were collected from the Aba Tibetan and Qiang autonomous
prefecture (33◦68′N, 103◦25′E) located in the Sichuan province of China by Yangfan
Tang (Sichuan Academy of Chinese Medicine Sciences) and taxonomically identified by
Qingmao Fang (Sichuan Academy of Chinese Medicine Sciences). The collection of plant
material in this study complied with all relevant institutional, national, and international
guidelines and legislation. The samples were flash-frozen in liquid nitrogen on-site. A total
of 19 R. tanguticum samples were collected from different parts of R. tanguticum plants:
five green leaf biological duplications, five green petiole biological duplications, two green
rhizome biological duplications, four purple leaf biological duplications, and three purple
petiole biological duplications. Total RNA was extracted with the CTAB-pBIOZOL (CAT#
BSC55M1), according to the manufacturer’s instructions.

The statistical power of this experimental design, calculated in RnaSeqSampleSize
(https://github.com/slzhao/RnaSeqSampleSize), was 0.7.

Quality evaluation of total RNAs, library preparation, and sequencing
The evaluations of the RNA samples were carried out using Qubit 2.0, Nanodrop, and
Agilent 2100 (Simbolo et al., 2013) to ensure that the concentration, integrity, and purity
were suitable for library preparations and RNA sequencing. The samples with an RNA
integrity number (RIN) value over seven were moved to library preparation using the
MGIEasy RNA kit (CAT# 1000006383). The constructed library was used for sequencing
by the BGISEQ-500 (Huang et al., 2018) platform.

Pre-processing of raw reads and de novo transcriptome assembly
We used FastQC (version 0.11.3) (Andrews, 2010) to confirm the validation of the raw data
and the low quality reads were filtered out using Trimmomatic (version 3) (Bolger, Lohse &
Usadel, 2014). We then performed a second quality validation of just the clean reads, using
FastQC, to ensure they were suitable for downstream analyses. All FastQC results were
visualized using MultiQC (version: 1.9) (Ewels et al., 2016). Clean reads were mapped to
the unigene using Bowtie2 (version 2.2.5) (Langmead & Salzberg, 2012). The Trinity (Haas
et al., 2013) (v2.9.1) software was used to assemble the short k-mers into contigs based on
the de Bruijin Graph algorithm. The sequencing depth of all used data was 678 ×.

Transcriptome annotation
We used the TransDecoder (v3.0.1; http://transdecoder.sourceforge.net) to predict the
potential coding sequence of the unigenes. First, the longest open reading frame (ORF) was
selected from the transcript sequences and then scanned with known protein sequences
(Swiss-Prot 2020 database and Pfam-A.hmm 2020 database) using blastp and hmmscan.
These results were then combined to predict the coding region of R. tanguticum.

The assembled unigene sequences were functionally annotated by aligning them with
the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000), Gene

Chen et al. (2022), PeerJ, DOI 10.7717/peerj.14265 3/18

https://peerj.com
https://github.com/slzhao/RnaSeqSampleSize
http://transdecoder.sourceforge.net
http://dx.doi.org/10.7717/peerj.14265


Ontology (GO) (Ashburner et al., 2000; The Gene Ontology, 2021), clusters of orthologous
groups for eukaryotic complete genomes (KOG) (Tatusov et al., 2000), SwissProt (Bairoch
& Apweiler, 2000), Pfam (http://pfam.xfam.org/), and National Center for Biotechnology
Information (NCBI) non- redundant (NR) protein databases, as well as the Nucleotide
Sequence Database (NT) with BLAST ( E-value ≤ 1e–05).

Differential gene expression analysis
The RSEM pipeline was used to determine the FPKM (fragments per kilobase per
million) value of different samples. The clean data were re-mapped to the assembled
transcriptome using bowtie2 (version 2.2.5) (Langmead & Salzberg, 2012). Bowtie-build
was used to make a reference library. The ‘‘–transcript-to-gene-map’’ parameter was then
used to map the transcripts to the corresponding genes. Filtered sequencing reads were
mapped to the reference by bowtie2 and then the ‘‘rsem-calculate-expression’’ option
was used to quantify the expression level. A differential expression analysis was carried
out with the DESeq2 (version 1.28.1) (Love, Huber & Anders, 2014) package in R (version
4.0.2). The screening criteria for differential expression genes were: adjusted pvalue
<0.05, log2FoldChange >1 (up-regulated) or log2FoldChange <−1 (down-regulated).
The information of the grouping and control samples from the differential expression
gene analysis is summarized in Table S1. Based on the DEseq2 normalized data matrix, we
calculated the Pearson correlation coefficients between different samples. The co-expression
analysis of anthraquinone pathway genes and TFs was performed using the WGCNA R
package.

Ethics approval
This study, including sample collection, was conducted according to the ethical clearance
of the 10,000 Plant Genomes Project—10KP (NO. FT20026) by the institutional review
board of BGI which permits the use of biological resources for scientific research purposes.

RESULTS
RNA data quality assessment and de novo assembly
In R. tanguticum, we constructed short-read RNA-seq libraries and a total of 221.09 Gb raw
data and 213.94 Gb high-quality data were generated for quantification, and differential
gene expression analyses. The percentage of clean reads ranged from 95% to 99%, the
mapping rates were about 70% in R. tanguticum, and the Q20 value of the clean reads
was around 90%. The clean data from a total of 19 samples were subjected to further
transcriptome assembly. We retrieved 336,987 transcripts and 120,261 unigenes with
contig N50 1,761 bp and contig N50 1,474 bp, respectively. The completeness of the
transcriptome was evaluated using the Benchmarking Universal Single-Copy Ortholog
(BUSCOs) resulting in 91.9% (S:25.5%, D:66.4%, F:5.7%, M:2.4%) coverage. The reads
number, clean reads percentage, mapping rate, Q20 value, and GC content of the data were
assessed and the results are summarized in Table S2.

The PCA analysis showed that the samples in the dataset clustered into fourmajor groups
corresponding to the tissue types and plant colors (Fig. 1A). PC1 and PC2 explained 44%
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and 33% of the total variance in gene expression of the R. tanguticum data set, respectively.
The heatmap clustering of Pearson correlation coefficients from the comparison of all 19
samples with various tissue types revealed a strong correlation (0.81–1) between replicates
(Fig. 1B). Taken together, these results suggest that our datasets are a reliable data resource
for future studies.

Functional annotation
A total of 45,866 out of the 120,261 total unigenes (38.14%) showed significant similarities
to known proteins in R. tanguticum (Table S3). Gene Ontology (GO) assignments were
used to classify the unigene sequences based on functional annotation to determine their
possible functions in R. tanguticum. There were 27,423 unigenes that could be categorized
into functional groups under the ‘‘cellular component,’’ ‘‘molecular function,’’ and
‘‘biological process,’’ divisions in R. tanguticum (Fig. 2A). For the biological process group,
genes involved in the ‘‘cellular process’’ (12,518) and ‘‘metabolic process’’ (10,908) were
the most highly represented. For unigenes in the cellular component group, ‘‘cellular
anatomical entity’’ (14,987) and ‘‘intracellular’’ (8,183) were the most highly represented
categories, followed by ‘‘protein-containing complex’’ (2,519). For the molecular function
group, ‘‘binding’’ (15,434), ‘‘catalytic activity’’ (12,960), and ‘‘transporter activity’’ (1,535)
were the most represented categories.

A functional characterization analysis based on the KEGG database was performed on
the unigenes generated in the present study. In summary, the most represented pathways
in R. tanguticum were: ‘‘global and overview maps’’ (9,223), ‘‘carbohydrate metabolism’’
(4,170), ‘‘translation’’ (2,960), and ‘‘folding, sorting and degradation’’ (2,172) (Fig. 2B).
The identified transcripts enriched in these diverse metabolic pathways will help us better
understand the active ingredients in R. tanguticum.

Transcriptome expression and differentially expressed genes of
R. tanguticum
The FPKM values of all unigenes in different samples were summarized in Table S4.
To investigate the different colors between the leaves and petioles of R. tanguticum, we
calculated the expression levels of the unigenes between these two tissues. Comparing green
leaves (GL) and purple leaves (PL) showed 4,861 DEGs in total, with 2,426 up- and 2,435
down-regulated unigenes, respectively. Further, we did a KEGG enrichment analysis for
these DEGs. Among the down-regulated genes, 51 genes were assigned to ‘‘photosynthesis,’’
48 genes clustered in ‘‘carbon fixation in photosynthetic organisms,’’ and 22 genes were
assigned to ‘‘photosynthesis –antenna proteins’’ (Fig. 3A). Interestingly, the unigenes
enriched in secondary metabolism, such as the ‘‘flavone and flavonol biosynthesis’’ (eight)
and ‘‘sesquiterpenoid biosynthesis’’ (19) pathways, were up-regulated (Figs. 3A; 3C). We
also compared the green petioles and purple petioles and found 3,028 up- and 2,413 down-
regulated unigenes. Notably, there were no up- or down-regulated unigenes associated
with photosynthesis-related pathways. Three major up-regulated genes were enriched in
‘‘metabolic pathways’’ (694), ‘‘biosynthesis of secondary metabolism’’ (346), and ‘‘amino
sugar and nucleotide sugar metabolism’’ (120). These results suggest that the expression
profiles of the petiole are different than the expression profiles of the leaves (Figs. 3B; 3D).
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Figure 1 Exploratory analysis of the correlation between RNA-seq samples. (A) PCA plot of 19 R.
tanguticum samples. (B) Heatmap clustering of correlation coefficients across 19 samples in R. tanguticum.
GL, green leaf; GR, green rhizome; GP, green petiole; PL, purple leaf; PP, purple petiole.

Full-size DOI: 10.7717/peerj.14265/fig-1
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We also performed a GO enrichment analysis. In this analysis, many down-
regulated unigenes between the green and purple leaves were also found to be
enriched in photosynthesis-related pathways, such as ‘‘photosystem II stabilization’’
(five), ‘‘photosystem II assembly’’ (six), ‘‘photosystem I reaction center’’ (10), and
‘‘photosynthesis, light harvesting’’ (23) (Fig. 4; Table S5). The GO enrichment analysis of
up-regulated unigenes between GL and PL found that they were enriched in cell cycle-
associated genes including ‘‘microtubule-based process’’ and ‘‘nucleic acids metabolisms
process’’ (Table S6). The up-regulated genes in the petioles (GP vs. PP) were enriched in cell
wall metabolism and development-associated genes (Table S7), while the down-regulated
genes in the petioles were enriched in amino acids transport and cell wall catabolism (Table
S8).

To compare tissue-specific expression patterns, we compared the expression profiles of
the leaves and petioles of the same colors. The comparative transcriptomic study between
GL and GP found 2,004 up-regulated and 1,690 down-regulated DEGs. The enrichment
analysis results of these DEGs are summarized in Tables S9 and S10. By comparing the PL
and PP, we found 2,687 up-regulated and 1,745 down-regulated DEGs. The results of the
KEGG and GO enrichment analyses of the down- and up-regulated DEGs between PL and
PP are summarized in Tables S11 and S12.

Comparing the expression of unigenes involved in chlorophyll and
anthocyanin in R. tanguticum
Chlorophyll is the most abundant pigment on earth and is a key component of
photosynthesis required for the absorption of sunlight (Hörtensteiner & Kräutler, 2011).We
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Figure 3 KEGG pathway enrichment of DEGs between purple and green of R. tanguticum. (A) KEGG
pathway enrichment of DEGs between green and purple leaf. (B) KEGG pathway enrichment of DEGs be-
tween the green petiole and purple petiole. Green color represents down DEGs, pink color represents up
DEGs. (C) Volcano plots of the transcriptome between green and purple leaf. (D) Volcano plots of the
transcriptome between green and purple petiole.

Full-size DOI: 10.7717/peerj.14265/fig-3

identified chlorophyll pathway genes (Table S13) and then constructed the expressionmaps
of those genes. Interestingly, some enzyme genes (RtGSA, RtHEM, RtHEMC, RtHEME,
RtHEMF, RtHEMG, RtCAO, RtNYC1/RtNOL, RtCLH, RtSGR) were highly expressed in
green samples. In contrast, we found that genes involved in chlorophyll degradation
like RtPPH (pheophytinase), RtPaO (pheophorbide a oxygenase) and RtRCCR (red
chlorophyll catabolite reductase) exhibited higher expression levels in purple samples
(Fig. 5). The purple color of R. tanguticum could be due to the combination of lower
chlorophyll biosynthesis expression and higher RtPPH, RtPaO, and RtRCCR expression in
the chlorophyll degradation pathway.

Anthocyanin is a major group of plant pigments that may appear red, purple, blue, or
black in various tissues. The analysis of the R. tanguticum transcriptome data set revealed
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Figure 4 GO enrichment of DEGs between green and purple samples of R. tanguticum. (A) The GO
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Full-size DOI: 10.7717/peerj.14265/fig-4

that 73 unigenes exerted a direct influence over 10 enzymes that are known to be involved
in the anthocyanin pathway, and almost all of those 73 unigenes were demonstrated to
be a multigene family. Anthocyanidin synthase (ANS) and Anthocyanidin 3-O-glucoside
2’’’-O-xylosyltransferase (UFGT) catalyze the last two steps of anthocyanidin biosynthesis
and are therefore key enzymes in the biosynthesis of blue or red pigments (Chen et al., 2011;
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Zhang et al., 2020). However, these two genes were more highly expressed in green samples
compared to the purple tissues, which did not support the phenotypes we observed.

Expression profile of unigenes involved in the anthraquinone
biosynthesis pathway
Anthraquinones are bioactive compounds in Rheum plants. Their biosynthetic pathway
is thought to involve the shikimate, MVA, MEP and polyketide pathways (Leistner,
1971). To identify the potential candidate unigenes of the anthraquinones biosynthetic
pathway, we identified homologous genes by aligning the transcriptome sequence of R.
tanguticum with all the known enzyme sequences associated with the above-mentioned
pathways. We then screened these results by combining the sequence similarity and
functional annotation to obtain the most conceivable candidate unigenes involved in
the anthraquinones biosynthesis pathway. Using this process, we identified 79 unigenes
associated with the anthraquinones biosynthesis pathway in R. tanguticum (Table S14).
In the shikimate pathway, most RtDAHPS, RtDHQS, RtMenE, and RtEPSP genes were
highly expressed in green leaves. Interestingly, in the MEP pathway, most RtISPG genes
were highly expressed in purple samples. Other catalytic genes (RtDXPS, RtDXR, RtISPD,
RtISPF and RtISPH ) had varying expression levels in the green and purple plants. In
the MVA pathway, RtHMGR genes showed tissue-specific expression regardless of color
types in both green and purple petioles. The R. tanguticum rhizome is considered to be
the highest quality of all medical rhubarb in medicinal material markets. We found that
RtHMGS, RtHMGR, RtMK, RtPMK and RtMPDwere all highly expressed in green rhizome
samples. In the PKS pathway, RtPKS was highly expressed in green rhizomes and RtPKC
expressions were higher in green leaves.

The regulatory network of the anthraquinone biosynthetic pathway in R. tanguticum
showed differential expression patterns (Fig. 6A). The co-expression analysis of
anthraquinone and TFs showed that RtSMK, RtMK, RtDXPS, RtHMGR, RtHMGS,
RtMenB, RtMPD, and RtSDH gene family members have expression patterns that closely
resemblemultiple TFs, including bHLH,WRKY,MADS, andMYBTFs (Fig. 6B).We cannot
rule out the possibility that anthraquinone is synthesized in the leaves and petioles of R.
tanguticum and then transported below ground for long-term storage. In future studies,
the transcriptional network involved in the regulation of anthraquinone biosynthesis and
transportation should be investigated.

DISCUSSION
Photosynthesis is a vital metabolic process which supports plant growth and development
(Evans, 2013). Chlorophyll is a key component of photosynthesis which absorbs energy
from sunlight to transfer it to other parts of the photosystem. Under strong light conditions,
in order to protect against excess light absorption, plants alter their gene expressions to
reduce the amount of light reaching the chloroplast and/or to counteract the production
of reactive oxygen species (ROS). Thus, dynamic control of chlorophyll content depends
on biosynthesis and degradation to ensure optimal photosynthesis and plant fitness
(Maunders & Brown, 1983). In this study, we investigated the chlorophyll biosynthesis and
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leaves (PL), and purple petioles (PP). (B) The co-expression network of anthraquinone genes and TFs.

Full-size DOI: 10.7717/peerj.14265/fig-6

degradation pathway genes in samples of R. tanguticum collected from the Aba Tibetan
and Qiang autonomous prefecture, which is located at a high elevation and has high UV
radiation. In the chlorophyll biosynthesis pathway, most genes were up-regulated in the
green leaves and petioles of R. tanguticum. Conversely, in the chlorophyll degradation
pathway, RtPPH was highly expressed in the purple samples, which suggests it breaks
down pheophytin to pheophorbide A. The RtPaO and RtRCCR, which are involved in the
red chlorophyll catabolite to primary fluorescent chlorophyll, were also highly expressed
in the purple samples. The up-regulation of these three genes could intensify chlorophyll
degradation in purple tissues. These results indicate that the regulation of chlorophyll
content in purple tissues is controlled by both the biosynthesis and degradation pathways.

Anthocyanins are flavonoid pigments conferring red, blue, and purple colors to plant
tissues. They can protect the leaf’s photosynthetic system from damage (Silva et al., 2016)
and help the plant be more resistant to stresses be regulating reactive oxygen signaling
(Hatier & Gould, 2008). The anthocyanin biosynthesis pathway has been well described
in many plants (Winkel-Shirley, 2001). We compared the expression levels of the genes
involved in the anthocyanin pathway in different colored tissues. Anthocyanin content
depends on the balance between biosynthesis and degradation (Liu et al., 2018). Most genes
in the anthocyanin biosynthesis pathway were more highly expressed in green samples
than purple samples. Published transcriptome studies about Brassica juncea reveal that
anthocyanin biosynthesis genes are more up-regulated in purple leaves than in green leaves
(Heng et al., 2020). However, the stability of anthocyanins is dependent on the type of
anthocyanin pigment, co-pigments, light, temperature, pH, metal ions, enzymes, oxygen,
and antioxidants (Turturica et al., 2015). The role anthocyanins play in R. tanguticum needs
to be further explored.
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We also evaluated the transcriptional changes of anthraquinone biosynthesis in the green
and purple samples and found there was no prominent difference in the candidate genes
of the anthraquinone pathway between green and purple R. tanguticum. We anticipated
that the regulation of anthraquinone biosynthetic genes was not strongly associated with
the plant colors. The amount of anthraquinone in different color tissues still needs to be
further explored.

CONCLUSIONS
This study analyzed the transcriptomeprofiles of purple and green samples inR. tanguticum.
By comparing the FPKM values of green and purple R. tanguticum, we found that most
chlorophyll biosynthesis genes were down-regulated in purple samples, and that the
degradation pathway genes of chlorophyll (RtPPH, RtPaO, and RtRCCR) had higher
expression levels in purple samples. In contrast, the anthocyanin biosynthesis enzymes (e.g.,
ANS andUFGT)weremore highly expressed in green samples than in the purple ones. Thus,
these results indicate that the transcriptional regulation of chlorophyll metabolism plays
more important roles in purple samples than the regulation of anthocyanins biosynthesis
which contribute the color phenotypes in R. tanguticum. Although we also identified the
anthraquinone biosynthesis pathway genes, we did not find any obvious relationship
between the expression levels of these genes and plant colors.
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