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ABSTRACT
Objective. This study aimed to establish a prognostic model related to prostate cancer
(PCa) recurrence-free survival (RFS) and identify biomarkers.
Methods. The RFS prognostic model and key genes associated with PCa were es-
tablished using Least Absolute Shrinkage and Selection Operator (LASSO) and Cox
regression from the Cancer Genome Atlas (TCGA)-PRAD and the Gene Expression
Omnibus (GEO) GSE46602 datasets. The weighted gene co-expression network
(WGCNA) was used to analyze the obtained key modules and genes, and gene set
enrichment analysis (GSEA) was performed. The phenotype and mechanism were
verified in vitro.
Results. A total of 18 genes were obtained by LASSO regression, and an RFS model was
established and verified (TCGA, AUC: 0.774; GSE70768, AUC: 0.759). Three key genes
were obtained using multivariate Cox regression. WGCNA analysis obtained the blue
module closely related to the Gleason score (cor = –0.22, P = 3.3e−05) and the unique
gene glutathione peroxidase 2 (GPX2). Immunohistochemical analysis showed that the
expression of GPX2 was significantly higher in patients with PCa than in patients with
benign prostatic hyperplasia (P < 0.05), but there was no significant correlation with
the Gleason score (GSE46602 and GSE6919 verified), which was also verified in the
GSE46602 and GSE6919 datasets. The GSEA results showed that GPX2 expression was
mainly related to the epithelial–mesenchymal transition (EMT) and Wnt pathways.
Additionally, GPX2 expression significantly correlated with eight kinds of immune
cells. In human PCa cell lines LNCaP and 22RV1, si-GPX2 inhibited proliferation and
invasion, and induced apoptosis when compared with si-NC. The protein expression of
Wnt3a, glycogen synthase kinase 3β (GSK3β), phosphorylated (p)-GSK3β, β-catenin,
p-β-catenin, c-myc, cyclin D1, and vimentin decreased; the expression of E-cadherin
increased; and the results for over-GPX2 were opposite to those for over-NC. The
protein expression of GPX2 decreased, and β-catenin was unchanged in the si-GPX2+
SKL2001 group compared with the si-NC group.
Conclusion. We successfully constructed the PCa RFS prognostic model, obtained
RFS-related biomarker GPX2, and found that GPX2 regulated PCa progression and
triggered Wnt/β-catenin/EMT pathway molecular changes.
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INTRODUCTION
Prostate cancer (PCa) is one of the most common male malignant tumors in the United
States and the second leading cause of cancer-related deaths in men (Kang et al., 2020).
More than 80% of PCa cases are diagnosed as local diseases and usually treated by radical
prostatectomy. However, about 15% of patients have a biochemical recurrence within
5 years after surgery, and the recurrence rate has been reported to be as high as 40% within
10 years. Local PCa that relapses after treatment can progress to fatal castration-resistant
prostate cancer (CRPC) (Li et al., 2017). The causes of PCa recurrence are complex and
diverse, and the specific mechanism has not yet been clarified (Siegel, Miller & Jemal, 2019).
Therefore, research on the mechanism of PCa recurrence and the application of prognostic
biomarkers may be of great significance in improving the survival rate of patients with
PCa.

Many studies have shown that the epithelial–mesenchymal transition (EMT) andWnt/β-
catenin signaling pathways play an essential role in the occurrence and development of
PCa (Montanari et al., 2017). EMT is necessary for PCa occurrence and distant metastasis,
and plays a critical role in PCa metastasis to other organs (He et al., 2020). Epithelial cells
attain the biological characteristics of stromal cells (Chaves et al., 2021). Studies have shown
that the EMT and Wnt/β-catenin signaling pathways are closely related. Wnt binding to
its receptor frizzled protein results in protein phosphorylation, which inhibits GSK-3 β
activity. Consequently, β-catenin degradation is blocked and β-catenin accumulates in
the cytoplasm, enters the nucleus, interacts with cytokines, activates the transcription of
downstream target genes, induces EMT in cells, and promotes tumor growth andmetastasis
(Hseu et al., 2019; Sun et al., 2020).

Bioinformatics analysis is one of the crucial methods used for gene molecular research
based on Big Data (Hutter & Zenklusen, 2018; Botía et al., 2017). In this study, PCa RFS–
related differentially expressed genes (DEGs) were screened by analyzing the data of PCa-
related gene expression and clinicopathological characteristics in the Cancer Genome Atlas
(TCGA) andGene ExpressionOmnibus (GEO) databases.We analyzed the protein–protein
interaction (PPI) based on DEGs. Survival, Cox regression, and LASSO regression analyses
were used to establish and verify the prognostic model. The DEGs between different
Gleason scores of PCa tissues and the key gene glutathione peroxidase 2 (GPX2) were
obtained by weighted gene co-expression network analysis (WGCNA). The GSEA of GPX2
and its significance in prognosis and immunity were analyzed. Finally, a series of in vitro
experiments were conducted to explore the potential role of GPX2 in PCa, so as to provide
new clues for diagnosing and treating PCa.
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MATERIALS AND METHODS
Data acquisition
The data of gene expression profiles from the TCGA-PRAD dataset were downloaded from
the TCGA database and standardized. At the same time, the clinical information of patients,
including age, gender, TNM stage, pathological stage, and prognosis, was downloaded. The
samples with incomplete clinical information and survival data were excluded. A total of
481 PCa samples and 51 adjacent tissue samples were included in the study. Three datasets
of gene expression and clinical profiles of Pca were downloaded from the GEO database
(GSE70768, GSE46602, and GSE6919).

Construction and validation of the Pca RFS prognostic model
The data were analyzed using the R software DESeq and Limma package. The volcano and
heat maps were drawn using the P value <0.05 and |logfc|>2 as the screening conditions.
After taking the intersection, Pca DEGs were obtained. The PPI network of DEGs was
constructed using the STRING database, and the setting was adjusted to the interactive
score of 0.7. Cytohubba and MCODE modules were used to screen Top30 and topology-
related genes from Cytoscape 3.7.2. The prognostic model was established using univariate
Cox, LASSO, and multivariate Cox regression analyses. Finally, the model was validated in
the TCGA-PRAD and GSE70768 datasets.

WGCNA and GPX2 predicted PCa RFS
A total of 2,191 TCGA DEGs were analyzed using WGCNA. The Pearson correlation
coefficient between genes was calculated. The scale-free network was constructed and the
appropriate threshold was selected for network construction. Using two-step construction,
the adjacency matrix was transformed into a topological overlap matrix, the clustering
tree was generated through hierarchical clustering, and clustering was combined through
a dynamic cut. The significance of gene and module was estimated, and the clinical sample
grouping information was obtained. The identity of each gene module was calculated to
measure the importance of genes in each module. Setting parameters |gene module|>0.8
and |gene significance|>0.2 as criteria, we screened the hub genes of modules closely related
to clinical traits. The blue module was found to be significantly related to the Gleason score.
The key genes and blue modules were crossed, and the single gene GPX2 was obtained.
The TCGA-PRAD dataset verified the GPX2-predicted PCa RFS.

GSEA and immunohistochemical (IHC) analysis
GSEA 4.0.1 was used to compare and analyze the DEGs between high- and low-expression
groups of GPX2 in the PCa tumor samples of the TCGA-PRAD dataset. Gene set database
selection KEGG v7. 4 was used to set the replacement times to 1,000; P < 0.05 and false
discovery rate (FDR) <0.25 indicated significantly enriched genes. Between May 2021 and
January 2022, the Second Affiliated Hospital of Nanjing University of Chinese Medicine
collected tissues from 20 patients with PCa (10 patients with a high Gleason score ≥8
and 10 patients with a low Gleason score ≤7) and 10 patients with benign prostatic
hyperplasia. Detailed information is shown in Table S1. All patients signed an informed
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consent form. This study was approved by the ethics committee of the Second Affiliated
Hospital of the Nanjing University of Chinese Medicine (2021SEZ-030-01). The biopsy
samples were collected, fixed with 10% formaldehyde, and embedded in paraffin after
routine treatment. The prepared wax block was cut into sections with a thickness of 2 µm.
Immunohistochemical staining was performed on the treated sections. The processed
sections were stained with GPX2 (ab140130; Abcam, Cambridge, UK). Two pathologists
used the double-blind method to judge each slice. The sections were observed using
a low-power mirror under a microscope to select the best field of vision, and then a
high-power lens was used in this range 10× 40. Five visual fields were randomly observed,
and the IHC score was defined as the product of the frequency of positive cells and the
intensity of staining.

GPX2 expression with immune cells in PCa
In this study, the CIBERSORT algorithm was used to calculate the infiltration proportion
of 22 kinds of immune cells in PCa tissue, and 481 PCa samples were analyzed using the R
software. The samples with a P value <0.05 were included in the follow-up analysis. Taking
the median expression level of GPX2 mRNA as the boundary, the samples were divided
into high- and low-expression groups.

Cell culture and qRT-PCR analysis
Human PCa cell lines (PC-3, DU145, LNCaP, and 22RV1) were purchased from Procell
(Wuhan, China). The cells were cultured in RPMI-1640 (bl303a; Biosharp, Anhui, China)
at 37 ◦C and in the presence of 5% CO2. The cells adhered to the wall and were passaged
every 3 days. The cells in the logarithmic growth phase were used for the experiment.
TRIzol reagent (bs259a, Biosharp, China) was used to extract the total RNA of PC-3,
LNCaP, 22Rv1, and DU145 cells. A reverse transcription kit (11119es60; Yeasen, Shanghai,
China) was used to reverse transcribe RNA into cDNA, and a SYBR Green Kit (11201es50;
Yeasen, China) was used for qRT-PCR amplification, with β -actin as an internal control.
The 2- 1 1CT method was used for calculation. The primers were as follows: GPX2:
5′-GCCTCCTTAAAGTTGCCATA-3′ and 5′-GCCCAGAGCTTACCCA-3′; β -actin: 5′-
GAAGAGA-GAGACCCTCACGCTG-3′, and 5′-ACTGTGAGGAGGGGAGATTCAGT-3′.
The experiment was repeated three times.

Transfection and grouping
LNCaP and 22RV1 cells in the logarithmic growth phase (n= 200,000) were inoculated
into the cell culture plate and transfected according to the Lipofectamine 2000 (11668-027,
Invitrogen,Waltham,MA, USA) instructions. They were divided into GPX2 low expression
(si-GPX2) and negative control (si-NC) groups, GPX2 overexpression (over-GPX2) and
negative control (over-NC) groups, and SKL2001(HY-101085, MCE, USA) +si-GPX2
groups. The transfection effect was verified using qRT-PCR and Western blotting. The
experiment was repeated three times.

CCK-8 assay
LNCaP and 22RV1 cells in the logarithmic growth phase (n= 2,000) were inoculated into
the cell culture plate. After undergoing corresponding treatment according to experimental
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grouping, 10 µL of cells were added to each well containing CCK-8 solution (PR645;
Dojindo, Kumamoto, Japan). The culture plate was incubated and the absorbance value
was determined to be 450 nm using amicroplate reader (SpectraMax i3; Molecular Devices,
San Jose, CA, USA). Cell proliferation inhibition rate = (control group absorbance value–
experimental group absorbance value)/control group absorbance value ×100%. The
experiment was repeated three times.

Flow cytometry assay
The transfected cells were collected and digested with trypsin without EDTA. The adherent
cells were collected and centrifuged. The supernatant was discarded and the cell precipitate
was washed twice with phosphate-buffered saline (PBS). Annexin V–FITC/PI (556547, BD;
Franklin Lakes, NJ, USA) was added. After incubation in the dark at room temperature for
5 min, we detected the apoptosis rate of LNCaP and 22RV1 cells using a flow cytometer
(LSRII instrument; BD, Franklin Lakes, NJ, USA). The experiment was repeated three
times.

Transwell invasion assay
The transfected cells were collected and the cell concentration was adjusted to 3× 105/mL.
The cells were inoculated into the upper layer of the Transwell chamber (3422; Corning,
Corning, NY, USA) which contained a serum-free medium, and 100 µL/well of the cell
suspension was added. Additionally, 600 µL of the fresh culture medium was added to the
lower layer of the chamber. The liquid in the upper chamber was discarded after culturing
for 24 h, and the cells were wiped off the upper-chamber membrane with a wet cotton
swab. The cells on the lower-chamber membrane were fixed with methanol for 20 min,
dyed with crystal violet, rinsed with PBS until the background was clean, dried, and imaged
after sealing. ImageJ software was used to count the number of transmembrane cells. The
experiment was repeated three times.

Western blot analysis
The total protein was extracted from human PCa cells following the instructions of the
total protein extraction kit (bl521a; Biosharp, Shandong, China); subsequently, the protein
concentration was detected using the diquinoline formic acid method. The denatured
protein samples were separated by electrophoresis according to which membrane was
transferred using the semi-dry method. After sealing the membrane with skimmed milk
powder for 2 h, we added β-actin (gb12001; Servicebio, Wuhan, China), Wnt3a (2721; Cell
Signaling Technology, Danvers, MA, USA), GSK3 β (ab2602; Abcam, UK), phosphorylated
(p)-GSK3 β Ser9 (ab131097; Abcam, UK), β-catenin (ab32572; Abcam, UK), p- β-catenin
(ab27798; Abcam, UK), C-myc (ab32072; Abcam, UK), Cyclin D1 (2978; Cell Signaling
Technology, USA), vimentin (3195; Cell Signaling Technology, USA), E-cadherin (60330-
I-Ig, Proteintech, USA), and GPX2 (ab140130; Abcam, UK) antibodies. Subsequently, the
membrane was incubated overnight at 4 ◦C, then incubated with primary and secondary
antibodies at room temperature for 2 h, exposed, and developed using the ECL film. The
protein expression was analyzed, and the experiment was repeated three times.
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Figure 1 Identification of the DEGs.Volcano and heat maps of two datasets TCGA-PRAD (A) and
GSE46602 (B). Red nodes represent upregulated DEGs, the green node indicates downregulated DEGs.
(C) Venn diagrams of DEGs from the aforementioned two datasets. (D) Using the STRING online
database and Csytoscape 3.7.2 to construct the PPI network of the DEGs. The Top30 and topology module
genes were screened using Cytohubba and MCODE app in the Cytoscape software.

Full-size DOI: 10.7717/peerj.14263/fig-1

Statistical analysis
The Student t -test was used for continuous variables, while the classification variables
were analyzed using the χ2 test. Cox and LASSO regression models were used to analyze
the predictors of RFS. The data were expressed as mean ± standard deviation. All data
were analyzed with R version 4.1.2, SPSS 24.0 and GraphPad Prism 8.0. A P value <0.05
indicated a significant difference. All tests were repeated three times.

RESULTS
Identified DEGs
The GSE46602 dataset had 211 upregulated genes and 409 downregulated genes. The
TCGA-PRAD dataset was comprised of 898 upregulated genes and 1,293 downregulated
genes. The volcano and heat maps showed DEGs (Figs. 1A and 1B). After further taking
the intersection of the aforementioned datasets, we obtained the common 262 DEGs (94
upregulated genes and 168 downregulated genes) (Table 1 and Fig. 1C). STRING and
Cytoscape were used to construct the PPI network of DEGs (Fig. 1D). Cytohubba and
MCODE modules were used to screen Top30 and topology-related DEGs (Figs. 1E and
1F).
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Table 1 A total of 262 DEGs were identified from the TCGA-PRAD and GSE46602 datasets, with 94
upregulated and 168 downregulated.

DEGs Gene names

Upregulated GDF15 ERG B3GAT1 COL9A2 DLX2 APOE GJB1 TOX3
STX19 PKIB NAALADL2 ARHGEF26 REPS2 LUZP2
PTP4A3 TMEM178A GPR160 BEND4 ELL3 ASPN
CGREF1 PHGR1 NEK5 INSM1 PPP1R14B THBS4
HOXC4 KCNG3 COMP SMIM31 PLA2G7 SBK1 OR51E2
MARCKSL1 AK5 SH3RF1 DUS1L ATP8A2 BEND3
PABPC1L2B MMP10 NME1 TWIST1 FAM222A APOC1
COL12A1 PDLIM5 HPN AGR3 VSTM2L FASN H2AW
SMIM22 MYO6 EZH2 RAP1GAP PODXL2 RPL22L1
HLA-DMB PCDHB2 MS4A8 AMACR RAB17 TRPM4
ISG15 FGFRL1 GLYATL1 CACNA1D SRARP TUBB2A
SDK1 ACSM1 SLC43A1 COL2A1 RRM2 TOP2A GJB2
MYL5 SFTPA2 PEX10 MYRIP TMTC4 FOXD1 GMDS
HOXC6 TDRD1 DLX1 POPDC3 CYP2J2 NCAPG GCNT1
CRACR2B DNAH5 ERVH48-1

Downregulated PNCK SLC2A5 HOXD11 RGN UPK1A MET FXYD6
ANP32E KIAA1210 CNN1 PALLD ANO5 DNAJC15
SCUBE3 VWA5A CD38 NEFHMSMBMEIS2 BCL2
C12orf75 TRIM29 ID1 PENK ECRG4 HLF GSTP1 SRD5A2
CPAMD8 NDNF KRT15 LAMB3 PPARGC1A CYP3A5
IER3 SGK1 AOC1 CD177 PTGS2 WIF1 GPX2 MME
CAVIN2 CHST2 NR4A3 BNIPL PDK4 LSAMP CXCL17
SERPINB11 ACSS3 TCF7L1 TCEAL2 FAM83B SCGB1A1
GSTM1 DKK3 MUC6 PRIMA1 ARMCX1 AKR1B1
C11orf45 S100A2 MCCWFDC2 TENT5B SMTN SCN7A
FLRT3 MYZAP TGFBR3 MYL9 TPM2 CELSR2 AJUBA
PGM5 CAV2 NSG1 SLC24A3 GSTM2 AOX1 ACSL4
CYP4B1 HSPB6 MPZL2 LGR6 FOXQ1 GJA1 DEFB1 PLP2
ITGB4 CACHD1 CYSLTR2 CRYAB EFHD1 PCP4L1
ITGA1 PRRG4 FADS2 SELE TMEM252 SV2B C4orf19
MYOF FRMD6 EDN3 PLA2G4A DES ABCC3 FGFR2
AVPI1 EDNRB CAPG FBXO17 DPYS RND3 SCGB3A1
CCK C8orf88 SCGB2A1 LIX1 ARHGAP23 INSYN1
ADGRG6 FERMT2 CPA6 INAVA PRDM8 KRT14 ABCG2
TMEM158 LURAP1 DSC3 TPRG1 TGFB3 AFAP1L2 ID4
PRKG1 PLCL1 SERPINB1 SLC18A2 CCDC80 CAV1 TNS4
PROM1 GSTM3 METTL7A COL17A1 ZNF185 ACTG2
ST6GALNAC2 SCNN1A PCP4 APOBEC3G FAM107A
GPX3 PPP1R3C PNMA8A KRT5 SGCE KITLG SLC14A1
NRG1 SYT9 SNAI2 TP63 PARM1 KRT23

PCa RFS prognosis model
A total of 32 genes related to the prognosis of PCa RFS were analyzed using univariate Cox
analysis, and a prognostic model based on 18 genes of LASSO regression was constructed:
EZH2*0.46 + ELL3*−0.18 + APOC1*−0.04 + NME1*−0.22 + FAM222A*−0.60 +
SLC43A1*−0.71 + GCNT1*−0.04 + FOXD1*0.17 + COL2A1*0.028 + GPX2*−0.11
+ FOXQ1*0.08 + ID4*−0.32 + IER3*−0.17 + SGCE*−0.13 + ANO5*−0.25 +
FBXO17*−0.03 + PNMA8A*0.49 + EDN3*−0.03 (Figs. 2A and 2B). According to the
median risk score of the prognostic model, we divided patients with PCa into high-risk
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Figure 2 PCa RFS predictive model and genes. (A and B) LASSO coefficient spectrum of 18 RFS predic-
tive model–related genes. (C, D, and E) Risk plot of the RFS predictive model in TCGA. (F) ROC curve in
TCGA. (H, I, and J) Risk plot of the RFS predictive model in GSE70768. (F) ROC curve in GSE70768. (L)
Venn diagrams of the overlapping DEGs between the predictive model and Top30. (M) Multivariate Cox
analysis of three key genes.

Full-size DOI: 10.7717/peerj.14263/fig-2

and low-risk groups, and the RFS-related scatter plot and the heat map of the prognostic
model were constructed (Figs. 2C–2E). The ROC curve of the risk score was also generated,
with AUC = 0.774 (Fig. 2F). The GSE70768 dataset was used to verify the prognostic
model, and the RFS-related scatter plot and the heat map of the prognostic model were
constructed (Figs. 2H–2J); the ROC curve of the risk score had AUC = 0.759 (Fig. 2K).
Three key genes obtained by the intersection of the prognostic model and Top30 were
GPX2, EZH2, and COL2A1 (Fig. 2L). The multivariate Cox regression showed that the
three genes significantly correlated with patient RFS (P = 0.001, 0.023,0.008, Fig. 2M).
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Figure 3 WGCNA analysis and Gleason score–related gene GPX2. (A) Hierarchical clustering tree
based on the difference of adjacent values. (B and C) Topological structure analysis of soft threshold
parameters. (D) Correlation between modules and clinical characteristics. The numbers represent
correlation coefficients, and the numbers in parentheses represent P values. (E) Blue module (correlation
and P value). (F) Venn diagrams of the overlapping DEGs between the blue module and key gene.

Full-size DOI: 10.7717/peerj.14263/fig-3

WGCNA analysis and GPX2
According toWGCNAanalysis and taking the correlation coefficient of 0.85 as the standard,
the pickSoft threshold function was used to select the weight parameter of the adjacency
matrix (soft threshold); β = 2 was the standard gene module (Figs. 3A–3C). Using the
two-step method, the minimum number of genes in each gene module was set to 30, and
the height of cutting branches and merging modules was set to 0.25. Finally, nine modules
were obtained (Fig. 3D). Of these, we selected the blue module for this study, which was
comprised of 450 genes with the correlation (r = -−0.22, P = 3.3e−05) (Fig. 3E). The
intersection of blue module and key genes yielded only one gene GPX2 (Fig. 3F), which
was used as in follow-up research.

GPX2 expression independently predicted RFS in PCa
To further evaluate the prognostic value of GPX2 for PCa, the prognostic nomogram was
constructed by integrating clinical factors and gene expression (Fig. 4D), and the correction
curve was drawn to evaluate the predictive ability of the nomogram. The correction curve
showed that the risks predicted by the nomogram were highly consistent with the observed
RFS for 1, 3, and 5 years (Figs. 4A–4C).

GSEA analysis
The GSEA analysis showed that GPX2 expression was mainly related to EMT and infectious
disease biology, including the EMT and Wnt signaling pathways (Figs. 4E and 4F). The
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Figure 4 GPX2 predictive PCa RFS and GSEA analysis. (A) Subgroup analyses of RFS. (B) Postoperative
prognostic nomogram for patients with PCa. The calibration curve of the nomogram for predicting RFS
after 1 year (C), 3 years (D), and 5 years (E). GSEA analysis of high (F) and low GPX2 (G) expression phe-
notypes.

Full-size DOI: 10.7717/peerj.14263/fig-4

high expression of GPX2 could inhibit the activity of the aforementioned pathways, thus
inhibiting the occurrence and development of PCa.

CIBERSORT analysis
A significant difference was found in the degree of immune cell infiltration in 61 samples
(20 in theGPX2 low-expression group and 41 in the GPX2 high-expression group) (Figs. 5A
and 5B). Eight kinds of immune cells (activated dendritic cells, resting dendritic cells, M0
macrophages, M2 macrophages, monocytes, neutrophils, resting memory CD4 T cells, and
CD8 T cells) showed GPX2 expression with significant differences (Fig. 5C).
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Figure 5 GPX2 with PCa immune cells. (A) Hot plot of immune cell infiltration in 61 PCa samples. (B)
Histogram diagram of immune cell proportions in the GPX2 gene high- and low-expression groups. (C)
Eight kinds of immune cells with significant GPX2 expression in PCa samples.

Full-size DOI: 10.7717/peerj.14263/fig-5

GPX2 expression in PCa with the Gleason score
The immunohistochemical analysis showed that a GPX2-positive immune reaction was
located in the cytoplasm and brownish yellow particles existed in the cytoplasm (Fig. 6A).
GPX2 expression in benign prostatic hyperplasia tissue was significantly higher than in PCa
tissue, with no significant difference in Gleason score (Fig. 6B). GSE66602 and GSE6919
datasets also confirmed the aforementioned results (Fig. 6C).

Expression of GPX2 in PCa cells and transfection
qRT-PCR and Western blotting were used to detect the highest mRNA level of GPX2 in
LNCaP and 22RV1 cells, andGPX2was used for subsequent experiments (Fig. 6D).Western
blotting showed that the expression of GPX2 in the si-GPX2 group was significantly lower
than that in the si-NC group. Also, the expression of GPX2 in the over-GPX2 group
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Figure 6 Expression of GPX2 in PCa cells and transfection. (A) Representative IHC images of GPX2
expression and Gleason score in PCa tissues and benign prostatic hyperplasia tissues. (B) IHC score of
GPX2 expression (* P < 0.5, ** P < 0.01 compared with Gleason). (C) GPX2 expression in GSE66602 and
GSE6919 datasets. (D) Western blotting and qRT-PCR analysis of GPX2 expression in PCa cell lines (*
P < 0.5, ** P < 0.01, *** P < 0.001 compared with Lncap). (E and F) Western blotting of PCa cell trans-
fection (* P < 0.05, ** P < 0.01, *** P < 0.001 compared with the NC group).

Full-size DOI: 10.7717/peerj.14263/fig-6

was significantly higher than that in the over-NC group, indicating that silencing and
overexpression were successful and could be used in subsequent experiments (Figs. 6E and
6F).

Biological behavior of GPX2 in LNCaP and 22RV1 cells
Compared with the si-NC group, the si-GPX2 group showed the inhibition of cell
proliferation (Figs. 7A and 7D) and invasion (Figs. 7C and 7F), and the promotion of
cell apoptosis (Figs. 7B and 7E). Compared with the over-NC group, the over-GPX2 group
showed the promotion of cell proliferation (Figs. 7A and 7D) and invasion (Figs. 7C and
7F), and inhibition of apoptosis (Figs. 7B and 7E).
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Figure 7 Biological behavior of GPX2 in LNCaP and 22RV1 cells. (A and D) CCK8 assay revealed that
the up- and downregulation of GPX2 significantly regulated the cell viability. (B and E) Flow cytometry
assay revealed that the up- and downregulation of GPX2 regulated cell apoptosis. (C and F) Transwell as-
say revealed that the up- and downregulation of GPX2 significantly regulated the f invasion cells (* P <
0.05, ** P < 0.01, *** P < 0.001 compared with the NC group).

Full-size DOI: 10.7717/peerj.14263/fig-7

GPX2 regulates the Wnt/β-catenin/EMT pathway in LNCaP and 22RV1
cells
The protein expression of Wnt3a, GSK3 β, p-GSK3 β, β-catenin, p- β-catenin, c-myc,
cyclin D1, and vimentin decreased and that of E-cadherin increased in the si-GPX2 group
compared with the si-NC group. The results for over-GPX2 were opposite to those for
over-NC (Figs. 8A–8B and 8E– 8F). Additionally, the protein expression of β-catenin
increased and that of GPX2 decreased in the si-GPX2 + SKL2001 group compared with
the si-NC group (Figs. 8C–8D and 8G–8H).
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Figure 8 GPX2 regulates theWnt/β-catenin/EMT pathway in LNCaP and 22RV1 cells. GPX2 regu-
lates the Wnt/β-catenin/EMT pathway in LNCaP and 22RV1 cells. (A and B) In LNCaP cells western blot
analysis revealed that the up- and downregulation of GPX2 regulated the expression of Wnt3a, GSK3 β,
p-GSK3 β, β-catenin, p- β-catenin, c-myc, cyclin D1, and vimentin. (C and D) Western blot analysis of
β catenin and GPX2 expression in LNCaP cells of the three groups. (E and F) In 22RV1 cells western blot
analysis revealed that the up- and downregulation of GPX2 regulated the expression of β-catenin, C-myc,
Cyclin D1, vimentin, and E-cadherin. (G and H) Western blot analysis of β catenin and GPX2 expression
in LNCaP cells of the three groups. (* P < 0.05, ** P < 0.01, *** P < 0.001 compared with the NC group).

Full-size DOI: 10.7717/peerj.14263/fig-8

DISCUSSION
Although the incidence rate of PCa in Asia is far lower than that of Europe and North
America, the incidence and mortality rate of PCa in China has rapidly increased in recent
years (Bray et al., 2018;Gu et al., 2018). The routine clinical application of prostate-specific
antigen has produced good results in helping the early diagnosis of PCa (Perera et al.,
2021). However, PCa is a clinically heterogeneous cancer with large individual differences,
particularly involving the diagnosis and treatment of early tumor diagnosis and later tumor
progression, tumor metastasis, and hormone resistance (Ji et al., 2019). Identifying the
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genes related to the occurrence and development of PCa and clarifying the pathogenesis
of cancer can provide a theoretical basis for preventing and treating PCa (Giri et al., 2018;
Velho et al., 2018). Therefore, in-depth clinical and basic research involving a larger sample
size is necessary in order to explore reliable diagnosis and treatment methods.

PCa is a complex disease affected by multiple genes. In this study, we developed a risk
score based on 18 genes that was verified using GSE70768 and TCGA-PRAD datasets,
with a good prediction performance. WGCNA was used to analyze the TCGA-PRAD
dataset, and nine modules associated with the pathological grade, Gleason scores, TNM
stage, and clinical characteristics of PCa were obtained. We selected the Gleason score and
blue module for analysis and found a significant correlation (Cor= -−0.22, P = 3.3e−05).
Then, we predicted the intersection of three parts of themodel genes using the bluemodule,
Top30, and key genes. Finally, only the core gene GPX2 was obtained. A nomogram was
constructed to predict the recurrence of PCa. The nomogram could predict the possibility
of recurrence in PCa patients and was more accurate than clinical indicators.

GPX2, also known as gastrointestinal-specific glutathione peroxidase, is a selenium-
containing protein. It is mainly expressed in the gastrointestinal system and exerts anti-
inflammatory and antioxidant effects (Lennicke et al., 2017). In recent years, GPX2 has
been found to be highly expressed in a variety of tumors, especially inflammation-induced
tumors, and may promote cell proliferation and inhibit apoptosis (Minato et al., 2021; Ji et
al., 2021; Tian et al., 2021). GPX2 is also overexpressed in human and mouse CRPC cells
and promotes the malignant proliferation of PCa cells. Inhibition of GPX2 expression
significantly inhibited the proliferation of PCa cells and made them stagnate in the G2/M
phase (Naiki et al., 2014). Inhibiting the expression of GPX2 can also improve the level of
reactive oxygen species (Wu et al., 2021). These results showed that GPX2 had a certain
correlation with tumor immunity. In this study, the high and low expression of GPX2
could influence eight kinds of immune cells to participate in the immune response of PCa.
However, there have been few studies on the relationship between the expression of GPX2
and PCa prognosis and mechanism.

The Gleason score system is a PCa pathological grading system that was introduced in
1974 (Gleason & Mellinger, 1974). It has become the most powerful tool used to predict the
prognosis of patients with PCa (Nagpal et al., 2020). It is closely related to the differentiation
and invasion of PCa, which is of great significance for clinicians choosing and making
treatment plans (Thomsen et al., 2020). IHC staining showed that the expression of GPX2
in PCa tissues had no significant correlationwith theGleason score; two datasets (GSE66602
and GSE6919) were used to verify the same results. Therefore, we speculated that GPX2
played an important role in PCa with no correlation to the Gleason score. We concluded
that data mining must be combined with experimental verification. Furthermore, the
survival prognosis of patients with high and low GPX2 expression was analyzed according
to the public datasets GSE70768 and TCGA-PRAD. The results showed that the RFS time
of patients in the GPX2 high-expression group was shorter than that of patients in the
GPX2 low-expression group. In addition, this study used TCGA-PRAD data to construct a
nomogram to predict the prognosis of patients with PCa, which helped us more intuitively
understand the importance of the GPX2 expression levels in predicting PCa prognosis.
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We used lentivirus transfection technology to promote the over-expression and low
expression of GPX2 in LNCaP and 22RV1 cells in order to determine the role of GPX2 in
the occurrence and development of PCa. The corresponding in vitro cell experiment results
showed that inhibiting the expression of GPX2 could inhibit the proliferation and invasion
of LNCaP and 22RV1 cells and induce apoptosis. Also, promoting the expression of GPX2
could promote proliferation and invasion and prevent the apoptosis of LNCaP and 22RV1
cells. The Wnt/β- catenin and EMT pathways were closely related to the occurrence and
development of PCa (Kaplan et al., 2021; Chaves et al., 2021). Nath et al. (2019) found that
Abi1 loss promoted the progression of PCa by modulating the Wnt signal and inducing
EMT. Zhang & Li (2020) found that long noncoding RNA NORAD contributed to the
metastasis of PCa via the Wnt/β-catenin/EMT pathway. However, the modulation of
GPX2 on the Wnt/β-catenin/EMT pathway has not been reported. This study was novel
in reporting that when the expression level of GPX2 changed, the proteins related to the
Wnt/β-catenin/EMT pathways also changed. Therefore, we concluded that the mechanism
of GPX2 in influencing the occurrence and prognosis of PCa was related to the Wnt/β
-catenin/EMT signaling pathway.

However, despite the clinical significance of our findings, this study had some limitations.
First, although the performance and AUC values of the calibration curve were excellent
in the validation group, multicenter clinical application is still needed to further evaluate
the external utility of the prognostic model. Only 262 genes were defined as genes related
to the recurrence of PCa, and the construction of the prognostic model was evaluated.
Some important genes might have been excluded before establishing the prognostic
model. Second, GPX2 was highly expressed in benign prostatic hyperplasia compared with
PCa. However, over-GPX2 promoted PCa cell proliferation and invasion and inhibited
apoptosis, indicating that over-GPX2 promoted tumor progression to a certain extent. The
underlying mechanism needs to be further examined.

In conclusion, the expression of GPX2 in PCa can be used as a new prognostic biomarker
of RFS of PCa. GPX2might regulate PCa progression via theWnt/β-catenin/EMT pathway,
and is expected to become a potential target for treating PCa.
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