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ABSTRACT
Herein, a versatile fluorescent bioanalysis platform for sensitive and specific screening
of targetmiRNA (miR-129-2-3p) was innovatively designed by applying target-induced
rolling circle amplification (RCA) for efficient signal amplification. Specifically, miR-
129-2-3p was used as a ligation template to facilitate its ligation with padlock probes,
followed by an RCA reaction in the presence of phi29 DNA polymerase. The dsDNA
fragments and productswere stained by SYBRGreen I and then detected by fluorescence
spectrophotometry. As a result, miR-129-2-3p concentrations as low as 50 nM could be
detected. Furthermore, the expression of miR-129-2-3p in breast cancer patients was
about twice that in healthy people. Therefore, the results indicated that the RCA-based
biosensor system could be a valuable platform formiRNAdetection in clinical diagnosis
and biomedical study.

Subjects Biochemistry, Biotechnology, Molecular Biology
Keywords RCA, Fluorescent detection, Biosensor, miR-129-2-3p

INTRODUCTION
MicroRNAs (miRNAs) are a group of conserved, endogenous non-coding and short RNA
(18–25 nucleotides) that regulate gene expression and play essential roles in cells, including
proliferation, migration, differentiation, apoptosis and death (Xu et al., 2019; Gregory et
al., 2004; Bartel, 2004; Sawyers, 2008; Ambros, 2001; Rossi, 2009). MicroRNAs negatively
regulate gene expression via eliciting mRNA degradation or suppressing protein translation
by targeting the 3′ or 5′ untranslated region (UTR) of the target gene (Luan et al., 2016;
Shazadi et al., 2014, Bartel Wang et al., 2021). Past studies have found that miRNAs, as
post-transcriptional regulators of gene expression, are closely associated with a variety
of diseases, including cancer (Jiang et al., 2005; Luby & Zheng, 2017; Volinia et al., 2006),
and are related to cancer initiation, progression and response to treatments (Brito et al.,
2014; Schetter et al., 2008; Asaga et al., 2011). Accordingly, miRNAs extracted from serum
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or tumor tissue have been regarded as biomarkers for cancer diagnosis (Li et al., 2014; Cao
et al., 2011; Krazinski et al., 2019).

MiR-129-2-3p is a member of the miR-129 family and is abnormally expressed in some
tumors (Xiao et al., 2015; Kang et al., 2013; Lu et al., 2013; Tian et al., 2015; Yang et al.,
2015; Tang et al., 2016), which is thought to have an inhibitory effect on various types of
tumors (Gao et al., 2016).

MiR-129-2-3p plays a pivotal role in gastric cancer by restraining its migration and
proliferation in vitro and slowing down gastric cancer growth in vivo via the inhibition
of WWP1 (Ma et al., 2019; Yu et al., 2013a; Yu et al., 2013b). Moreover, some researchers
also found that the expression of sex-determining region Y-box 4 (SOX4) was negatively
correlated with the expression of miR-129-2-3p and miR-129-5p in gastric cancer (Yu
et al., 2013a; Yu et al., 2013b). Overexpression of miR-129-2-3p significantly inhibits the
proliferation and induces apoptosis of breast cancer cells (Tang et al., 2016). The expression
levels of miR-129-2-3p in Ewing sarcoma tumor tissue samples are significantly lower than
those in corresponding adjacent normal tissue samples (Tanoglu et al., 2021). The aberrant
expression of the miR-129-2-3p is also detected in lung adenocarcinoma (Zhang et al.,
2021). In human intrahepatic cholangiocarcinoma tissues and cell lines, the expression is
notably decreased and the low expression of miR-129-2-3p is significantly correlated with
distant metastasis and clinical stage (Huang et al., 2019).

Furthermore, some studies have also reported that miR-129-2-3p is associated with
other human diseases. A previous study reported that miR-129-2-3p directly regulates
the translation of two genes involved in inflammatory responses and apoptosis (Ccr2 and
Casp6), and overexpression ofmiR-129-2-3p can promote wound healing in type 2 diabetic
mice (Umehara et al., 2019). MiR-129-2-3p levels are significantly reduced in patients with
ischemic stroke (IS) and are negatively associated with the risk of IS (Chen et al., 2020).
The expression of miR-129-2-3p is up-regulated in cortical brain tissue and plasma of
refractory temporal lobe epilepsy patients (Sun et al., 2016).

In the past few decades, some methods have been used to detect miRNA, including
quantitative real-time polymerase chain reaction (qRT-PCR) (Chen et al., 2005),
microarray (Thomson et al., 2004), northern blotting (Válóczi et al., 2004) and modified
invader assay (Allawi et al., 2004). Some new detection methods have recently been
invented, such as representative loop-mediated isothermal amplification (LAMP) (Li
et al., 2011) and rolling circle amplification (RCA) (Xu et al., 2018). In this study, an
RCA-based biosensor system was used to perform the amplification detection of miRNA
(miR-129-2-3p) in vitro. This method achieves signal amplification and biosensing, which
has exciting potential in clinical diagnosis.

MATERIALS & METHODS
Materials
The DEPC Treated Water (DEPC-H2O) and deoxyribonucleotides mixture (dNTPs) were
purchased from Sangon Biotech (Shanghai, China). Phi29 DNA polymerase (10,000 U/mL)
and 10×phi29 DNA polymerase reaction buffer, SYBRGreen I were obtained fromThermo
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Table 1 Sequences used in this study.

Serial
number

Name Sequence

1 miR-129-2-3p AAGCCCUUACC CCAAAAAGCAU
2 3p-A CAGCCCUUACC CCAAAAAGCAU
3 3p-B AAGCCCUUUCC CCAAAAAGCAU
4 3p-C AAGCCCUUACG GCAAAAAGCAU
5 3p-D AAGCCCUUACC UCAAAAAGCAU
6 3p-E AAGCCCUUACC CCAAAAAGCAA
7 Padlock probe 1(PP1) GGTAAGGGCTTAAATCAACCGTACGGCTCAAACGCATGCTTTTTGG
8 Random padlock probe 1(RP1) GGTAAGGGCTTAAACCTCAAGTCTACCAAGGACGCATGCTTTTTGG
9 Random padlock probe 2(RP2) GGTAAGGGCTTAAATCAACGAGCGTCCTCAAACGCATGCTTTTTGGTATACAAC
10 Padlock probe 2 (PP2) GGTAAGGGCTTCCGTACGGACAACCTACTACCTCACCGTACGGCTATA CCTACTACCTA

CCGTACGGATGCTTTTTGG

Fisher Scientific (Shanghai, China). T4 DNA ligase and 10× T4 DNA ligase reaction buffer
were provided by TaKaRa Biotechnology Co., Ltd. (Dalian, China). The padlock probe
and oligonucleotides in this study were synthesized and PAGE purified by Sangon Biotech
(Shanghai, China), the padlock probe was modified with the 5′-phosphate group. The
sequences (5′–3′) were shown in Table 1.

Ligation reaction of padlock probe and miRNA
The ligation was carried out in 10 µL of the reaction system. 1 µL of 10× T4 DNA ligase
buffer, 2 µL of 10 µM padlock probe, 2 µL of miRNA, and 4 µL of H2O were added to
a PCR tube and heated at 90 ◦C for 3 min for annealing reaction, and then slowly cooled
down to room temperature (RT). Subsequently, 350 U/mL T4 DNA ligase (1µL) was added
to the reaction solution and incubated at RT for 3 h.

The RCA reaction of miRNA
After the ligation reaction, 2 µL of 10 mM dNTP (1 mM), 2 µL of 10× phi29 DNA buffer,
5.7 µL of H2O, and 0.3 µL of phi29 DNA polymerase (3U) were added to the tube and
then kept at 30 ◦C for 3 h to induce the RCA reaction. Finally, the enzymatic reaction was
stopped by maintaining the temperature at 65 ◦C for 10 min. RCA reaction was carried
out in T1 Thermocycler (Biometra, Jena, Germany).

Fluorescence detection
To detect the fluorescence of hybridization events of target/linear padlock probes, 6 µL
RCA product and 2 µL of 100× SYBR Green I were mixed, then incubated at RT for 30
min and diluted to a final volume of 200 µL with DEPC-H2O. The fluorescent spectra were
detected by the Hitachi F-7000 fluorescence spectrometer (Hitachi, Ltd., Tokyo, Japan) at
RT. The excitation wavelength was set to 480 nm with an emission range of 500 nm–700
nm. A fluorescence peak emission wavelength of 550 nm was recorded to evaluate the
capability of our system.
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Gel electrophoresis analysis
The nucleic acids produced by the RCA reaction were analyzed by PAGE (polyacrylamide
gel electrophoresis). Firstly, the dye was pre-mixed with 100 µL DiGelRed, 50 µL loading
dye, and 2 µL cyber gold, then a 20 µL aliquot of RCA product solution was mixed with 20
µL mixed dye solution. Subsequently, 5 µL of the resulting solution load was placed into
the lane for 30% PAGE. Gel electrophoresis was performed for 30 min at 195 V in a 5×
TBE solution. The ChemiDoc XRS imaging system (BIO-RAD, USA) was used to visualize
the gel images.

Extraction of microarray gene expression data from breast cancer
patient datasets
The serum microarray datasets of breast cancer patients were extracted from Gene
Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/). GSE73002
included 1670 breast cancer patients and 2,682 healthy volunteers. Receiver operating
characteristics (ROC) curve analysis was performed to analyze the ability of miR-129-2-3p
as a serum biomarker for breast cancer. ROC curve was generated with SPSS software.

Patients and specimens
The research consisted of 6 breast cancer samples and six healthy volunteer samples. All
the patients under went breast resection at the First Affiliated Hospital of Fujian Medical
University between January 2020 and June 2021. The inclusion criteria for patients were:
(1) histologically confirmed breast cancer; (2) no history of other malignancy; (3) no prior
neoadjuvant chemotherapy. The study was performed with the approval of the Ethics
Committee of the First Affiliated Hospital of Fujian Medical University. Written informed
consent was obtained from the patients, and specimens were stored in the hospital database
and used for research.

RESULTS
Extraction of microarray gene expression data from breast cancer
patient datasets
In order to explore the expression of miR-129-2-3p in breast cancer, GSE73002 datasets
were analyzed, revealing that the level of miR-129-2-3p was significantly higher in breast
cancer than in healthy volunteers (shown in Fig. 1A). ROC curve analysis showed that
miR-129-2-3p expression has potential diagnostic value for breast cancer. Data from the
GSE73002 dataset showed that miR-129-2-3p may be an important diagnostic factor
for breast cancer (Area Under Curve (AUC) = 0.928; 95% Cl [0.918–0.938]; p< 0.001;
Fig. 1B).

The feasibility of RCA-based biosensor system strategy
The feasibility of the RCA-based biosensor system was verified with fluorescence spectral
characteristics. Figure 2A showed the fluorescence emission spectra in the absence (curve
b) and presence (curve a) of miR-129-2-3p. Low fluorescence intensity was observed
in solutions without miR-129-2-3p. On the contrary, the fluorescence intensity was
significantly enhanced after miR-129-2-3p was introduced into the solutions (curve a).
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Figure 1 Extraction of microarray gene expression data from breast cancer patient datasets. (A) The
analysis of GSE73002 data sets showed that in breast cancer, the level of miR-129-2-3p was significantly
higher than the healthy volunteers. (B) ROC curve analysis showed that expression of miR-129-2-3p has
potential diagnostic value for breast cancer.

Full-size DOI: 10.7717/peerj.14257/fig-1

Figure 2 The feasibility of RCA-based biosensor system. (A) Fluorescence spectra of RCA-
based biosensor system in the absence (b) and presence (a) of target miR-129-2-3p; (B) PAGE gel
electrophoresis results for the amplification products of absence (a) and presence (b) of target miR-129-2-
3p.

Full-size DOI: 10.7717/peerj.14257/fig-2

These results indicated that miR-129-2-3p could induce ligation reactions, followed by
RCA reactions, subsequently leading to the production of a large number of dsDNA
fragments. To further explore the feasibility of our strategy, PAGE gel electrophoresis was
performed, as shown in Fig. 2B. No bands were observed in the absence of miR-129-2-3p
(lane a), but a distinct band appeared in the presence of miR-129-2-3p (lane b). Therefore,
the results of fluorescence spectral characteristics and PAGE gel electrophoresis suggested
that the RCA-based biosensor system can be used to detect miR-129-2-3p.
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Figure 3 The relationship between fluorescence intensity and ligation time (A), polymerization time
(B), and the concentration of phi29 DNA polymerase (C) and dNTPs (D). F and F0 were the fluorescence
intensity induced by target miRNA and Blank, respectively. The error bar was calculated from two inde-
pendent experiments.

Full-size DOI: 10.7717/peerj.14257/fig-3

Optimization of experimental conditions
The incubation time for ligation and amplification and the concentration of phi29
DNA polymerase and dNTPs play a significant role in these experiments. Therefore, the
experimental conditions were optimized to achieve the best performance. As illustrated in
Fig. 3A, with the increase of ligation time, the fluorescence changes gradually increased and
to stabilized within 3 h. Therefore, a 3 h ligation time was chosen for further experiments.
Similarly, the number of RCA reaction products is closely related to the polymerization
time, and the measured values are shown in Fig. 3B. Thus, the RCA reactions lasts for
3 h in the proposed biosensor system. Subsequently, the effects of the amount of phi29
DNA polymerase and the concentration of dNTPs on signal intensity were evaluated to
further evaluate the biosensor system. All measured data are shown in Figs. 3C and 3D,
respectively. Consequently, 2 mM dNTP and 3 U of phi29 DNA polymerase were used in
subsequent experiments.

Sensitivity of RCA-based biosensor system for miRNA detection
In order to test the capability of the RCA-based biosensor system for miRNA detection,
different concentrations of miR-129-2-3p solution were detected. As shown in Fig. 4A, the
fluorescence intensity increased with the increase of miR-129-2-3p concentration within
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Figure 4 (A) Fluorescence intensity of miR-129-2-3p miRNA at different concentrations; (B) linear re-
lationship between fluorescence intensity ratio (F-F0) and target miR-129-2-3p miRNA concentration,
from 50 nM to 200µM. F and F0 were the fluorescence intensity induced by target miRNA and Blank, re-
spectively. The error bar was calculated from two independent experiments.

Full-size DOI: 10.7717/peerj.14257/fig-4

0–150 µM. It indicated that the change in fluorescence intensity reflected the concentration
ofmiR-129-2-3p. As illustrated in Fig. 4B, there was a significant linear relationship between
the fluorescence signal and target concentration in the range of 20 nM to 150 µM, and
the correlation coefficient R2 was 0.9933. The detection limit (LOD) of the aptasensor was
estimated to be 50 nM (S/N= 3). This is the first time that an RCA-based biosensor system
has been used to detect miR-129-2-3p, which is expected to provide a sensitive detection
method for miR-129-2-3p as a target marker in clinical practice.

In the RCA-based biosensor system, the fluorescence signal is caused by SYBR Green I
interacting with the dsDNA fragments, which determines the fluorescence signal intensity.
Therefore, the padlock probe 2 was designed containing three palindromes to indicate
the relationship between the fluorescence signal and the palindromic fragment number.
Moreover, two random padlock probes without palindromes were designed to indicate the
relationship between the fluorescence signal and the palindromic fragment number. As
shown in Fig. 5A, the fluorescence intensity increased about 2 times when the number of
palindrome fragments increased to three. As illustrated in Fig. 5B, the fluorescence signal
of the two random padlock probes was lower than that of padlock probe1. It seemed that
the performance of the RCA-based biosensor system for miR-129-2-3p detection could be
further improved by optimizing the number of palindrome fragments.

Detection specificity of miR-129-2-3p
Apart from the sensitivity of detection, specificity is another key factor for the application
of this strategy for miR-129-2-3p analysis. The specificity of detection for miRNA is of
great significance due to the short length and similar base sequence of miRNAs. So, five
mutations of miR-129-2-3p (3p-A, 3p-B, 3p-C, 3p-D and 3p-E) and miR-129-2-3p were
used to assess the detection specificity of the RCA-based biosensor system. As shown in
Fig. 6, only target miR-129-2-3p elicited a high fluorescence signal. In contrast, the other
five mutated miRNAs only induced slight signal changes: 33.1%, 19.4%, 1.5%, 10.6%,
and 21.7%, respectively, compared with perfectly matched miR-129-2-3p. Therefore, the
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Figure 5 (A) Comparison of padlock probe 1(PP1) to miR-129-2-3p with padlock probe 2(PP2), where
F and F0 are the fluorescence intensity corresponding to miR-129-2-3p and blank, respectively. (B)
Comparison of padlock probe 1(PP1) to miR-129-2-3p with random padlock probe 1 and 2. The rel-
ative signal is estimated from (Fb-Fb0)/(Fa-Fa0)× 100. Fb and Fb0 are the fluorescence intensity in the
presence and absence of random padlock probe1 and 2(PP1 and PP2), respectively, while Fa and Fa0 are
the fluorescence intensity in the presence and absence of miR-129-2-3p, respectively. In this section, the
relative signal of miR-129-2-3p is established as 100 (%). The error bar was calculated from two indepen-
dent experiments.

Full-size DOI: 10.7717/peerj.14257/fig-5

Figure 6 Detection specificity of the RCA-based biosensor system towardmiR-129-2-3p over other
mutated miRNAs. The relative signal is estimated from (Fb-Fb0)/(Fa-Fa0)× 100. Fb and Fb0 are the fluo-
rescence intensity in the presence and absence of mutated miRNAs, respectively, while Fa and Fa0 are the
fluorescence intensity in the presence and absence of miR-129-2-3p, respectively. In this section, relative
signal of miR-129-2-3p is established as 100 (%). The error bar was calculated from two independent ex-
periments.

Full-size DOI: 10.7717/peerj.14257/fig-6

padlock probe1 in this work could specifically hybridize with miR-129-2-3p and promote
subsequent reactions. The RCA-based biosensor system can be used to distinguish miR-
129-2-3p from other non-target miRNAs.
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Figure 7 Detection of the fluorescence intensity of miR-129-2-3p in the serum of breast cancer pa-
tients and healthy people. F and F0 were the fluorescence intensity induced by sample and Blank, respec-
tively.

Full-size DOI: 10.7717/peerj.14257/fig-7

Detection of real samples
To study the feasibility of this method in real sample analysis, the fluorescence intensity
of miR-129-2-3p was detected in the serum of breast cancer patients and healthy people.
As shown in Fig. 7, the fluorescence intensity of miR-129-2-3p in breast cancer patients is
about twice that of healthy people.

DISCUSSION
MiR-129-2-3p is amember of themiR-129 family, and its abnormal expression is frequently
detected in tumors; MiR129-2-3p is thought to have an inhibitory effect on various
types of tumors. Over the past decades, different methods were used to detect miRNAs,
including quantitative real-time polymerase chain reaction (qRT-PCR) (Chen et al., 2005),
microarray (Thomson et al., 2004), northern blotting (Válóczi et al., 2004) and modified
invader assay (Allawi et al., 2004). However, these methods still have some limitations
in clinical diagnosis. For example, PCR may affect gene expression. Northern blotting is
a time-consuming process with low sensitivity. Microarray cannot be used due to high
cost, lower sensitivity, and poor reproducibility. Herein, a versatile fluorescent bioanalysis
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platform for sensitive and specific screening of target miRNA (miR-129-2-3p miRNA)
was innovatively designed by using target-induced rolling circle amplification (RCA) for
efficient signal amplification.

The principle of the RCA-based biosensor system for detecting targetmiRNA is described
in Scheme S1. This system consists of padlock probe 1 (including a palindrome sequence)
complementary to the sequence of the target miRNA, target miRNA, ligase and polymerase,
and SYBR Green I. In the presence of target miRNA, cyclized padlock probe 1 is obtained
with the help of T4 DNA ligase. The RCA polymerization reaction is initiated in the
presence of phi29 DNA polymerase and dNTPs. As a result, the RCA reaction produced a
long single stranded DNA, many copies of dsDNA fragments of the target because of the
self-hybridization of the palindromic sequences. Subsequently, the dsDNA binds to SYBR
Green I, and the fluorescence signal can be detected by the fluorescence spectrometer.
Through this method, as long as target miRNA and padlock probe1 are connected during
the reaction, a large number of dsDNA fragments can be produced after RCA. Since
the RCA products are long dsDNA, SYBR Green I is an asymmetrical cyanine dye used
as a nucleic acid stain to enhance the fluorescence intensity. Therefore, the RCA-based
biosensor system is likely to provide good sensitivity for miR-129-2-3p detection. As
a result, miR-129-2-3p miRNA concentrations as low as 50 nM can be detected. In the
analysis of real samples, the fluorescence intensity ofmiR-129-2-3p in breast cancer patients
is about twice that in healthy people. Therefore, the results indicated that the RCA -based
biosensor system has the potential to become a valuable platform for miRNA detection in
clinical diagnosis and biomedical study.

CONCLUSIONS
In summary, we have developed a specific fluorescent detection method for miR-129-2-3p
using a palindromic padlock probe in an RCA-based biosensor system. Target miRNA is
used as a polymeric primer to hybridize with the padlock probe. The RCA reactions can
easily occur in the presence of polymerases, which produces a large number of dsDNA
fragments. SYBR Green I intercalates the dsDNA fragments, and the fluorescence signal
is detected. Utilizing this RCA-based biosensor system, miR-129-2-3p can be detected at
a concentration as low as 50 nM with a good linear response range, even using only one
palindromic padlock probe. In the analysis of real samples, the expression of miR-129-2-3p
in breast cancer patients was about twice that of healthy people. This research highlights
the potential of this sensing system to detect miR-129-2-3p as a tumor biomarker in cancer
diagnosis and prognosis. It also offers a new amplification technique for the biological
studies of miR-129-2-3p.
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