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ABSTRACT
Mountains are highly diverse in areal extent, geological and climatic context,
ecosystems and human activity. As such, mountain environments worldwide are
particularly sensitive to the effects of anthropogenic climate change (global warming)
as a result of their unique heat balance properties and the presence of
climatically-sensitive snow, ice, permafrost and ecosystems. Consequently, mountain
systems—in particular cryospheric ones—are currently undergoing unprecedented
changes in the Anthropocene. This study identifies and discusses four of the major
properties of mountains upon which anthropogenic climate change can impact, and
indeed is already doing so. These properties are: the changing mountain cryosphere
of glaciers and permafrost; mountain hazards and risk; mountain ecosystems and
their services; and mountain communities and infrastructure. It is notable that
changes in these different mountain properties do not follow a predictable trajectory
of evolution in response to anthropogenic climate change. This demonstrates that
different elements of mountain systems exhibit different sensitivities to forcing.
The interconnections between these different properties highlight that mountains
should be considered as integrated biophysical systems, of which human activity is
part. Interrelationships between these mountain properties are discussed through a
model of mountain socio-biophysical systems, which provides a framework for
examining climate impacts and vulnerabilities. Managing the risks associated with
ongoing climate change in mountains requires an integrated approach to climate
change impacts monitoring and management.

Subjects Ecology, Ecosystem Science, Climate Change Biology, Natural Resource Management,
Environmental Impacts
Keywords Climate change impacts, Anthropocene, Mountain environments, Deglacierization,
Geohazards, Adaptation, Human impacts

INTRODUCTION
There is increasing concern about Earth’s biophysical systems and sustainability in the
light of ongoing anthropogenic climate change (global warming). To this end, world
scientists have sent a Warning to Humanity regarding the impacts of climate change on
different physical systems and environments (e.g., Ripple et al., 2017; Finlayson et al., 2019;
Albert et al., 2021). This article contributes to this debate by sending a Warning to
Humanity on the impacts of climate change on mountain environments globally and the
multifaceted, interlinked and long-lasting nature of these effects on both mountain
physical environments and on people and communities. This Warning to Humanity
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confirms and extends the findings of the IPCC Special Report on the cryosphere that shows
that, in mountains, there is high confidence that climate change has decreased snowcover,
glacier mass balance and permafrost area (Hock et al., 2019b). In addition, IPCC
Assessment Report 6 evaluates climate change impacts on mountains, and states with high
confidence that climate change has “observable and serious consequences” for mountain
ecosystems and communities (Adler et al., 2022).

Mountains represent an important physical environment, with 15.38% of the global
land surface lying above 1,000 m asl, and 7.67% lying above 2,500 m asl (calculated from
Owens & Slaymaker, 2004, their Table 1.3). The IPCC attributes the causes of present-day
climate change in mountains to increasing greenhouse gas emissions, leading to
anthropogenic global warming (Hock et al., 2019b; Adler et al., 2022). Field observations
and measured data providing evidence for the effects of anthropogenic global warming in
mountains, according to the IPCC, include: a decrease in snow cover at low elevations
(high confidence), sustained negative glacier mass balance (very high confidence), a
decrease in mountain permafrost area (high confidence), changes in the spatial patterns
and timing of natural hazards (high confidence), changes in seasonality and volume of
mountain river discharge (very high confidence), and changes in ecosystem composition
(very high confidence). In detail, the close link of global warming (i.e., temperature
change) to mountains comes about largely through the presence of snow and ice which has
an important role in the regional heat balance through albedo feedbacks (Knight &
Harrison, 2022). Here, light-toned snow and ice surfaces have high albedo, reflecting
incoming solar radiation back out to space and keeping the land surface cool
(Kokhanovsky et al., 2018). By contrast, dark-toned rock surfaces absorb radiation and
therefore warm up, and this can trigger further snow and ice melt. Decreased snow cover
and increased supraglacial debris on glaciers, however, can also dramatically increase
the rate of mountain warming, especially where snowline elevation is rising (You et al.,
2020). This climate amplification found in mountains, known as elevation-dependent
warming, has been identified in many mountain blocks worldwide. For example, in the
Tibetan Plateau, warming from the 1950s onwards across a range of stations averages
0.31 �C/decade−1 with values from the 1980s onwards between 0.50–0.67 �C/decade−1

(Kuang & Jiao, 2016). This compares with averaged global surface temperature increases
from the 1980s onwards of 0.18 �C/decade−1 (NOAA, 2022), meaning temperatures are
amplified by around a factor of three in mountains.

Anthropogenic climate change in mountains does not just affect temperatures. Changes
in regional weather patterns are also observed, and these reflect the operation of synoptic
atmospheric circulation patterns which are also changing under global warming
(Letcher & Minder, 2018; Thornton et al., 2021). Associated with these patterns are
variations in wind direction, humidity and development of an inversion layer caused by
changes in the environmental lapse rate found in mountains—a result of changing
ecosystems, soil moisture and snow/ice (Barry, 1992; Pepin et al., 2017; Hiebl & Schöner,
2018). In the European Alps, several studies have examined the climatology of rainfall
patterns based on regional weather records from the 1960s onwards, and these show
changes in both spatial precipitation patterns and long term precipitation trends that
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reflect the role of synoptic circulation interacting with topography (Frei & Schär, 1998;
Isotta et al., 2014). Changing precipitation patterns mainly reflect windward—leeward
effects (and therefore wind direction) rather than just variations by altitude. Studies have
also explicitly linked variations in snow distribution, timing and depth over mountains to
atmospheric circulation patterns, based on both observational data and climate models
(Brown & Petkova, 2007; Letcher & Minder, 2018; Matiu et al., 2020). This shows the role
of different atmospheric drivers in determining mountain precipitation patterns (e.g.,
position of blocking highs, strength of the North Atlantic Oscillation). Thornton et al.
(2021, their Fig. 2) collate together all of the different mountain climate variables that are
changing under anthropogenic climate change, that were identified according to an
evaluation by experts undertaken through a Delphi process. Based on the classification of
answers received from the expert panel (n = 837), 26.9% of answers correspond to the
atmosphere alone (i.e., aerosols, greenhouse gases), 14.0% to the biosphere, 12.6% to the
cryosphere, and 10.7% to the hydrosphere (classifications made by Thornton et al., 2021,
calculations made from their Supplementary File S1). The modal class of answers
(35.7%) corresponds to items such as precipitation, temperature and albedo that integrate
all four ‘spheres’. This highlights that ongoing anthropogenic climate change is affecting
many different elements of mountain climates.

Globally, mountain systems are currently undergoing rapid, significant and likely
permanent change (Gerrard, 1991; Marston, 2008; Messerli, 2012; Hock et al., 2019b;
Thornton et al., 2021). These changes are manifested in the physical properties of
mountains and their dynamic behaviour, including mountain climate, geomorphology and
ecosystems, and are described below. For example, decreases in mountain glacier volume
and extent over the last decades are unprecedented in the wider context of the late
Holocene (Zemp et al., 2015; Cogley, 2016; Beniston et al., 2018; Veettil & Kamp, 2019).
Changes in mountain glaciers as a result of anthropogenic climate change have potential to
impact on the workings of mountain physical systems as a whole (Adler et al., 2022)
and to give rise to severe negative impacts on people and the environment through hazards
and changes in environmental resources and services (Muccione, Salzmann & Huggel,
2016; Klein et al., 2019). In addition, the effects of climate change in mountains can also be
amplified by different human activities taking place in these sensitive environments,
such as agriculture, urbanization, land use change, mining and tourism (Hossain et al.,
2020; Payne et al., 2020). This highlights that appropriate management and adaptation
strategies to reduce risk and impacts are critical to sustainable human activity in
mountains.

Mountains also represent important scenic and heritage landscapes because of the
common presence of rare ecosystems, endemic species, and indigenous communities and
cultural practices (Debarbieux & Price, 2008, 2012; Rasul & Molden, 2019; Chakraborty,
2021; Thornton et al., 2021). The close genetic relationship between these properties means
that mountains can be considered as integrated biosystems, describing the interplay of
climate, physical processes, ecosystems and people (e.g., Nowak, Nowak & Nobis, 2014;
Stanisci et al., 2016; Allegrezza et al., 2017). Globally, these biosystems are now operating
beyond their natural planetary boundaries because of their sensitivity to radiative
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forcing and their land surface feedbacks in response to forcing (Nogués-Bravo et al., 2007;
Pepin & Lundquist, 2008; Huggel et al., 2010). Direct human interventions in mountains
such as by agriculture and infrastructure development can also lead to these systems
experiencing feedbacks, such as where land use change and deforestation results in
enhanced soil erosion (Arnaud et al., 2016; Berteni & Grossi, 2020). Recognising this, the
United Nations’ “International Year of the Mountains” was declared in 2002 (Ives &
Messerli, 1999), and the “International Year of Sustainable Mountain Development” was
declared in 2022 (Romeo, Manuelli & Abear, 2022).

The concept of sensitivity is also important when considering the present and future
responses of mountain systems to climate change and other anthropogenic forcings.
Climate sensitivity is a concept used in climate models and refers to the atmospheric
temperature response to changing levels of atmospheric CO2 (Shindell, 2014). A variant of
this concept, termed equilibrium climate sensitivity (ECS), refers to the temperature
response that arises as an outcome from the operation of Earth’s geomorphological,
hydrological and biological systems, following forcing by CO2 (Knutti, Rugenstein &
Hegerl, 2017). ECS is therefore a more accurate reflection of the integrated Earth system
response to anthropogenic climate forcing (Knight & Harrison, 2013), and this concept can
be applied to understand how the mountain cryosphere, hydrosphere and biosphere
(as defined in mountains by Thornton et al., 2021) respond to anthropogenic climate
forcing. Broadly, higher sensitivity means that a system responds more quickly and
dynamically to forcing; lower sensitivity means a system responds more slowly or with a
more subdued expression (Previdi et al., 2013). Several studies have examined the
sensitivity of the mountain cryosphere (snow, glacier ice, permafrost) (Knight & Harrison,
2022). The sensitivity of snow is measured according to its heat balance effects (albedo)
using the units W m−2 K−1. The sensitivity of glaciers is measured in terms of mass balance
change using the units m w.e. (water equivalent) yr−1 K−1. Lowland permafrost sensitivity
is usually measured through km2 area change per K−1 but the same approach is less
meaningful for mountain permafrost because of the varying relief, altitude and hypsometry
of different mountains (Slater & Lawrence, 2013). Thus, the concept of sensitivity of the
mountain cryosphere is multifaceted with the major control being temperature but
precipitation and the properties of the land surface also being important. Sensitivity of the
mountain hydrosphere is usually described in terms of changes in river runoff in response
to climate change (including temperature, precipitation, and snow/ice melt) (Shi &
Durran, 2014; Zhang et al., 2020). Different measures of this ‘sensitivity’ have therefore
been used, including peak, seasonal or annual discharge variations, varying snow/glacier
melt contributions, timing of peak flow, groundwater recharge etc. (e.g., Barnhart, Tague
& Molotch, 2020; Zhang et al., 2020). This means that calculations of hydrosphere
‘sensitivity’ are location-specific and may not be comparable to other mountain river
systems. Changes in water availability on steep mountain slopes, along with ongoing
glacier retreat and paraglacial relaxation, has implications for mass movements, soil
erosion and fluvial sediment yield, termed geomorphological sensitivity (Knight &
Harrison, 2013, 2014, 2018; Rathburn, Shahverdian & Ryan, 2018). This is associated with
land surface (geomorphological) change and geological hazards. Geomorphological
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sensitivity in mountains has commonly been evaluated through reconstructing the timing
and magnitude of past hazard events using dating, sedimentary and geomorphological
evidence (Keiler, Knight & Harrison, 2010; Fischer et al., 2012; Kirschbaum, Stanley &
Zhou, 2015), but this evidence may not be present in all mountains, and not every
mountain block has been studied in this way. This means there is incomplete
understanding of mountain geomorphological sensitivity. Several studies have examined
the responses of plant ecosystems or individual species to climate change in mountains,
mainly in terms of bioclimatic niches and extinction risk based on future climate scenarios
(e.g., Chakraborty, Joshi & Sachdeva, 2016; Dagnino et al., 2020; Xu et al., 2020).
The results of such studies of biosphere sensitivity focus on changes in net primary
productivity and phenological patterns across mountains and identifying potential
changes in areal extent and species range for the specific mountains examined.
Quantitative modelling approaches using different spatial and temporal ecological datasets
across large regions have also been developed (Gao, Jiao & Wu, 2018; Kling et al., 2020)
but these have not been widely applied to mountains, especially at a smaller scale.
The role of direct human activities on mountain ecosystems through agriculture,
urbanization and invasive species has not been considered in these models.

This overview of mountain system sensitivity highlights several key points: (1) The
different physical elements that are present within mountains (snow/ice, mountain
slopes/soil, vegetation) exhibit different sensitivities to climate as well as likely to other
environmental and anthropogenic forcings, although this is not fully understood;
(2) ‘sensitivity’ of these different elements is interpreted and quantified in different ways,
meaning that deriving an overview of the sensitivity of any mountain system in totality is
problematic; (3) it is not always clear how these mountain elements are going to evolve
under future climate change, given their varying sensitivities to forcing; and (4) human
activities taking place in mountains is already changing—and will continue to
change—different mountain elements, which means that their calculated sensitivities to
climate forcing may bear little relation to their actual future changes, if human activity is a
more dominant control on their dynamics. Mountains are thus complex integrated
systems and may respond to future climate change in ways that are not fully understood or
which have low predictability. This has implications for identifying and managing future
risks associated with hazards, water supply, and ecosystem and cultural services.

Various lines of evidence, described below, from mountain blocks worldwide reveal the
impacts of anthropogenic climate change on mountain processes, properties and
communities. This study presents a Warning to Humanity on the negative and likely
irreversible impacts of anthropogenic climate change on mountain environments
worldwide. This is informed by evidence of contemporary and past changes in mountain
systems, and by climate model outputs reported in the literature that predict future
changes in precipitation, temperature, snow and permafrost properties, and glacier mass
balance. These then in turn have implications for mountain biophysical processes,
ecosystems, resource types and availability, and human activity. A significant result of the
analysis in this study is that mountain systems are confirmed to be highly vulnerable, and
thus exhibit high sensitivity, to anthropogenic climate change and that, from almost all
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perspectives, negative outcomes to the physical and human environments are anticipated,
and are indeed already taking place.

This study identifies and discusses the impacts of climate change on four key
properties of mountain systems (including aspects of human activity), which provides an
interpretive framework for a better understanding of mountain system evolution in the
Anthropocene. The specific terms used in this study focusing on hazards, risk and
resilience follow IPCC Assessment Report 5 definitions (IPCC, 2014).

SURVEY METHODOLOGY
Much work on mountains globally is site-specific and often deals with only certain aspects
of the biophysical environment, in particular the changing cryosphere. There are fewer
studies that have focused on mountain communities and their use of environmental and
climate-related resources. However, relationships between different mountain system
elements have not been examined in detail, from either individual mountain blocks or
from across different climatic or geologic settings. This is a limitation in identifying
globally-applicable relationships between mountain system elements, and thus in building
biophysical system models to explain the impacts of climate forcing. The aim of this study
is to integrate evidence from examples globally on mountain system properties and
dynamics, and derive an overarching analysis of mountains as biophysical systems.
To achieve this, relevant peer-reviewed published literature was identified from ISI Web
of Science using the search term of “mountain systems” and then the results refined
based upon the search term “climate change”. The resulting literature was included
where it considered relationships between different mountain properties as developed
in specific case studies. Therefore, the literature examined focuses on quantitative studies
that examine the cause-and-effect relationships between mountain properties. The
co-relationships between different mountain properties, and their dynamics, are then used
in this study as the basis for developing a new socio-biophysical model for mountain
systems. This provides a powerful way of conceptualizing both the integrated workings of
mountain systems, and the potential sensitivity of these systems to climate forcing in the
Anthropocene, and thus why this sends aWarning to Humanity of climate change impacts
on mountain environments.

RESULTS
From the Web of Science literature search, 464 individual articles were identified using the
search term “mountain systems” (Table 1), and 39% of all these papers were published in
the last 5 years (2018–2022). The earliest publications including such a term date from
1961. A similar temporal pattern is seen with the search terms “mountain systems” and
“climate change” where 44% of all papers come from the last 5 years. It is notable that
in all instances there is a big increase in the number of studies on mountain systems in the
last 15 years (2008–2022; Fig. 1). These publications were also examined for their Web of
Science category of academic discipline (Table 2). Although this classification is only
indicative, it shows that the most common academic fields of “mountain systems” are in
ecosystems (Ecology/Plant Sciences/Zoology/Biodiversity Conservation; cumulatively 31%
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Table 1 Literature search results from the Web of Science (accessed 30 July 2022) using different
search terms, according to year of publication (see Fig. 1). The earliest items appearing in the
search results were published in 1961.

Year of publication Web of Science category
for the search term
“mountain systems”

Web of Science category for
the search term “mountain systems”
and “climate change”

2022 18 6

2021 50 24

2020 37 11

2019 41 11

2018 36 8

2017 26 7

2016 29 8

2015 22 5

2014 23 8

2013 9 2

2012 23 4

2011 12 1

2010 17 6

2009 17 5

2008 14 4

2007 23 2

2006 9 0

2005 1 0

2004 8 0

2003 5 0

2002 2 0

2001 3 0

2000 5 0

1999 3 0

1998 4 0

1997 4 0

1996 3 0

1995 6 1

1994 1 1

1993 3 0

1992 2 0

1991 2 0

1990 0 0

1989 0 0

1988 0 0

1987 1 0

1986 0 0

1985 0 0

(Continued)
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if the total), the physical landscape (Geosciences Multidisciplinary/Geography Physical;
cumulatively 15% of the total), and Environmental Sciences (11%). Including the search
term “climate change”, a slightly different pattern emerges with, in percentage terms, a
greater emphasis on Ecology, Environmental Sciences, Biodiversity Conservation,
Meteorology Atmospheric Sciences, and Environmental Studies (Table 2). This shows the
greatest areas of research interest in climate change in mountains, focusing on climate
patterns/predictions and ecosystem responses. Only in Plant Sciences is there significant
under-representation with “climate change” (3.7%) compared to without it (6.7%).
Based upon the literature search results, four major mountain properties are identified

Table 1 (continued)

Year of publication Web of Science category
for the search term
“mountain systems”

Web of Science category for
the search term “mountain systems”
and “climate change”

1984 0 0

1983 0 0

1982 0 0

1981 1 0

1979 1 0

1978 0 0

1977 0 0

1976 0 0

1975 1 0

1961 2 0

Total 464 114

0
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20

30

40

50

1960 1970 1980 1990 2000 2010 2020

Year of publica�on

snoitacilbupforeb
mu

N

“Mountain systems”
“Mountain systems” and “climate change”

Figure 1 Graph showing the number of published articles from the Web of Science database
(accessed 30 July 2022) according to year of publication, using different search terms.

Full-size DOI: 10.7717/peerj.14253/fig-1
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according to the dominant focuses of individual research studies (glaciers and permafrost
related to the mountain cryosphere; mountain hazards and risk; mountain ecosystems;
mountain communities and infrastructure). These properties and their dynamics are now
discussed.

Table 2 Categorisation of search results from the Web of Science database (accessed 30 July 2022). Note that individual published articles in the
database may be classified under several categories. Categories with fewer than five and three published articles for “mountain systems”, and
“mountain systems” and “climate change”, respectively, are not included in the table. Items in italics indicate where there is a significantly higher
value recorded between the two columns of results.

Web of Science categories Web of Science category for the search
term “mountain systems” (% of total)

Web of Science category for the search term
“mountain systems” and “climate change” (% of total)

Ecology 102 (13.7%) 36 (16.8%)

Environmental sciences 79 (10.6%) 39 (18.2%)

Geosciences multidisciplinary 58 (7.8%) 16 (7.5%)

Geography physical 54 (7.2%) 15 (7.0%)

Plant sciences 50 (6.7%) 8 (3.7%)

Evolutionary biology 46 (6.2%) 13 (6.0%)

Zoology 44 (5.9%) 6 (2.8%)

Biodiversity conservation 35 (4.7%) 16 (7.5%)

Multidisciplinary sciences 28 (3.7%) 6 (2.8%)

Meteorology atmospheric sciences 27 (3.6%) 11 (5.1%)

Biochemistry molecular biology 16 (2.1%) 3 (1.4%)

Geography 16 (2.1%) 5 (2.3%)

Entomology 14 (1.9%)

Forestry 14 (1.9%) 4 (1.8%)

Genetics heredity 14 (1.9%)

Soil science 13 (1.7%)

Water resources 13 (1.7%) 6 (2.8%)

Environmental studies 10 (1.3%) 8 (3.7%)

Geochemistry geophysics 10 (1.3%)

Biology 9 3 (1.4%)

Ornithology 7

Geology 6

Green sustainable science technology 6 3 (1.4%)

Marine freshwater biology 6

Oceanography 6

Imaging science photographic technology 5 3 (1.4%)

Remote sensing 5

(Other categories) 52 (7.0%) 13 (6.0%)

Total 744 214
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The mountain cryosphere

Mountain glaciers
As a consequence of global warming, mountains glaciers worldwide including ice caps,
valley and cirque glaciers are undergoing a trajectory of enhanced melt and thus negative
mass balance over recent decades (e.g., Cogley, 2016; Azam et al., 2018; Cao et al., 2019;
Ding et al., 2020). The result of this can be seen through (1) long-term changes in glacier
area or spatial extent; (2) changes in glacier volume as expressed through mass balance;
and/or (3) changes in glacier dynamics, as evidenced by oscillations of the glacier margin.
As such, glacier responses to climate forcing can be diverse, and expressed differently
according to topographic setting, elevation, climate, and glacier size. Mountain glaciers are
generally sensitive to temperature changes due to their relatively small size and steep
surface gradient (Bach, Radić & Schoof, 2018; Bolibar et al., 2022). This is because subtle
variations in temperature, driving glacier mass balance, can result in changes in the
position of the equilibrium line altitude (ELA) which, globally, is rising due to climate
change (Six & Vincent, 2014; Lorrey et al., 2022). Vargo et al. (2020) used glacier mass
balance modelling of glaciers in the Southern Alps (New Zealand), based on temperature
and precipitation outputs from climate models. They showed that anthropogenic climate
forcing increases the likelihood of extreme glacier mass loss by six to 10 times. Several
studies have also projected glacier ELA and thus mass balance responses across mountain
blocks (e.g., Liu et al., 2019; Žebre et al., 2021; Lorrey et al., 2022) but in detail these
responses are highly spatially variable. This may reflect both differing sensitivity of climate
by ice masses of different sizes (Bach, Radić & Schoof, 2018), but also microclimate effects
which are particularly significant in areas of high local relief such as mountains (Rankl,
Kienholz & Braun, 2014; Six & Vincent, 2014). This is highlighted by cryospheric models
that suggest an over-reliance on temperature as a forcing factor in mountain glacier
response (Bolibar et al., 2022), rather than consider system feedbacks such supraglacial
debris cover, snow depth, and wind-transported snow as factors influencing glacier mass
balance (Dobhal, Mehta & Srivastava, 2013). Although mountain glaciers have responded
to climate changes throughout the Holocene, monitoring using field and remote sensing
data over recent decades shows the imprint of global warming on the state of the mountain
cryosphere (e.g., Banerjee & Shankar, 2013; Huss et al., 2017; Beniston et al., 2018; Hock
et al., 2019b; Gärtner-Roer et al., 2019). Such studies also highlight the spatial and temporal
variability of mountain glacier responses depending on their altitude, aspect, size and ELA
(Dehecq et al., 2019). This is also reflected in future modelled projections of glacier volume
and area change that show, for example, that different sectors of Tibetan Plateau
mountains have projected volume loss rates of −0.06 to −1.90% yr−1, and area loss rates of
−0.21 to −1.85% yr−1 between 2000 and 2050 (Zhao, Ding & Moore, 2014).

Many regional studies of historical mountain glacier changes, using a combination of
field and remote sensing data, have been undertaken. These studies can inform on the
rate and style of glacier change and link these derived parameters to climate forcing or
coeval changes in environmental regimes in the local area. For example, Landsat and
Sentinel-2 data in the Bolivian Andes show glacier area reduction of 51% between 1975
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and 2016 (1.20% yr−1), with the least change recorded for glaciers located above 5,500 m
asl (Veettil et al., 2018). This compares with a decrease in glacier area by an average of
−0.57% yr−1 (1960–2010) over High Mountain Asia, but with high spatial variability with
some 65% of datapoints statistically identical to zero change (Cogley, 2016). In the
western Himalayas region (1977–2016) Landsat data show that the snow line elevation
increased by 116 ± 17 m, glaciers decreased in area (by 6.25 ± 0.0012% or 0.16% yr−1),
average glacier snout recession rate increased (from 16 ± 3.4 m yr−1 in 1977 to 23 ± 3.4 m
yr−1 in 2016), and glacier debris cover area increased by 80% (Shukla et al., 2020).
In the Karakoram, Landsat data (1976–2012) show that 79% of glacier termini were stable,
5% advanced, 8% retreated, and 8% belong to oscillating (surging) glaciers (Rankl,
Kienholz & Braun, 2014), confirmed by more recent mass balance studies (Farinotti et al.,
2020). Glaciers across China show a long-term average mass balance decrease of
−0.0135 m w.e. yr−1 (1960–2019) with the longest (1959–2019) record from Urumqi
Glacier No. 1 showing a decrease of −0.0142 m w.e. yr−1 (Su et al., 2022). All these values
were statistically significant (p < 0.0001). By contrast, for High Mountain Asia as a whole
based on ASTER DEMs, average glacier mass balance change in the period 2000–2016 was
−0.18 ± 0.04 m w.e. yr−1 (range +0.14 to −0.62 m w.e. yr−1) (Brun et al., 2017). These
studies provide a snapshot of individual glaciers, over different time periods and using
different methodologies but implications of the trajectories of glacier change for the wider
mountain environments of these localities are not commonly discussed.

These studies and others highlight that responses of individual glaciers to climate
change in different mountain massifs are highly variable, likely due to microclimate effects
and feedbacks (Huss & Fischer, 2016; Azam et al., 2018; Baldasso et al., 2019; Carturan,
Rastner & Paul, 2020). Mutz & Aschauer (2022) show that the mass balance of different
Andean glaciers is statistically related to different climatic variables including temperature,
precipitation (both seasonal and annual), El Niño–Southern Oscillation and the
Antarctic Oscillation, depending on glacier location. In addition, changing debris cover
(thickness, debris size, distribution) is a critical influence on albedo and insulation effects,
which can lead to marked reductions in glacier mass loss and frontal dynamics (Banerjee &
Shankar, 2013; Dobhal, Mehta & Srivastava, 2013). These factors highlight that glacier
mass balance does not solely reflect climate forcing because of the role of antecedent and
geological factors. The multidecadal response times of many mountain glaciers also
mean that they are likely out of mass balance equilibrium with prevailing climate,
irrespective of their sensitivity to climate forcing (Christian, Koutnik & Roe, 2018).
However, other studies have described a more deterministic relationship of mountain
glaciers to temperature (Bolibar et al., 2022), with Geyman et al. (2022) showing—based on
historical photogrammetry—a mass balance response of −0.28 m yr−1 per 1 �C
temperature rise of Svalbard glaciers. Responses of mountain systems to deglaciation
under climate change fall within the frame of paraglacial process regimes, and the nature of
these responses in terms of slope and fluvial sediment yields have been examined from
both late Quaternary and Anthropocene examples (e.g., Cossart & Fort, 2008; Scapozza,
2016). Such studies highlight that mountain systems undergo very rapid changes
associated with ice retreat, and that these impacts are wide ranging with respect to
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ecosystems, geohazards, and mountain water and sediment yield (Knight & Harrison,
2014). Land surface models also show the changing sensitivities of glaciers, permafrost and
mountain landforms to forcing through the paraglacial period, and this can help explain
why mountain system responses to climate change may vary over time and space (Knight
& Harrison, 2018). Field data, however, are not always interpreted in the context of such
theoretical insights.

Climate models and historical trajectories of glacier mass loss have also been used to
consider where, how and when mountain glaciers are likely to become functionally
inactive, or melt completely, and the rate of water equivalent loss, under different climate
change scenarios. For example, Hock et al. (2019a) used the four standard IPCC
representative concentration pathways (RCPs) in order to consider regional glacier
responses to future temperature patterns from 25 different GCMs. The predicted mass loss
from different regions varies significantly according to glacier extent and type (lowland
ice sheet vsmountain ice cap or cirque/valley), but all RCP scenarios show similar patterns
until the mid-21st century after which these patterns diverge. The models also predict a
high glacier mass loss (commonly ~60–>90%) for many mountain blocks worldwide by
2100 under the RCP8.5 emissions scenario. A similar approach with similar results was
also used by Shi et al. (2020) for the Tibetan Plateau.

Based on a global temperature rise of 1.5 �C by 2100 using Coupled Model
Intercomparison Project Phase 5 (CMIP5) outputs and RCP2.6, high Asian mountains are
predicted to warm by 2.1 ± 0.1 �C and result in a 36 ± 7% total mass loss (Kraaijenbrink
et al., 2017). Values for other RCP scenarios are much higher, but with temperature
and mass loss responses varying across different mountain sectors (ibid). More detailed
regional studies also show complex glacier responses, such as in the European Alps where
mountain glacier slope, topographic setting and debris cover control sensitivity to climate
forcing (Huss & Fischer, 2016; Žebre et al., 2021). Such field data are confirmed across
wider regions through monitored reference glaciers of the World Glacier Monitoring
Service (https://wgms.ch/). These data show continuous mass balance loss in all global
regions and at a rate that has increased over time (since 1950), to a volume of 0.98 m
w.e. yr−1 and 0.77 m w.e. yr−1 in 2019/20 and 2020/21, respectively. Glaciological and
climate models have also been used to predict the fate of individual glaciers. For example,
modelling of Austre Lovénbreen, Svalbard, suggests rapid area and mass balance decrease,
and highest meltwater yield, in the middle of the 21st century, with the glacier wholly
gone by 2120 (Wang, Lin & Ai, 2019). There are similar results using different RCP
scenarios for Great Aletsch Glacier, Switzerland (Jouvet & Huss, 2019). However, such
projections often use different model scenarios, different temporal starting points, and
different input parameters and trajectories of temperature and precipitation. This means
that such results may not be easily comparable. In addition, if there are glaciers of different
sensitivities, then there may be a range of future glaciological responses (Carturan,
Rastner & Paul, 2020; Bolibar et al., 2022) but these factors are not fully considered with
respect to impacts on wider mountain systems.
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Mountain permafrost
Mountains worldwide already show increased permafrost temperatures, both in the
near-surface and at depth (Harris et al., 2003; Liu et al., 2017; Severskiy, 2017).
Sensitivity analysis of arctic permafrost to warming suggests areal changes of 4.0 +
1.0/−1.1 million km2 per 1 �C of warming (Chadburn et al., 2017). The sensitivity of
mountain permafrost to climate forcing is more difficult to establish because of mountains’
steep and topographically complex environments and microclimates. However, sensitivity
analysis from finite element modelling highlights the roles of snow depth and mean annual
air temperature (Luetschg, Lehning & Haeberli, 2008) and subsurface ice content and
temperature (Noetzli et al., 2007; Scherler et al., 2013) on mountain permafrost stability.

Different field, remote sensing and modelling studies show the varied distributions and
properties of permafrost in areas such as the European Alps (e.g., Boeckli et al., 2012;
Deluigi, Labiel & Kanevski, 2017; Kenner et al., 2019) and the Tibetan Plateau/Himalayas
(Gruber et al., 2017; Liu et al., 2017; Gao et al., 2021). Variations in active layer thickness
and subsurface temperatures are key indicators of permafrost degradation used in
monitoring studies (e.g., Hanson & Hoelzle, 2004; Pogliotti et al., 2015; Kellerer-Pirklbauer,
2019). Several studies also show that permafrost distributions and properties are
influenced by local-scale and site-specific slope properties including subsurface moisture
content, debris size, slope aspect, length and backwall height (e.g., Noetzli et al., 2007;
Kellerer-Pirklbauer, 2019). There are also differences between active and relict permafrost,
identified according to whether the slope is or is not undergoing creep, largely related to
moisture availability rather than temperature. Therefore, the factors contributing to
permafrost instability under climate change is more complex than just temperature forcing
alone (Pogliotti et al., 2015; Gruber et al., 2017), and permafrost system sensitivity must
therefore be set in a topographic and geomorphic context (Verleysdonk, Krautblatter &
Dikau, 2011). In addition, information on permafrost thickness, distribution and
temperature regime is unknown or is poorly reported in many mountain blocks
worldwide, including in Africa, South America and the Middle East. This is a limitation on
projections of future permafrost change and their impacts on some mountains, including
the loss of geoheritage. Particular attention has also been paid to the monitoring of
permafrost within rock bodies, in particular steep rock walls where permafrost degradation
can result in rock slope failure (Gruber & Haeberli, 2007; Bodin et al., 2017; Keuschnig
et al., 2017). This also includes the development of rock glaciers, formed as a result of
interstitial permafrost or glacier ice present within a coarse clastic matrix (Knight,
Harrison & Jones, 2019). Rock glaciers represent a distinctive signature of cryosphere
decay in mountains, and these landforms are projected to increase in number and
significance upon deglacierization in the Anthropocene (Knight & Harrison, 2014; Knight,
Harrison & Jones, 2019).

The outcomes of climate warming on mountain permafrost include a rise in the lowest
elevations at which permafrost is found; permafrost thinning and disaggregation; warming
subsurface temperatures and thickening active layer; decreasing slope stability and
increasing mass movement hazards (Gude & Barsch, 2005; Fukai et al., 2007;
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Bonnaventure & Lamoureux, 2013). The precise nature of permafrost responses depends
on its depth, distribution and temperature. Under different RCP scenarios using the
CMIP5 climate model, active layer thickness across northern hemisphere cold regions to
2100 is projected to increase between 0.77 ± 0.08 cm decade−1 (RCP2.6) and 6.51 ± 0.07 cm
decade−1 (RCP8.5) (Peng et al., 2018). Irrespective of future warming rates, these
projections are all significantly higher than reconstructed historical rates of 0.57 ±
0.04 cm decade−1 for the period 1850–2005 (ibid). In the Tibetan Plateau, CMIP5
modelling suggests permafrost area will decrease by 10.5% and 32.7% by 2040 and 2070,
respectively, under the RCP8.5 scenario (Chang et al., 2018). Permafrost in the northwest
Tibetan Plateau is likely to be most resilient to climate warming. More recent CMIP6
modelling using the updated IPCC shared socioeconomic pathway (SSP) 5–8.5 (equivalent
to RCP8.5) suggests permafrost temperature in the Tibetan Plateau will increase by 2.6 ±
0.3 �C and active layer thickness by 3.0 ± 1.0 m by 2100 (Zhang et al., 2022). Based on a
downscaled regional climate model (RCM), frost frequency in the Mont Blanc massif
(French Alps) to 2100 is predicted to significantly decrease by 30–50%, depending on
altitude, with implications for the rate and efficacy of physical weathering, permafrost
melt, and land surface stability (Pohl et al., 2019). Similar future climate impacts on
permafrost on other mountain massifs elsewhere in the world are not well understood.

Mountain geohazards and risk
Mountains generally are areas of high hazard risk because of their common co-location
with earthquakes and volcanoes, their steep slopes, harsh climate, and presence of snow
and ice (Korup & Clague, 2009; He et al., 2012). This creates a challenging biophysical
environment for human activity. Apart from geophysical hazards that are unrelated to
climate, the melting of glaciers, permafrost and snow gives rise to land surface instability
and mass movement hazards (Keiler, Knight & Harrison, 2010; Ding et al., 2020;
Kirschbaum et al., 2020). Several studies have shown how these cryospheric hazards,
individually and in combination, have been amplified in number and magnitude as a result
of global warming (e.g., Stoffel, Tiranti & Huggel, 2014; Harrison et al., 2018; Ding et al.,
2020; Stuart-Smith et al., 2021). However, there is significant spatial and temporal
variability in such patterns (e.g., Schlögl et al., 2021; Heiser et al., 2022). A negative glacier
mass balance, resulting in increased meltwater yield, can give rise to a range of land surface
instabilities and geohazards. For example, runoff and sediment fluxes in the Tuotuohe
River (part of the Yangtze River, Tibetan Plateau) increased by 135% and 78% from
1985–1997 to 1998–2016, respectively, as a result of enhanced cryosphere melt and
increased precipitation (Li et al., 2020). Ouflowing rivers from deglacierizing catchments
show an increase in discharge as a result of this higher water availability (Juen, Kaser &
Georges, 2007; Tahir et al., 2011; Li et al., 2020). Further, this leads to changes in seasonality
of maximum annual floods, with spring discharge corresponding to snowmelt freshets,
and summer discharge corresponding to maximum glacier melt. Observation and
modelling studies have been used to identify and then decouple different mountain water
sources contributing to outflowing river discharge, and changes in total discharge over
time and space and the balance between different water sources (Chen et al., 2017;
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Sanmiguel-Vallelado et al., 2017). This is because water availability may correspond to both
melting glaciers and changes in precipitation regimes. Catchment and hydrological
modelling studies show that cryosphere changes in addition to climate-driven changes in
rainfall seasonality affect discharge patterns of mountain rivers, contributing to hazard
risk (Huss et al., 2010;Mallucci, Majone & Bellin, 2019). Detection and attribution studies
can inform on how these controls may change over time and space (Mallucci, Majone &
Bellin, 2019). Glacial melting can also lead to the development of proglacial lakes and
glacial lake outburst floods (GLOFs) (Harrison et al., 2018; Khadka, Zhang & Thakuri,
2018; Stuart-Smith et al., 2021). In Nepal, proglacial lakes have increased in number
(by 181%) and area (by 82%) between 1997 and 2017 as a consequence of climate change,
but these lakes vary significantly in their evolutionary trajectories depending on their
elevation, topography, glacier size and local climate (Khadka, Zhang & Thakuri, 2018).
GLOF size and recurrence interval likely show a lagged relationship to climate forcing
(Harrison et al., 2018), although this has not been fully explored. GLOFs have been noted
from several mountain blocks worldwide, and their potential for geohazard risk has been
examined (Ahmed et al., 2021; Veettil & Kamp, 2021).

Glacier retreat and permafrost melting in combination lead to unstable land surfaces
and enhanced mass movement activity. This genetic relationship has been noted from
several mountain massifs (Sattler et al., 2011; Fischer et al., 2012; Haeberli, Schaub &
Huggel, 2017) where several mass movement types can result, including landslides, rock
slope failures, debris flows, colluvial fans and terraces, scree and talus, and rockfall.
First, glacier melt leads to increased number and/or magnitude of flood events within
mountain catchments, and this pattern has been noted with respect to climate forcing over
different timescales and affecting glacier and snowpack melt regimes (Yao et al., 2007;
Schulte et al., 2015). In the Himalayas, river hydrology varies spatially according to the
contribution of monsoon rainfall, snow or glacier melt to river discharge, and this
meltwater contribution also varies throughout the year (Qazi et al., 2020). Increased water
availability on and beneath the land surface can then lead to rockfalls, landslides,
debris/mudflows (He et al., 2012; Stoffel, Tiranti & Huggel, 2014; Kirschbaum et al., 2020),
or avalanches within thicker or warmed snowpacks (Muntán et al., 2009). Analysis of
dated mass movements of different types through the period of the European Little Ice
Age (LIA, ~1550–1850 AD) shows that landslides are more common earlier in the LIA
(~1660 AD), with the peak of avalanche events being later (~1720 AD) and rockfalls later
still (~1740 AD) (Knight & Harrison, 2013). This may be indicative of these different
mass movements having different sensitivities to forcing, and thus being triggered by
different environmental conditions. This is an important consideration for predicting
when and/or where certain mass movements may be found in present mountain
environments. Bayesian analysis of debris flows in the French Alps shows that climatic and
environmental variables explain 44% and 33% of variance, respectively (Jomelli et al.,
2015). A time series of rockfall events in Austria does not show a close relationship to
temperature and thus climate, but there is a spring peak in rockfall that likely corresponds
to subsurface ice melt at the end of the winter season (Sass & Oberlechner, 2012). However,
mass movements can also be generated by individual weather events such as the 2003
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European heatwave and 2005 floods (Gruber, Hoelzle & Haeberli, 2004; Keiler, Knight &
Harrison, 2010; Bodin et al., 2017). These extreme weather events are predicted to become
more common under global warming, especially over mountain regions (Huggel et al.,
2010; Ding et al., 2020; Thornton et al., 2021; Adler et al., 2022).

Mountain ecosystems and services
Mountain (alpine) ecosystems are strongly climatically controlled by direct forcing of
mountain temperature and precipitation regimes, and indirectly through climatic
influence on soils. As such, mountain ecosystems and ecosystem services are sensitive to
climate and environmental disturbance and change, including by human activity
(Löffler et al., 2011; Elkin et al., 2013; Mina et al., 2017; Wei et al., 2022). The different
physical properties of mountains, including their elevation and remoteness, also provide
different ecological niches and can favour endemics. In detail, many mid-latitude
mountains that were affected by Pleistocene glaciations have present-day ecosystems that
can be considered as ice age relicts or refugia, in which cold-climate ecosystems occupy
small environmental niches at the tops of mountains that are particularly climatically
sensitive (e.g., Muellner-Riehl, 2019). Progressive warming, whether from the lateglacial
into the Holocene or during the Anthropocene, results in distinctive trajectories of climate
and environmental change on mountains that have implications for ecosystems (Löffler
et al., 2011). These include an upslope migration of isotherms, increased number of degree
days available for plant growth, longer summer growing season, warmer ground surface
temperatures, enhanced biogeochemical cycling, decreased number and intensity of
frost days, changes in snowline/treeline position, reduced snow cover thickness and
duration, and changed river discharge patterns and water quality (affecting aquatic
ecosystems) (Gonzalez et al., 2010; Cauvy-Fraunié & Dangles, 2019; Losapio et al., 2021).
These climatic changes then have implications for associated environmental regimes such
as soil development and slope stability (Perrigo, Hoorn & Antonelli, 2020). Several studies
also show there is a close correspondence between glacier retreat (Cauvy-Fraunié &
Dangles, 2019), and permafrost warming as triggers for the altitudinal spread of plant
species and thus mountain ecosystem development (Wei et al., 2022).

Detailed analysis shows that different mountain species and biomes exhibit different
responses to climate change (Thapa et al., 2016; Albrich, Rammer & Seidl, 2020; Losapio
et al., 2021). This includes range shifts and changes in phenology. Most work has been
done on forests, because of their implications for carbon (C) storage and timber harvesting
in mountains, their role as habitats for other plant and animal species, and their role in
land surface stabilisation. Studies on forest biome responses to climate forcing have mainly
focused on temperature rather than precipitation (e.g., Fischlin & Gyalistras, 1997; Jochner
et al., 2017). It may be that the functional water balance is more important in certain
altitudinal ranges but that this is more strongly moderated by site-scale topography rather
than precipitation alone (Albrich, Rammer & Seidl, 2020). Climate model projections
show that, although there is an upward increase in treeline position and thus a general
upward zonal migration of alpine forests (Lamsal et al., 2017), this should not be
considered as a simple deterministic response to climate warming. This is because it does
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not account for other factors determining biome responses, such as the role of species’
competition, differential species’ vagility, invasive species, and steeper slopes, thinner soils
and increased windiness with elevation, and direct human impacts on land cover types.
Differential mobility and adaptive capacity of individual species undergoing climate
forcing can result in changes in the overall composition of mountain plant communities
and, more widely, of food webs (Malanson et al., 2019). This then poses problems for
the ability of entire biomes to respond to climate change with, for example, individuals at
the lowest altitudinal range limits being most vulnerable to climate change but exhibiting
different inter-species dynamics than those elsewhere within the geographical range
(Hampe & Petit, 2005; Iglesias et al., 2018). Likewise, ecosystem services in mountain
regions are not well understood compared to other environments (Palomo, 2017;Mengist,
Soromessa & Legese, 2020). These ecosystem services may include different biological
functions such as gene flow (Fady et al., 2008) and C storage (Millar et al., 2017); economic
functions; and regulatory and cultural services (Mina et al., 2017; Seidl et al., 2019). There
is less understanding of human interactions with mountain ecosystems when compared
with other mountain environmental resources such as water.

Climate models have been used in order to predict future mountain climates and, from
this, to use ecological models to examine variations in biome spatial area, ecosystem
composition, C storage, disease/pathogen spread, and the viability of certain endangered or
invasive species (Fischlin & Gyalistras, 1997; Elkin et al., 2013). Key questions going
forward focus on the role of detailed mountain topography and therefore
micro-environmental niches for species migration routes (Perrigo, Hoorn & Antonelli,
2020), and the potential for gene flow and survivability of endemics in specific locations
(Blanco-Pastor et al., 2019). This highlights the site-specific and species-specific nature of
mountain ecosystems and their potential responses to anthropogenic climate change
(Gonzalez et al., 2010; Blanco-Pastor et al., 2019). A further question, however, is the role of
direct human activity in mountain land use change, in particular related to agriculture and
forestry, that can impact on mountain biodiversity and the conservation of endangered
alpine species (Gehrig-Fasel, Guisan & Zimmermann, 2007; Seidl et al., 2019).

Mountain communities and infrastructure
Mountain environments and resources represents a ‘global common good’made use of by
mountain inhabitants and visitors alike (Debarbieux & Price, 2008, 2012; Chakraborty,
2020). As such, people and mountain environments are closely interlinked, through water
and food resource use, ecosystems and ecosystem services, and human livelihoods
(Martín-López et al., 2019). Mountain agricultural economies have historically been
founded on pastoralism and viewed as insular and isolated systems (Tahmasebi, Ehlers &
Schetter, 2013), but these are now seen as extending into complex spatial networks
comprising other mountain goods and services, including cultural patterns, and existing
over long time periods (Spies, 2018; Said et al., 2019). Although also a product of more
recent globalization, changes in human activities in mountains (agriculture, tourism,
industry) are influenced by climate change through changing ecosystems and snow
distributions. This is framed through the lens of socioecological vulnerability and resilience
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(Pandey & Bardsley, 2015; Nettier et al., 2017; Kumar, Fürst & Joshi, 2021) which describe
the co-relationships between mountain environments/resources and different human
activities. Fraser, Mabee & Slaymaker (2003) term this environmental sensitivity and social
resilience, respectively. Several recent studies have discussed these elements in different
sectors of the Himalayas (Kaul & Thornton, 2014; Chettri, Shrestha & Sharman, 2020;
Kumar, Fürst & Joshi, 2021) and highlight the importance of integrated hazard risk
management and adaptive planning at the community level and with the involvement of
indigenous knowledge systems. However, such an approach to minimising climate change
risks in mountains has not yet been widely developed for different mountain ranges (e.g.,
McDowell et al., 2019; Payne et al., 2020). An exception is the study byHossain et al. (2020)
that describes the feedbacks that exist within and between the socioeconomic and
biophysical systems of rural communities in the Swiss Alps.

The most significant issue affecting people and communities in and downstream of
mountains is changes in glacier- and snow-fed river discharge (Viviroli & Weingartner,
2004; Milner et al., 2017; Li et al., 2020). Such mountain ‘water towers’ contribute
significantly to regional water supply to, for example, around 60 million people within the
Indus and Brahmaputra catchments (Immerzeel, van Beek & Bierkens, 2010), and in
turn on regional food security (Carey et al., 2017; Spies, 2018). Based on a global
topographic dataset, Viviroli et al. (2007) showed that 43% of mountain areas provide
essential or supportive water resources for mainly urban populations, in particular during
the dry season and in semiarid areas such as in central Asia. Schaner et al. (2012) estimated
that 370 million people globally reside in catchments where glacier melt represents one
tenth of seasonal river discharge, and 140 million people in catchments where glacier melt
contributes one quarter of total river discharge. Enhanced glacier melt under global
warming is progressively both increasing and causing more variability of river discharge
(Juen, Kaser & Georges, 2007). Several studies now identify the multiple ways in which
mountain water sources impact on people (economy, culture, infrastructure, hydropower,
food/water security) and the environment (geohazards, irrigation, ecosystems) (Mukherji
et al., 2015; Carey et al., 2017; Hill et al., 2017). These are key areas of research interest
because of the intersectionality between people and the environment in mountains, and
with reference to sustainable development, and the nexus between food, water and energy
security (Rasul, 2014). Further, based on climate model results, it is likely that continued
glacier melt over the next decades will result in progressively lower and more variable
discharges as glacier volume decreases (Messerli, Viviroli &Weingartner, 2004; Juen, Kaser
& Georges, 2007). This has implications for sediment yield and geohazards, as well as water
supply (Knight & Harrison, 2013; Mukherji et al., 2015; Milner et al., 2017) and water
management strategies (López-Moreno, Beniston & García-Ruiz, 2008; Bombelli et al.,
2019). Contemporary snow and glacier retreat in mountains is already impacting on the
development and sustainability of mountain tourism and conservation of the natural
environment (Purdie, 2013; Pröbstl-Haider, Dabrowska & Haider, 2016; Su et al., 2022)
and its built heritage (Duvillard et al., 2019).
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DISCUSSION
Mountain environments today are in a state of rapid transition as a consequence of
climate change in the Anthropocene (Gerrard, 1991; Marston, 2008; Milner et al., 2017;
Rasul & Molden, 2019). This study sends a powerful Warning to Humanity regarding the
ways in which anthropogenic climate change negatively impacts on mountains and the
people who reside in them, through the workings of social-ecological and physical systems.
Many case studies from the world’s mountains highlight the critical risks that climate
change impacts pose for regional food, water and energy security, the maintenance of
biodiversity and infrastructure, and the preservation of cultural heritage (e.g., Rasul, 2014;
Pandey & Bardsley, 2015; Chakraborty, 2020; Hossain et al., 2020). Addressing these
issues through adaptation and mitigation, and monitoring and modelling of mountain
system dynamics, is critical for future sustainability of these joint human–physical
systems, and for water security for millions of people (Hill et al., 2017; Milner et al., 2017;
Li et al., 2020).

Figure 2 qualitatively illustrates the major biophysical properties of mountain
landscapes and their likely future changes under ongoing climate change. Key elements of
these landscapes include glacial and periglacial landforms and processes in highest
altitudes, with mass movements on lower slopes, and aggradation within river valleys
(Knight & Harrison, 2009). Warming climates give rise to spatial variations in mountain
process domains, with glacial and periglacial areas shrinking, and slope instability
reflecting paraglaciation increasing in prominence (Knight & Harrison, 2013). Several
modelling studies suggest total deglacierization of some mountain sectors, along with
spread of ecosystems, over coming decades (Zemp et al., 2006; Rabatel et al., 2018). This
represents a fundamental first-order change in the operation of mountain systems, on a
global scale (Milner et al., 2017). The full implications of this have yet to be realized
through field or modelling studies, but include regional heat balance and climate
(including impacts on monsoon circulation), biogeochemical cycling and hydrological
balance. Full impacts on people—including mountain dwellers and those within
mountain-sourced river catchments—have also yet to be realized, and this is important for
developing adaptation strategies for future changes in both mountain geohazards and
mountain socioeconomic and cultural systems (Chakraborty, 2021).

Several conceptual frameworks have been developed to better understand the workings
of integrated mountain systems. A biophysical systems approach can be used to
conceptualise relationships between the different biological, geomorphological and
climatic elements that exist within mountain systems (Hossain et al., 2020). Most previous
work on biophysical systems in mountains has focused on ecosystem processes and drivers
such as fire regime (e.g., Argañaraz et al., 2015; Zapata-Ríos et al., 2021) and their
implications for ecosystem and species’ dynamics (e.g., Zhang et al., 2018; Davis et al.,
2021). Fewer studies have examined the specific genetic linkages that exist between
ecosystems and the physical environment itself (soils and substrate type, permafrost
distribution) (Bugmann et al., 2007; Xu et al., 2008; Ran et al., 2021). These are important,
however, because ecosystems are dependent upon substrate and climatic properties, and
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these in turn then link to the provision of different ecosystem services, in particular
through agriculture (Bagstad et al., 2016; Zhang et al., 2021). The conceptual analysis of
human activity in mountain landscapes has also commonly been undertaken through the
lens of socio-ecological systems (e.g., Hossain et al., 2020; Berrio-Giraldo, Villegas-Palacio
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Figure 2 Schematic block diagrams illustrating the geomorphic patterns and processes taking place
in mountains under (A) pre-Anthropocene, and (B) Anthropocene climates associated with a decline
in the mountain cryosphere (sketches not to scale). Full-size DOI: 10.7717/peerj.14253/fig-2
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& Arango-Aramburo, 2021; Fernández-Giménez et al., 2021; Grumbine & Xu, 2021;
Gopirajan, Kumar & Joshi, 2022) but this approach deals only with human interactions
with mountain environments, not with changes in those environments because of climate
and associated human adaptive responses. Thus, both biophysical and socio-ecological
systems’ approaches have some limitations when applied to mountain environments, and
lack integration. For this reason, here the portmanteau term socio-biophysical systems is
introduced to describe the nature of human–environment relations in mountains (Fig. 2).
Hossain et al. (2020) considered some of the feedbacks that exist between human and
biophysical systems, based on examples from rural communities in the Swiss Alps. They
developed a ‘mountain community coupled human landscape system’ model (e.g., Alberti
et al., 2011) to explain these relationships but with an emphasis on geohazard risk and
mitigation rather than understanding the workings of mountain systems.

Figure 3 proposes a socio-biophysical systems model to describe and account for the
co-relationships between different constituents of mountain systems, including the key
transformative role of human activity and anthropogenic climate change in the
Anthropocene. The model is organized according to the four thematic areas identified in
the literature review of this study, and it highlights that there are multiple interconnections
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between different mountain elements that cross between these thematic areas.
The elements described in this model build from and extend the limited socio-ecological
connections identified in previous studies (e.g., Alberti et al., 2011; Hossain et al., 2020;
Kumar, Fürst & Joshi, 2021). Figure 3 identifies that there are a number of items that cross
different thematic areas, thereby demonstrating interconnections between socio-ecological
and biophysical systems. These include anthropogenic climate/environmental change,
physical landscape processes, land use/land cover change, geohazards, and tourism. Some
of these elements have been included in some previous evaluations of socio-ecological and
biophysical mountain systems (e.g., Bugmann et al., 2007; MacMynowski, 2007; Hill et al.,
2017; Hossain et al., 2020; Payne et al., 2020; Kumar, Fürst & Joshi, 2021; Gopirajan,
Kumar & Joshi, 2022), but some have not. The interconnections existing within this model
also speak to the potential resilience and vulnerability exhibited by both human and
environmental systems in mountains, whereby the negative impacts of ongoing changes
within mountains can be mitigated. Understanding these interrelationships, including
community adaptations to environmental change in mountains, is an important research
priority (Gentle & Maraseni, 2012; Grumbine & Xu, 2021; Kumar, Fürst & Joshi, 2021).

CONCLUSIONS
Mountain systems are sensitive to global warming in the Anthropocene, and thus it is
timely that a Warning to Humanity is issued, highlighting the serious negative impacts of
global warming and associated societal responses for mountain environments and
communities, both within mountain massifs and in their extensive surrounding
hinterlands. A systems approach, considering and integrating together the different
properties of mountain environments, is a useful framework for examining mountain
environment dynamics (Fig. 3). The impacts of climate warming, ice retreat and associated
changes in the properties and dynamics of mountain systems have been widely examined
from local case-studies (e.g., Gude & Barsch, 2005; Singh, 2009; Gariano & Guzzetti, 2016),
but more work is needed to understand the spatial contingency of geohazards and
therefore geohazard risk that arise as a consequence of climate change. This is an
important future research priority (Tullos et al., 2016). Likewise, the impacts of
environmental change on (often vulnerable) mountain communities, and their societal
and socioeconomic responses, have also been examined from some locations (e.g., Carey
et al., 2017; Rasul &Molden, 2019) but many mountains especially in the developing world
have not yet been considered (Yohannes, Teshome & Belay, 2020). These are also
important research priorities because they focus on building community adaptation and
resilience (Gentle &Maraseni, 2012; Xenarios et al., 2019;Hossain et al., 2020; Grumbine &
Xu, 2021).

Achieving sustainable development in mountains requires a deeper understanding of
the interactions between human activity and the physical environment in mountains
(Klein et al., 2019; Payne et al., 2020). Conserving and managing mountain sociocultural
and biosystems are specifically mentioned in the 2030 Agenda for Sustainable
Development and in Chapter 13 of Agenda 21. Many local case studies, in particular in the
Himalayas, have examined interrelationships between physical environmental change
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and community adaptations to challenges posed by water availability, hazards, agriculture,
and ecosystem services (Gentle & Maraseni, 2012; Sujakhu et al., 2019). However,
equivalent data are often lacking for many other mountain blocks worldwide. The
proposed socio-biophysical systems model (Fig. 3) provides a global framework for a better
understanding of the dynamics of mountains in the 21st century, affected by climate
change and increased human impacts. This highlights why a Warning to Humanity on the
sensitivity of mountain systems to climate change and environmental disturbance in the
Anthropocene is important and timely.
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