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ABSTRACT
Background. This work presents a novel computational multi-reference poly-
conformational algorithm for design, optimization, and repositioning of pharmaceu-
tical compounds.
Methods. The algorithm searches for candidates by comparing similarities between
conformers of the same compound and identifies target compounds, whose conformers
are collectively close to the conformers of each compound in the reference set. Reference
compounds may possess highly variable MoAs, which directly, and simultaneously,
shape the properties of target candidate compounds.
Results. The algorithm functionality has been case study validated in silico, by scoring
ChEMBL drugs against FDA-approved reference compounds that either have the
highest predicted binding affinity to our chosen SARS-CoV-2 targets or are confirmed
to be inhibiting such targets in-vivo. All our top scoring ChEMBL compounds also
turned out to be either high-affinity ligands to the chosen targets (as confirmed in
separate studies) or show significant efficacy, in-vivo, against those selected targets. In
addition to method case study validation, in silico search for new compounds within
two virtual libraries from the Enamine database is presented. The library’s virtual
compounds have been compared to the same set of reference drugs that we used for case
study validation: Olaparib, Tadalafil, Ergotamine and Remdesivir. The large reference
set of four potential SARS-CoV-2 compounds has been selected, since no drug has
been identified to be 100% effective against the virus so far, possibly because each
candidate drug was targeting only one, particular MoA. The goal here was to introduce
a new methodology for identifying potential candidate(s) that cover multiple MoA-s
presented within a set of reference compounds.
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INTRODUCTION
Most of the small molecules exist in multiple conformations (shapes) based on their
surrounding environmental conditions. Each 3D shape of a molecule enables it to fit
into the binding pockets of proteins and dictates its biological activity. Often, distinctly
different chemical compounds that have similar shapes and similar charge distributions
along the molecular surface can bind the same target. Therefore, it is beneficial to compare
shapes and surface distribution charges for target query and reference compounds on a
conformer-by-conformer basis. If one of the conformers of the query molecule matches
one of the conformers (especially bound-to-target) of the reference molecule, there is a
chance that the reference compound will also exhibit similar binding properties to the
same target.

OpenEye Scientific Software Inc. pioneered an algorithm and the corresponding
tool, Rapid Overlay of Chemical Structures (ROCS) (Grant, Gallardo & Pickup, 1996;
OpenEye Scientific Software, Inc., 2008) for comparing shapes of molecules by overlaying
and measuring their molecular structures in silico and comparing differences between a
query and reference molecule. ROCS performs a shape-based overlay of a query conformer
to a potential hit molecule by utilizing Gaussian atom-centered functions. The overlap
is then expressed as a normalized value ranging between ‘‘0’’ and ‘‘1’’, where ‘‘0’’ means
no overlay and ‘‘1’’ means the maximum possible overlay. Atomic charges on the surface
of the molecule are accounted for by using a separate score called ‘‘color’’, so ROCS
algorithm attempts to maximize both shape and ‘‘color’’ overlay. The ‘‘color’’ score also
ranges from ‘‘0’’ to ‘‘1’’, where ‘‘0’’ means no ‘‘color’’ similarity and ‘‘1’’ means a perfect
color overlay. The final score thus ranges from 0 to 2. Thus, ROCS identifies potentially
active compounds by comparing their shapes via explicit alignment ; it is competitive and
often superior to structure-based approaches in virtual screening (Hawkins, Skillman &
Nicholls, 2007; Venhorst et al., 2008) both in terms of overall performance and consistency
(Sheridan, McGaughey & Cornell, 2008). As a result, novel molecular scaffolds have been
identified by using ROCS against various targets which have been considered very difficult
to address computationally (Kumar et al., 2014; Kumar et al., 2016; Chen et al., 2018; Khan
et al., 2019; Rush 3rd et al., 2005).

Being a computationally-intensive process, the overlapping of molecular shapes
represents a bottleneck in the search for similar molecules. This remains despite the
recent so-called PAPER implementation of ROCS on GPU (Haque & Pande, 2010) and
the development of FastROCS (OpenEye Scientific Software, Inc, 2011) for large (>1B)
compound libraries. Alternative methods perform overlaying by comparing shape-based
descriptors without performing explicit shape alignment, specifically conformer-level 3D
fingerprints. An example of such an approach is ElectroShape, implemented in the the
Open Drug Discovery Toolkit (ODDT) package (Wójcikowski et al., 2019) which uses an
algorithm incorporating shape, chirality, and electrostatics (Ballester & Richards, 2007b;
Armstrong et al., 2010) and represents each conformer via a fixed-length vector of real-
valued numbers. Similarly, the Extended 3-Dimensional FingerPrint (E3FP) package (Axen
et al., 2017) also utilizes an alignment-invariant 3D representation ofmolecular conformers
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as a fixed-length binary vector for each conformer. These fingerprint-based approaches
allow for the similarity calculation between two molecular shapes either as a Tanimoto
distance (for binary fingerprints) or Euclidean distance (for real-valued fingerprints)
computations. Such computations are orders of magnitude faster in comparison to
alternative methods that require the actual alignment of the two compared conformers.
The Ultrafast Shape Recognition (USR) method can speed up such virtual screening even
more (Ballester & Richards, 2007a). Although the calculation of a shape-based fingerprint
for each conformer can be a rather computationally involved procedure, as soon as
all conformers for the virtual library are fingerprinted and stored in a database, the
similarity search for the query molecule in such a database is computationally quick.
Comparative performance of the two approaches (explicit shapes alignment vs shapes’
fingerprints comparison) in terms of accuracy (hit enrichment) was exhaustively studied
for many virtual screening setups (Hawkins, Skillman & Nicholls, 2007; Kirchmair et al.,
2009; Schreyer & Blundell, 2012) and was found to be comparable.

Here, we present MultiRef3D, a novel computational multi-reference poly-
conformational algorithm for the design, optimization, and repositioning of
pharmaceutical compounds. The algorithm searches for small molecules by comparing
similarities between conformers of the same compound and identifies hits, whose
conformers are collectively close to the conformers of each compound in a reference
set. Reference compounds may represent well-characterized ligands and possess a highly
variable mode of action (MoA). The principal and computationally efficient feasibility
of this task is illustrated here by using pharmaceuticals that have been shown in silico to
bind three different proteins of the SARS-CoV-2 as reference compounds. Although the
SARS-CoV-2-induced COVID-19 pandemic is one of the biggest challenges worldwide,
the highly effective drug for SARS-CoV-2 treatment has not been developed yet. Thus,
the potential identification of the small molecule simultaneously targeting several viral
proteins may represent an efficient antiviral drug discovery strategy. Moreover, for such
a multi-reference search viruses which are the biological systems strongly dependent on
the activity of different proteins may represent more illustrative examples than complex
age-associated diseases such as cancer, neurodegeneration, psychiatric disorders, etc.

For method case study validation, we used the public ChEMBL (version 28) database
(Gaulton et al., 2011) to screen compounds against themost important viral targets, namely
3C-like protease (3CLpro; Mpro), papain-like protease (PLpro) and RNA-dependent RNA
polymerase (RdRp). These targets play a major role in virus replication/transcription and
host cell recognition and are, therefore, vital for the viral reproduction and spread of
infection. Since the method doesn’t directly use target information but rather analyzes
3D shapes for a compound that was already predicted, or has been experimentally found
to be effective against a particular target (a reference compound), one has to choose one
(or more) such compounds as a reference for each target. The focus for each of the above
SARS-CoV-2 targets (3CLpro, PLpro and RdRp) was on the reference compounds with the
highest binding affinities from the recent in silicomulti-target repurposing study (Murugan
et al., 2020). For the new compound search (virtual library screening) we used the same set
of reference compounds as we used for the method case study validation.
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MATERIALS & METHODS
Representative conformer space and conformer-by-conformer
comparison
The proposed computational algorithm extends upon currently availablemethods (Ballester
& Richards, 2007b; Armstrong et al., 2010; Axen et al., 2017; Wójcikowski et al., 2019) and
introduces additional search flexibility via the use of the compound conformers. The
proposal is to compare multiple possible shapes, adopted via varying environmental
conditions, of the same molecule (i.e., conformers) rather than just a single shape that was
used previously. In particular, the suggested approach is based on matching ligand-ligand
fingerprints without explicitly using target structure information, in contrast to docking and
molecular dynamics approaches that simulate the physical binding of a ligand to the target.
The supporting theory behind the method is based on the decision to treat conformers,
which might have different binding characteristics and properties, as independent entities.
In such an approach, each conformer has the corresponding independent alignment-free,
3D-similarity scoring using known multi-references. All conformers were generated using
the Experimental-Torsion basic Knowledge Distance Geometry (ETKDG) algorithm
implemented in RDkit (Wang et al., 2020b). ETKDG builds on the classical Blaney and
Dixon’s (Blaney & Scott Dixon, 2007) Distance Geometry (DG) algorithm (sampling
from all theoretically possible interatomic distances in a given molecule) by combining
knowledge of preferred Torsional angles derived from Experimentally determined crystal
structures (ETDG), and by further adding constraints from chemical Knowledge, such as
‘aromatic rings are flat’, or ‘bonds connected to triple bonds are colinear’ (ETKDG).

Benchmarking studies have found ETKDG to be the best-performing freely available
conformer generator up-to-date (Friedrich et al., 2017b; Friedrich et al., 2017a) providing
diverse and chemically-meaningful conformers reproducing crystal conformations.

Unlike what the majority of computational methods had assumed a couple of decades
ago (e.g. in the CoMFA method (Gohda et al., 2000)), recent research indicates that the
bioactive conformation is not necessarily the lowest-energy conformation in the presence
of the receptor (Hasegawa, Arakawa & Funatsu, 2000; Mackerell Jr, 2004; Acharya et al.,
2011). In particular, as long as an increase in energy for less favorable conformation is
compensated by its binding to the target, i.e. the total ligand-target energy is lower than the
sum of the energies for the non-bound target and ligand, the bound state is favored. The
proposed method emphasizes and relies on this ligand’s ability to use its potentially higher
energy conformations, depending on the target it attempts to bind. Note, however, that
when a sufficiently large number of conformers is requested, ETKDG algorithm generates
more conformers with lower energy than with higher energy (Friedrich et al., 2017b;
Friedrich et al., 2017a), therefore when averaged over all conformers (and we generate 100
conformers per molecule), conformers with the lower energy will contribute more to the
total overlap.

One of the things that distinguishes ligand-based 3D virtual screening methods from 2D
methods is that one has to start worrying about how many conformers to include in the
reference set. If the molecule is flexible, it can assume many shapes and pharmacophores.
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How to deal with this is one of the fundamental questions in ligand-based virtual screening
(LBVS).

In a recent paper by the Schrödinger team,Cappel et al. (2014)performed comprehensive
benchmark analysis and found that the number of conformers needed for 3D LBVS is
actually relatively low: 100 or less to achieve good performance. Thus, we used ETKDG
to generate 100 conformers per molecule in this work compound to make sure that the
conformational space is adequately covered. Some query ligands with few rotatable bonds
can havemany very similar conformers, which wouldmean that themolecule ‘‘spendsmore
time’’ in such conformational states, which would further mean that if those conformers
overlap closely with the reference conformers, the result would be more statistically sound
(the contributions of such ‘‘overrepresented’’ conformers would weigh more in the average
query-reference overlap score for that query compound, in the spirit of Gibbs sampling
(Geman & Geman, 1984; Seep et al., 2021), which assigns greater weight to samples that
occur more frequently in the sampled distribution.

The authors call the approach MultiRef3D to emphasize that it is a fast, alignment-free
multi-objective optimization protocol that maximizes the 3D overlap of a query molecule’s
conformational ensemble with conformational ensembles of multiple reference ligands.
The diagram of the proposed method is summarized in Fig. 1. The formal details of the
approach are discussed further.

Efficiency and a conformer scoring
Fingerprinting of individual conformers for alignment-free comparisons became popular in
the past few years (Wójcikowski, Zielenkiewicz & Siedlecki, 2015; Axen et al., 2017; Gladysz
et al., 2018; Wang et al., 2020a). In our algorithm, each conformation is treated as an
independent entity and is characterized by a vector of features (fingerprint) which describes
its 3D shape along with the distribution of electrostatic charge (both denoted further as
electroshape) across its molecular surface. In this work, we used 15-dimensional USRCAT
fingerprints (Schreyer & Blundell, 2012) which distil molecular shape into a rotation-
invariant descriptor vector made up of 15 real numbers describing distance distribution
among atoms, atomic partial charges, and atom types. The USRCAT fingerprints were
shown to significantly outperform just shape-based fingerprints in recent benchmark tests
(Schreyer & Blundell, 2012; Bonanno & Ebejer, 2020). Since USRCAT fingerprints reflect
both relative 3D positions for all atom types and molecular surface charges for each query
molecule conformer as well as for all conformers of the reference compound, they are very
well-suited for alignment-free fast computation of conformer similarity. Each conformer
is coded within the algorithm by a single fingerprint represented as a fixed-length vector of
numbers which ensures computational efficiency. These fingerprints for each of the query
and reference molecule conformers are individually scored by the Euclidean distance,
serving as a similarity measure between two conformers. Note that both Euclidean distance
and Tanimoto index can serve as similarity measures for these and other real-valued
fingerprints (Bajusz, Rácz & Héberger, 2015). We chose Euclidean distance as our metric
since this choice for the shape-based fingerprints has been already extensively studied and
validated, showing superior performance on the DUD dataset (Armstrong et al., 2010).
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Figure 1 MultiRef3D screening method diagram for multi-conformer andmulti-reference screen-
ing procedure. For each test compound multiple conformers and the corresponding overlapping scores
are computed. Later, the overlapping scores are summed into the total score for the selected test com-
pound. The figure has been created in Microsoft PowerPoint 2016, pyMOL v2.5 (pymol.org) and RDKit
v2021.03.01 software (rdkit.org).

Full-size DOI: 10.7717/peerj.14252/fig-1

Objective function optimization
The sum of the conformer-to-conformer similarity scores between the query and reference
compound are compared via an objective similarity function Wc for each reference
compound c. The goal is to maximize the sum of those individual objective similarity
functions across all reference compounds of interest c = 1,2,...,C where c is a summation
index for the desired set of reference compounds:

WAll =
∑C

c=1
Wc =

∑C

c=1

∑Q

q=1

∑R

r=1
S(c)q,r .. (1)

In formula Eq. (1) the summand S(c)q,r is the similarity (overlap) of the query conformer
q (q= 1,2,...,Q) with the conformer r (r = 1,2,...,R) for each reference compound c
(c = 1,2,...,C). For the real-valued fingerprints, the similarity summand between the pair
of conformers of interest indexed by query index q and reference index r for compound c
is calculated as:

S(c)q,r = 1− (1/N )

√∑N

n=1
(x(c)q,n−x

(c)
r,n)2 (2)

where x(c)q,n and x(c)r,n are the corresponding normalized fingerprint vector coordinates for
n= 1,2,...,N . The length (the number of coordinates) of the fingerprint N is determined
based on the problem-specific target-ligand interaction characteristics. Since the fingerprint
coordinates x(c)q,n and x

(c)
r,n are normalized (i.e.have values between 0 and 1 for each coordinate

n) the resulting overlap S(c)q,r is maximized with the value equal to 1, when the fingerprints
of both conformers are identical, and can take the smallest value equal to 0, when all
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the fingerprint coordinates have a difference equal to 1 i.e. as different as possible at the
normalized scale.

When the objective is to identify a novel compound for just a single active conformation
(r = 1) of one (c = 1) reference compound (e.g. a reference ligand co-crystallized with one
particular target) then all conformers for the query molecule are scored against only one
active reference conformer. However, in the case when multiple reference compounds are
bound to the same target (or sets of reference compounds bound to multiple targets), the
total objective function comes into play. It is important to point out that the proposed
method is not limited to the structure-based design situations: when several reference
compounds are found to be active in a functional assay (and either the target(s) is unknown
or the crystal structure of the target is not available)—the formula works just as well (as
long as the ligand structure is known). The method becomes especially handy, when
there is a great diversity among active reference compounds, whether the target structural
information is known or not—the objective functionwill extract and sumup the similarities
for all of the relevant parts of the fingerprinted conformer representations responsible for
the observed activity.

The query compound can be evaluated against multiple reference compounds on
a conformer-by-conformer basis. In such cases, the corresponding similarity scores
are summed and constitute the multi-reference conformer-level objective function to
maximize. This can be readily used in a typical ligand-based design setting. However,
instead of just searching for a shape analogue of one of the conformers of a reference
compound, in the case of multiple references, the algorithm performs a search for a
compound in the virtual library whose conformers have overlapped with conformers
of each of the reference compounds. The latter will increase the chances that the selected
virtual compound binds the same way to the corresponding targets of each of the references
(i.e. the selected compound is capable of forming conformations that resemble active
conformations responsible for the MoA of each of the references).

Performance-wise, in comparison with explicit 3D alignment methods, MultiRef3D
exhibits speed-ups closely resembling those achieved by USR-CAT (which is at the core of
theMultiRef3Dmethodology) and scales linearly with the number of reference compounds
in the query. Also, since the number of top hits for each reference (typically in the range
1,000–10,000) is set to be orders of magnitude lower than the number of compounds in
the screening universe, the final step (hits scores summation and sorting) takes less than a
millisecond on any modern single CPU (e.g. Intel Core i7). The comparative performance
in relative units are summarized and presented in Table 1.

Method case study validation for known targets
To case study validate the proposed methodology for the multi-target-specific conformer
similarity the three following targets have been used: 3CLpro (Mpro), PLpro, and RdRp
of the SARS-CoV-2. The spike protein has not been included as the validation target since
the pharmacological activity may not be correlated directly with the binding affinity
to the interfacial site (Murugan et al., 2020). ChEMBL (version 28) public database
(Gaulton et al., 2011) has been chosen as the universe for screening. The selected ChEMBL
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Table 1 The comparative performance of hit identification via different methods withMultiRef3D
search time presented in relative time units. The search setup is identical to that described in Ballester &
Richards (2007a).

Method Performance
(Relative Time Units)

MultiRef3D 1
EShape3D 515
Shape signatures 679
ROCS 4745

compounds were already marketed drugs for which at least one target is known. The
corresponding ChEMBL extraction query is provided in the code available on GitHub
(https://github.com/quantori/MultiRef3D). The screened set had a total of 2,604 compounds.
The corresponding reference compounds for case study validation were selected from the
recent multi-target in silico repurposing study (Murugan et al., 2020) based on the highest
binding affinities for each of the targets.

Compounds search based on the conformers of the reference
compounds
Onehundred conformers for each of the referencemoleculeswere generated at theMMFF94
(Halgren, 1996) and each conformer was ODDT-fingerprinted (Wójcikowski et al., 2019)
and saved in the MongoDB database (MongoDB, 2020). The ODDT implementation
(Wójcikowski et al., 2019) of ElectroShape fingerprints (Armstrong et al., 2010) has been
selected to demonstrate the proposed approach because these fingerprints are considered
to be state-of-the-art in ligand-based virtual screening experiments (Cortés-Cabrera et al.,
2013; Bonanno & Ebejer, 2020), and they are not limited to binary values.

Virtual libraries for screening
Virtual libraries (query compounds) for screening consisted of an Enamine (Enamine, 2020)
focused ‘‘antiviral-like’’ set (3995 compounds) and a diverse Discovery Diversity Set (10559
compounds) (Enamine, 2020). Molecules from each virtual library were simultaneously
evaluated against several reference drugs with different MoA (3CLpro, PLpro and RdRp
inhibition). A query molecule for which some of its conformers are similar in shape to
conformers for all the reference drugs would receive a higher score. In this approach,
multiple virtual compounds can be identified to have a good conformer overlap with the
conformers of reference drugs.

RESULTS
Method case study validation for SARS-CoV-2 Compounds
The highest affinity binder Olaparib (−9.2 kcal/mol) has been selected as a reference
compound for 3CLpro, Tadalafil (−9.2 kcal/mol) for PLpro and Lumacaftor (−9.9
kcal/mol) for RdRp. However, when multi-target scoring against these three references
has been performed, the top ten scoring compounds from ChEMBL had no conformers
similar in 3D shape (Euclidean distance < 0.5) to Lumacaftor conformers. Therefore, the
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Table 2 Top ten scoring compounds showing simultaneous conformer similarity with the reference
compounds Olaparib, Tadalafil, and Ergotamine.

Compound ID Compound Name TotalScore Olaparib Tadalafil Ergotamine

CHEMBL779 Tadalafil 228.46 70.70 100.00 57.76
CHEMBL1737 Sildenafil citrate 225.15 81.30 58.34 85.50
CHEMBL521686 Olaparib 223.08 100.00 57.61 65.48
CHEMBL105442 Ci-1040 220.40 80.68 79.16 60.56
CHEMBL129857 As-602868 220.16 78.27 74.50 67.39
CHEMBL2037511 Epelsiban 219.86 81.58 70.28 68.01
CHEMBL565612 Sotrastaurin 219.13 79.93 69.36 69.83
CHEMBL1516474 Tegaserod maleate 217.83 80.22 76.56 61.05
CHEMBL1236682 Refametinib 217.78 76.01 81.57 60.20
CHEMBL1923502 Ulimorelin hydrochloride 217.56 76.29 74.79 66.47

Lumacaftor reference has been replaced with the next best in silicoRdRp binder Ergotamine
(Murugan et al., 2020) (−9.4 kcal/mol). The resulting scores produced by the proposed
method are summarized in Table 2.

Both Olaparib and Tadalafil had the highest scores which confirmed the previous
finding (Murugan et al., 2020) that these compounds are simultaneously good binders
for both 3CLpro and PLpro. Our method has also picked up Sildenafil (brand name
Viagra) which just like Tadalafil (Cialis) is also known as a classical PDE5A inhibitor.
Although those compounds are predominantly used in the treatment of male erectile
dysfunction and pulmonary hypertension, it was shown (Shirvaliloo, 2021) that in the
presence of SARS-CoV-2 infection, PDE5 inhibitors prevent thromboembolism caused
by inflammatory processes in COVID-19 patients via NO/cGMP pathway and are potent
inhibitors of 3CLpro (Jin et al., 2020)

Ci-1040 and Refametinib are the other two hits from Table 2 and are potent MEK
inhibitors with high 3D shape similarity to both Olaparib and Tadalafil. MEK inhibitors,
including Olaparib (Vena et al., 2018) were recently demonstrated to reduce cellular
expression of ACE2 while stimulating NK-mediated cytotoxicity and attenuating
inflammatory cytokines during the severe stage of SARS-CoV-2 infection (Zhou et al.,
2020). Ci-1040 was also previously shown to display a broad anti-influenza virus activity
in vitro and to provide a prolonged treatment window compared to the standard of care in
vivo, specifically in lung cells (Haasbach et al., 2017).

The other hit from Table 2 is Sotrastaurin, a PKC inhibitor that has been experimentally
shown to inhibit SARS-CoV-2 replication in vivo (Liu et al., 2021) and found to be among
the best 3CLpro binders during in silico ZINC database screening study (Olubiyi et al.,
2020). The other top hit, Epelsiban, was originally developed as an oxytocin receptor
agonist. However, it has been recently shown (Kim et al., 2015) that oxytocin plays a major
role in the activation of NF-kB-mediated pathways. Interestingly, recent research has
revealed (Hariharan et al., 2021) that Remdesivir, in addition to being a potent RdRp
inhibitor (Gordon et al., 2020), is also reducing viral replication via NF-kB pathway.
Therefore, this hit serves as an example of non-obvious 3D-shape-based drug repurposing
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Table 3 Top ten scoring compounds showing simultaneous conformer similarity with the reference
compounds Olaparib, Tadalafil, and Remdesivir.

Compound ID Compound Name TotalScore Olaparib Tadalafil Remdesivir

CHEMBL1694 Benazepril hydrochloride 180.82 66.67 64.26 49.89
CHEMBL515606 Cilazapril 180.61 64.56 61.56 54.50
CHEMBL495727 At-9283 179.03 68.17 56.15 54.71
CHEMBL2107495 Temafloxacin hydrochloride 178.94 67.15 55.78 56.01
CHEMBL1200779 Trovafloxacin mesylate 178.60 66.24 54.02 58.35
CHEMBL340978 Benoxaprofen 178.27 68.56 56.54 53.16
CHEMBL8 Ciprofloxacin 177.05 63.21 57.19 56.65
CHEMBL1200831 Spirapril hydrochloride 177.00 65.28 60.24 51.47
CHEMBL1201011 Quinapril hydrochloride 176.84 66.32 60.40 50.13
CHEMBL1168 Ramipril 176.54 65.32 63.26 47.96

idea generation linked to the relevant yet non-primary SARS-CoV-2 inhibitingmechanisms
of reference compounds.

In our second case study validation experiment, we explored what happens if the
RdRp reference compound Ergotamine is replaced with Remdesivir which, as was already
mentioned, is not only a well-established RdRp inhibitor and computationally found to be
a tight RdRp binder but also a cytokine storm attenuator that works via NF-kB pathway.
We were interested if the algorithm would pick up NF-kB hits and other potential ‘‘chain
terminators’’. The resulting scores produced in the second scoring setup are summarized
in Table 3.

For Olaparib, Tadalafil, and Remdesivir reference compounds, half of the top ten
hits (Benoxaprofen, Ciprofloxacin, Spirapril hydrochloride, Quinapril hydrochloride and
Ramipril) turned out to be ACE inhibitors and coagulation modifiers acting via NF-kB
related pathways (Hernández-Presa et al., 1997; Burzynski et al., 2019)! In addition, all of
them turned out to be also good binders of 3CLpro (Biembengut & Brasil de Souza, 2020).
One can also notice that the individual scores for Remdesivir-only hits are significantly
(>10%) lower than the corresponding scores for the other reference compounds, which
can be readily explained by the fact that none of the CHEMBL hits was a nucleoside and
thus cannot be incorporated into the replicated RNA similar to the way Remdesivir does
(although we still pick up the NF-kB component from Remdesivir’s MoA).

The other hits were Temafloxacin and Trovafloxacin, predicted to be potent 3CLpro
ligands (Gimeno et al., 2020) and experimentally shown to inhibit virus replication (Krieg
et al., 2006; Mirmotalebioshi et al., 2021) and anti-inflammatory drugs Benoxaprofen and
Ciproflaxin predicted to target 3CLpro (Marciniec et al., 2020; Zeyrek et al., 2021) as well.

An interesting multi-target Aurora/JAK inhibitor, compound At-9283, closes the list
(Table 3). JAK inhibitors have promising therapeutic potential for SARS-CoV-2 treatment
with their dual anti-inflammatory and anti-viral effects (Mehta et al., 2020). At-9283 has
also been recently identified to reverse SARS-CoV-2 transcriptomic signature (O’Donovan
et al., 2020) and due to its similarity to tipiracil 3D pharmacophore scaffold, also inhibits
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SARS-CoV-2 Nsp15 endoribonuclease (Kandwal & Fayne, 2020; Guedes et al., 2021) and
targets 3CLpro (Mengist, Dilnessa & Jin, 2021; Baby et al., 2021).

In summary, the results of these case study validation experiments show that
MultiRef3D can efficiently identify compounds whose conformers simultaneously mimic
the conformers of three different small molecules. All identified high-score compounds
represent drugs that have direct or indirect evidence to be effective in anti-COVID-19
treatment.

Virtual library screening for multi-target SARS-CoV-2 compounds
The results from the focused (‘‘antiviral-like’’) and diverse (‘‘Discovery Diversity Set’’) sets
are summarized in Tables 1 and 2 respectively. These are given here for illustrative purposes
only, to demonstrate that the hits are indeed simultaneously aligned with the references.
The algorithm visual summary is displayed in Fig. 1 for theWAll objective function. Tables
S1 and S2 summarize the direct application results of the Enamine (Enamine, 2020) focused
‘‘antiviral-like’’ and ‘‘Diverse Discovery Set’’ virtual library screening. The first two columns
of the Tables contain query compound IDs and their computed overlap scores. The rows
are sorted according to the total sum overlap score displayed in the second column.

For the visual illustration of the algorithm results, the two compounds with the highest
scores from Tables S1 and S2 have been presented in Fig. 2. It is worth noting that these
compounds are quite flexible molecules due to their amide bridge around which the ring
substructures can rotate, which ensures the ability of those molecules to accommodate
different targets. One can also notice that the Remdesivir component scores are significantly
lower in comparison to other references (while Ergotamine component remains high),
reflective of the facts that, just as in CHEMBL case, none of the hits was a nucleoside in
nature (see also Fig. 3D).

The best-matching conformers of the top hit Z1693453146 spatially align with the active
conformation for each reference drug (Fig. 3). One can observe that most of hydrogen
donors and acceptors from the top hit conformer and reference conformers are aligned
very well, mimicking the interaction patterns with each target. At least partial spatial
alignment of atom types is expected from the top hit conformers since atom types as well as
their relative 3D positions is the essence of the USRCAT fingerprints (Schreyer & Blundell,
2012).

DISCUSSION
Computation efficiency and availability of the method
The proposed method does not rely on laborious docking and molecular dynamics setup,
especially in the multi-target case, where target preparation and choice of method i.e.
direct docking to a fixed-coordinate target or Molecular Dynamics-based ensemble energy
minimization are of utmost importance and require deep expertise. Fingerprint comparison
is orders of magnitude faster and simpler; it only requires simple structural information
in the form of either isomeric SMILES or InChI. The entire setup, which is presented in
the Supplementary Information, can be universally used for any multi-target screening
and optimization, whenever reference compounds for each of the targets are available.
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Figure 2 The compounds presented in panels A and B are the top hits Z1693453146 (Wall = 254.11)
and ZZ1760146546 (Wall = 255.19) from the non-overlapping ‘‘antiviral-like’’ and ‘‘Discovery Diver-
sity’’ libraries, respectively. One can immediately observe, however, that the compounds share a lot of
similarity, in particular overall shape and amide bridge connecting heterocycles. The bridge allows for 3D
flexibility for the molecule to change conformation and bind to multiple targets. The figure has been cre-
ated in Microsoft PowerPoint 2016, pyMOL v2.5 (pymol.org) and RDKit v2021.03.01 software (rdkit.org).

Full-size DOI: 10.7717/peerj.14252/fig-2

Naturally, further hit refinement (ADMETox, PK/PD, etc) is necessary if the screened
universe is not limited to drugs with well-known safety profiles.

Depending on what is known about the indication or marketed drug of interest
(targets, MoAs, other existing drugs for the same indication), the proposed methods
(or a combination thereof) can be used to find other non-obvious molecules whose shape
and surface electrostatic charge is similar to that of the marketed drug. The methods can
also be used to search for the cumulative similarity to conformers of the multiple drugs
used to treat this disease indication.

In the proposed approach multiple conformers of the query ligand have been compared
with conformers from multiple reference compounds whose therapeutic effect of interest
is achieved via different mechanisms of bindings to different targets, e.g. by inhibiting
major proteases 3CLpro and PLpro (Ullrich & Nitsche, 2020) and RNA-dependent RNA
polymerase (RdRp) (Elfiky, 2020; Li et al., 2003;Vincent et al., 2005). An ‘‘ideal drug’’ would
contain conformers that resemble (as many as possible) conformers of all the reference
drugs, thus increasing chances that the drug inhibits SARS-CoV-2 via multi-MoA routes
and is more effective than each individual reference drug.
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Figure 3 Active conformers of the Reference compounds (Olaparib, Tadalafil, Ergotamine and
Remdesivir on A, B, C and D, respectively) aligned with the best matching conformers of the top hit
Z1693453146 (Wall = 254.11). Carbon-carbon bonds for the reference compounds and the Top Hit are
shown in gold and cyan respectively (C-N and C-O bonds are conventionally shown in blue and red).
The figure has been created in Microsoft PowerPoint 2016, pyMOL v2.5 (pymol.org), RDKit v2021.03.01
software (rdkit.org) and Adobe Photoshop CC v20.0.6.

Full-size DOI: 10.7717/peerj.14252/fig-3

When the crystal structure of the target protein is known and the reference ligand
is co-crystallized in its active conformation (structure-based design), we can use this
information about the reference compound and evaluate the query molecules against only
one, the active (co-crystallized), reference ligand conformation (r = ractive) in formulas
Eqs. (1) and (2). Confirmation by direct docking for the fingerprint-matched queries can
be used to confirm the match.

Our methodology emphasizes the pursuit of candidate compounds that achieve the
therapeutic effect (e.g. stops SARS-CoV-2 proliferation) by multiple MoA routes. A
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successful candidate compound would contain conformers targeting the three SARS-
CoV-2 factors (3CLpro, PLpro, RdRpall) at the same time by increasing the chances that
the compound would protect against SARS-CoV-2 much more effectively. Naturally, all
successful candidates would need to be further screened and filtered for proper ADME-Tox
and other drug-likeness properties. Binding to anti-targets, e.g. hERG, can be explicitly
incorporated into this methodology by adding the corresponding terms (similarities to
known hERG-binding ligands) to the overlap sum with a negative sign. Even though many
computational methods exist to evaluate hERG in particular as well as other common
tox liabilities, when an anti-target is very specific and less commonly known as ‘‘pure tox
target’’ (e.g. undesired binding to D2 receptor for many modern CNS drugs), the explicit
inclusion of similarity score to such anti-target with a negative sign can greatly streamline
the overall drug optimization process.

CONCLUSIONS
We have demonstrated and case study validated the usefulness of the multi-reference
computationally efficient optimization approach in drug discovery screening and
repurposing scenarios. The method represents each molecule as an ensemble of flexible
conformers that would choose the best possible conformation for each presented target-
binding opportunity. The application of this approach to SARS-CoV-2 produced several
antiviral drug candidates that are designed to protect against SARS-CoV-2 by multiple
mechanisms simultaneously.
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