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Abstract

Background. Periodontal disease is considered one of the most prevalent chronic infectious
diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone,
causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological
agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides,
hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate
immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the

antimicrobial activity of Cystatin C and to assess the effect on the inflammatory and anti-

(Eliminé: effect

inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric
oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of
cystatin C.

Methods. P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with
human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on growth of P.
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gingivalis and HGFs was evaluated. Pro-inflammatory (TNFa, IL-1f) and anti-inflammatory (IL-
10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis
exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were
evaluated.

Results. Cystatin C inhibited the growth of P. gingivalis without affecting HGFs. Incubation of
HGFs with P. gingivalis led to a significant increase of TNF-a and IL-1B. In contrast, HGFs
incubated with P. gingivalis exposed to cystatin C showed a decreased production of both
cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increased
NO and ROS production, which was reduced in the presence of the peptide.

Conclusions. Cystatin C inhibits the growth of Porphyromonas gingivalis and decreases the
inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis.
Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the
design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the

treatment of periodontal disease.

Introduction

Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory
response and progressive loss of tooth supporting tissues (Kononen et al., 2019) Porphyromonas

gingivalis is a periodontal pathogen bacterium implicated as a major, etiological agent in

(Eliminé: periodontopathogen

periodontitis (van Winkelhoff et al., 2002). This bacterium has been recovered from periodontal

pockets in a high percentage (75.8%) of patients with periodontitis (Rafiei et al., 2017).

The most abundant cell types in periodontal connective tissues are gingival fibroblasts (GF),
where they participate in the repair of periodontal tissues during inflammatory periodontal

diseases (Lee, et al., 2013). GF also promotes periodontal wound healing (Smith et al., 2019;

Back et al., 2013).
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Furthermore, [LPS\ of P. gingivalis increases their superoxide concentrations after, exposure to

human gingival fibroblasts (HGFs) (G6lz et al., 2014). Thus, these cells can also participate in

the progression of periodontitis, inducing the release of inflammatory such as: nitric oxide,

cytokines, reactive oxygen species (ROS), and nitric oxide (How et al., 2016; Kirkwood et al.,

s CE]imind: the
. CCnn formato: Sin vifietas ni numeracion

. (Eliminé: ( Staudte ct al., 2010;

2007; Golz et al., 2014; Herath et al., 2016).

Cytokines are involved in the initiation and progression of periodontal disease (Ramadan et

al., 2020)., Even though secreted cytokines promote the elimination of bacteria, the

- (Comentado [LELJ2]: To define

(Eliminé: mediators

(Comentado [LELJ1]: To define

CE]iminé: Porphyromonas

(Comentado [LELJ3): Repeated (line 68)
(Etiming:
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overproduction of pro-inflammatory cytokines may participate directly in periodontal
breakdowns, such as the breakdown of collagen periodontal attachment loss, and alveolar bone
resorption (Gabay, Lamachia & Palmer, 2010). TNF-a and IL-1f are the major secreted pro-
inflammatory cytokines, that are important markers of periodontitis progression and severity. and
they are also the main inducers of effector molecules that cause the breakdown of periodontal
tissues (Gomes et al., 2016). TNF-a and IL-1p are produced by several cell types including
dendritic cells, macrophages, periodontal ligament cells, osteoblasts, and gingival fibroblasts and
can act as multifunctional molecules (Cheng et al., 2020). IL-1f promotes production of

metalloproteinases (MMPs), which are involved in the extracellular matrix degradation and, in

turn, bone resorption and periodontal tissue destruction (Aleksandrowicz et al., 2021). TNF-a,

participates in the bone resorption process, inducing receptor activators for nuclear factor -xB

(RANK), expression in osteoclast precursors and RANKL expression in osteoblast (Pan, Wang &

Comentado [LELJ4]: Still not clear. Line 81
metalloproteinases, line 110 matrix metalloproteinases,
please could you homogenize acronyms.

CEliminé: )

Chen, 2019). In addition, TNF-a and IL-1f also induce reactive oxygen species (ROS)
generation in periodontal tissue (Wang et al., 2014), where oxidative stress has been shown to be
involved in periodontitis (Tomofuji et al., 2006; Maruyama et al., 2011).These pro-inflammatory
mediators are required for the immune defense against bacteria, yet their uncontrolled activity
leads the accumulation of ROS (superoxide radicals, hydrogen peroxide, hydroxyl radicals and
singlet oxygen) (Golz et al., 2014). Even though these products stimulate proliferation and
differentiation of cultured human periodontal ligament fibroblasts at low concentrations, their
presence in higher concentrations can induce pathogen killing and cytotoxic effects on

periodontal tissues and pathogen killing (Chapple & Matthews 2007),,Zhu et al. (2020)

demonstrated that after the stimulation of HGFs with LPS, ROS production in mitochondria

(mtROS) were,significantly enhanced, these results indicate that oxidative stress can be induced

(Etimino:

(Eliminé:

(Eliminé: was

during periodontitis (Liu et al., 2021). It is noteworthy that P. gingivalis is resistant to oxidative

~(Etiminé: ,
(Eliming:

AN




|108 burst killing due to its antioxidant enzymes, such as thiol peroxidases,and rubrerythrin. (F" iné: ,
109  Furthermore, these bacteria accumulate a hemin layer on the cell surface that protects the

110  bacteria from oxidative stress (Wang et al., 2014; Henry, McKenzie, Robles & Fletcher, 2012).

|1 11 On the other hand, IL-10, an anti-inflammatory cytokine that suppresses the inflammatory L 'CElimin():
112 responses (Al-Rasheed et al., 2003), also protects from tissue destruction by inhibiting both ‘ CElimi"(” >
113 matrix metalloproteinases (MMPs) and Ireceptor activators for nuclear factor-kB (RANK) | ’ CComentado [LELJ5]: Previously described

114  systems, leading to the differentiation and activation of osteoclasts (Garlet et al., 2006). (Comentado [LELJ6]: Previously described

115  Stimulation with bacteria or bacterial components like \LPS ﬁnduce the production of . CComentado [LELJ7]: TO define

116  inflammatory cytokines, such as interleukin 1, -6, -8, and bitric oxide (NO), ﬁn human (Comentado [LELJS]: To check line 68

A A

117  monocytes, endothelial cells, macrophages, and gingival fibroblasts (Gutierrez-Venegas et al.,
118  2005; Staudte et al., 2010; Golz et al, 2014). P. gingivalis triggers the production of NO by

|1 19  activating the expression of inducible nitric oxide synthases (NOS) (Sun, et al. 2010; Brennan,
120  Thomas, & Langdon, 2003). It is noteworthy that it can resist NO stress and maintain nontoxic
121 intracellular NO concentrations (Zumf, 2002). Thus, a high concentration of NO fails to

122 eliminate this bacterium, yet it can exert a deleterious effect on the periodontal tissue, favoring

123  vasodilation and diminishing platelet aggregation, which contributes to gingival bleeding. These

124 toxic effects on the surrounding tissue increase the severity of periodontitis (Boutrin et al., 2012). (Elimind: syntase

125 It has been suggested that the inducible nitric oxide synthase (iNOS) may be involved in ) f'CElimint'): pathogenesis

(Elimin(): since common

126  periodontal disease (Batista et al., 2002), because usually periodontal pathogenic bacteria

> (Elimin(): ns can induce the expression

127  increase the production,of iNOS , including HGFs (Sosroseno, et al., 2009). - (F.- in6: in various host cells
128  Furthermore, cytokines and chemokines produced by gingival fibroblasts in response to P. ; (F" in6: Additionally
129  gingivalis infection could increase and their effects on leukocytes are, modulated by the ‘%Elimimi: d
. . L . . ) . ) B ‘( Eliminé: expressed
130  enzymatic activity of P. gingivalis-derived proteinases, that cleave and disrupt, their functions B CF,. inb: can accumulate
131  (Calkins et al. 1998; Kobayashi, Isogi & Hirose 2003; Palm, Khalaf & Bengtsson, 2015). The CF in6: subsequent action
132 production of P. gingivalis cysteine proteinases are associated with the growth and establishment (Elimi“d’
Eliminé: is

N33  of P. gingivalis, they are divided into arginine-specific (Rgp) and lysine-specific (Kgp) %E it dn fo
134  proteinases. Additionally, these cysteine proteases exert potent immunomodulatory effects on : (w" in6: inhibit
135  human gingival fibroblasts. The main causative factor of tissue damage involved in the disease . (Etiming: biological properties
136  progression, could be the gingipains of the bacterium, even though P. gingivalis is considered an - gE;mfm?

. 1mino: .
137  opportunistic pathogen. Thus, control of proteolytic enzymes of P. gingivalis could represent an "CEHmind:
138 interesting target for the treatment of periodontitis (Torbjérn, Atika &Hazem, 2015). “’CEliminé:
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Antimicrobial peptides (AMPs) are part of the innate defense system in the oral cavity, where

CF" —

cystatins play an important role. Cystatin C belongs to the type 2 family of the cystatin
superfamily, it is ubiquitously distributed in plants and animals (Shamsi & Bano, 2017). In the

parotid gland of humans, it is present in saliva at a concentration of 0.9 pg/mL (Gorr, 2012). The

(Etiming:

main function of cystatin C is the inhibition of cysteine proteases by binding to their active sites
(Palm, Khalaf & Bengtsson, 2015). It also exerts several immunomodulatory functions and
possesses the ability to regulate innate immune responses (Vray, Hartmann & Hoebeke, 2002).
The aim of this study was to assess the effect that cystatin C exerts on cytokine production, NO
and ROS production by human gingival fibroblasts incubated with P. gingivalis in order to be

able to evaluate its potential therapeutic use against one of the main etiological agents causing

(Eliminé:

periodontitis, as well as its potential impact on the severity of periodontal disease.

Materials & Methods

Cells culture
Human gingival fibroblasts (HGFs) (ATCC, CRL-2104) were seeded at a density of 5x10°

cells/cm? and cultured in 75 cm? culture flasks in water-saturated atmosphere at 37°C plus

5% CO; and maintained in Dulbecco’s modified Eagle high glucose medium (Sigma Aldrich,

CComentadﬂ [LELJ9]: Previously described in line 67

(Etiminé:

. (Etiminé:

Saint Louis, MO, USA), supplemented with 10% fetal bovine serum (GIBCO BRL,
Gaithersburg, MD, USA), containing 10 U penicillin plus, 25 pg streptomycin /mL) (Sigma

Aldrich). The fibroblasts were cultured to confluence, at a density of 2.5x10° cells/mL, washed

2 :‘CElimin(): per

l  (Elimino:

. (Etimine:

twice with phosphate-buffered saline, and dissociated with 0.25% trypsin and 1 mM EDTA for 5
min at 37°C, 5% COz (Sigma Aldrich, Saint Louis, MO, USA). The cells were used at passages

(Eliming: at

(Elimine:

; (Eliminé: and

i (Comentado [LELJ10]: DMEM
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Bacterial growth

P. gingivalis strain ATCC 33277 was cultured in brain-heart-infusion and in broth-heart-brain CEIiminé:

extract (BHI; BD Bioxon, Milan, Italy) containing 5 pg/mL of hemin (Sigma-Aldrich, Munich,

Germany) supplemented with_1 pg/mL of menadione (Sigma-Aldrich) cultured at 37°C for24h_ .

: (Eliminé: and

in anaerobic conditions, using the, BBL-GasPak jar system (BD Biosciences),

CF" in6: under

(Eliminé: robiosis

(Eliminé: anaerobic

~(Etiming: .

(Elimin: ) at 37°C for 24 h
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Atfter cultivation for 24 h, bacteria were recovered py centrifugation (10 min at 10000 rpm),
washed and resuspended in Krebs-Ringer-Glucose (KRG) buffer (120 mM NacCl, 4.9 mM KCl,
1.2 mM MgSO0s4, 1.7 mM KH2PO4, 8.3 mM NaHPO4, 10 mM glucose, and 1.1 mM CaClz, pH

7.3). Bacterial growth was monitored spectrophotometrically (Jenway Genova R0027, Fischer
Scientific, USA) at 675 nm. The bacterial density was visually adjusted to a turbidity of 0.5
McFarland (110% colony-forming units,(CFU/mL) (Mc Farland, 1907 Emani et al., 2014)).

W CE]imind: harvested
g CElimin('): for
CElimin(i: and then
(Eliminé:

Ethical approval was given by the Ethics Committee of the School of Medicine (UNAM) with

reference number C54-11.

lAntibacterial assay

Lyophilized cystatin C was obtained from Pichia Pastoris (Sigma Aldrich, St. Louis, MO)) and ]

reconstituted in Tris Base NaCl Buffer (pH 7.4). Minimum inhibitory concentrations (MIC) of

Cystatin| C were determined using the microdilution method in 96-well microtiter plates (Costar,

Corning Life Sciences) (Eloff, 1998; Jadaun et al., 2007). Briefly, an inoculum of P. gingivalis

(1x10° CFU/mL) containing KRG Buffer was placed in each well. Subsequently, different cystatin |

C concentrations (0.1, 0.3, 0.5, 0.7, 0.9 pg/mL) were incubated with the bacteria, for 1, 12, 24, and

(Eliminé: ;

(Etiming:
(Eliminé: of culturing

(Etiming:
(Etiming:
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) (Eliminé:
. (Etiming: C
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| Cystatin and other such cystitis. To homogenize

CE]iminé: was

48 h, under anaerobiosis conditions,at 37°C. After the incubation period, 20 pL of Presto Blue Cell s

Viability Reagent (Invitrogen, Thermo Fisher Scientific) per well were added. The plates were

incubated for 30 min at 37°C in the dark. Finally, the plates were read in a microplate reader

(Multiskan SkyHigh Microplate Spectrophotometer),at a 675 nm wavelength,

: :‘CEliminé:

(Eliminé: s
(Elimino:
C tado [LELJ13]: This, clearly, is not a MIC, that
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Cell Viability assay

HGFs were seeded at a density of 1x10° cells/well in 24-well plates for 24 h, at 37°C with 5%
CO,. Different concentrations of ¢ystatin C (0.1, 0.3, 0.5,0.7,0.9 pg/ml) were added and incubated

was why | asked about differences between MIC and
MBC since this kind of experiments are able to evaluate
viability, then is a minimal bactericidal concentrations,
again, MICs are visual. Mandatory to have clear these

. | differences.

CEliminéz s

(Btiming

for 24 h. After incubation time, 25 pul of b(TTVPBS solution [(4 mg/4ml) were added per well, for ,

~(Blimine: C

40 minutes at room temperature, in the dark. Subsequently, microplate plates were read at a
wavelength of 450 nm in a microplate spectrophotometer (Multiskan SkyHigh Microplate

Spectrophotometer).

Treatment of human gingival fibroblasts (HGFs) with P. gingivalis

= (Dio formato: Subindice
_ (Comentado [LELJ14): To define
k[Comentado [LELJ15]: This is not clear and it is not the
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Human gingival fibroblasts, at a seeding density of 5x10° cells/well, were cultured in a Costar® B CElimimi:
24-well plate (Corning Life Sciences, Corning, NY, USA) in DMEM medium at 37°C in an | CEhmmo
atmosphere of 5% CO.. After the incubation period, fresh medium without antibiotics was added 1 g::::::
to HGFs, before they were treated with P. gingivalis. HGFs were stimulated with bacteria, at ) CElimimi:
multiplicities of infection (MOTI) of 1:100 for 24 h, and with cystatin C at a concentration of 0.3 (Elimino; -

pg/mL at 37°C for 24 h, to perform cytokine assays, and evaluate ROS, and NO. Control groups

include HGFs without stimulation or stimulated with 100 ng/mL of \LPS (LPS from Escherichia

coli O111:B4, Sigma Aldrich), or with10ug/mL of peptidoglycans, (Peptidoglycan from

Staphylococcus aureus, Sigma Aldrich).‘

Cytokine assays

For cytokine assays, HGFs were incubated with P. gingivalis (MOI 1:100) and/or with cystatin C

AN A

CElimin('): and

(Eliming:

(Etiming: .

[Comentado [LELJ17]: How do you decide which to use?

)
)
)
)

at a concentration of 0.3 pg/mL at 37°C for 24 h. Control groups included HGFs without
stimulation or stimulated with LPS 100 ng/mL (LPS from Escherichia coli O111:B4, Sigma
Aldrich),or with peptidoglycan 10 pg/mL (Peptidoglycan from Staphylococcus aureus, Sigma

( Eliming:

NN

Aldrich). ELISAs were performed to determine TNF-o., IL-1p, and IL-10, using the Ready-Set-
Go! ELISA kits (BD Biosciences, Cytokine ELISA Protocol, San Diego, CA, USA), following

the manufacturer’s protocol. Dilutions were prepared in dilution buffer. Briefly, 96-well plates

(Eliminé: according to

with Jat-bottom (Costar®, Corning Life Sciences) were coated with anti-human monoclonal

CEliminéz f

antibodies recognizing IL-1. IL-10 or TNF-a. (BD Biosciences, Pharmingen). After blocking
with the assay solution (PBS-0.5% casein diluted in 1 M NaOH) an,overnight incubation at 4°C

[ ! ‘CEliminti: plates

‘[Elimind: TNF-a, IL-1B, or IL-10

CF" —

was done in order to eliminate pon-specific binding, for this 100 uL of standard TNF-a., IL-1p,

CElimimi: to avoid

NN

or IL-10 (BD Bioscience, Pharmingen) of supernatants were added. The microplate was washed

to remove unbound enzyme-labeled antibodies. The amount of horseradish peroxidase ingach

well was revealed by the addition of a substrate solution. Finally, the reaction was stopped by the

addition of 0.18 M sulfuric acid and the plates were read at 405 nm (ELISA microplate reader,
Bio-Rad, Hercules, CA, USA).

The cytokine concentrations were calculated by regression analysis from a standard curve.

(Eliminé: bound to

(Etimino:

(Elimin(): determined

(Etiminé: T

‘CF" in6: was
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The detection limit of the assay was 15 to 2000 pg/mL.
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Measurement of NO production, Cw- iné

The NO production by HGFs incubated with P. gingivalis and/or cystatin C at 37°C was assayed (Eliminé:

by measuring the accumulation of nitrate in culture supernatants. Briefly, HGFs were stimulated
with P. gingivalis (MOI 1:100) and with 0.3 pg of cystatin C, at 37°C for 24 h. Thereafter, 100
pL of Griess reagent (1% sulphanilamide, 0.1% naphthylethylene diamine dihydrochloride, and

2.5% phosphoric acid) (Sigma Aldrich) were added at equal volumes of culture supernatants in a [Cqmentzg)io [LELJ18]: Why not such s St Louis
96- well plate (Costar®, Corning Life Sciences) and left at room temperature for 30 min. The issaur
absorbance of these supernatants were read at 550 nm (Multiskan SkyHigh Microplate CElimimi: was
Spectrophotometer) and the nitrate concentrations were calculated from a standard curve
established with serial dilutions of NaNO» (Sigma-Aldrich) in the culture medium. Control
groups included HGFs without stimulation or stimulated with LPS or peptidoglycan.
Detection of Reactive Oxygen Species (ROS)
HGFs were seeded on 24-well plates (Costar®, Corning Life Sciences) at a density of ‘(SJQ,I 0%),] < . [ggflvs:ﬁagmﬁf#m]: To express in units. 5x10e5/ mL,
infected with P. gingivalis (MOI 1:100) and stimulated with 0.3 pg/ml of cystatin C at 37°C for “‘ ) CEliminéz
24 h. The cells were incubated with 100 ug/mL [2 uM/mL] bf 2,7 dichlorodidrofluoroescein b (Eliminé:
diacetate (H2-DCFDA) for 30 min in the dark at room temperature. Cells were rinsed twice with : gzz;:z
PBS, pH 7.2 and detached from the wells with 0.25% Trypsin/EDTA (Sigma Aldrich). The \ ‘(Elimind:
samples were resuspended in PBS, pH 7.2, with 1% [FBS land analyzed on a FACS Canto Il BD (Cnn formato: Izquierda
Biosciences flow cytometer. Data analysis was performed using FlowJo software (USA). Control ‘ {g..?sm ::;22?“[:;%: 23:]1;— gn?_oose the way to express
groups included HGFs without stimulation or stimulated with LPS or peptidoglycan. (Elimindz
(Etiming:
Statistical analysis i ghmmo (2 aM/mL]
Experimental and control conditions were statistically compared for significance using analysis ™ ; (Comentado [LELJ21]: To define

of variance (ANOVA), followed by Benferroni correction. The predetermined level of ((Dio formato: Fuente: Negrita

)
)
)
)
)
)
)
)
)
)
)
)
)
)

significance was p < 0.05. Statistical analysis was performed with the GraphPad, Prism v.6
software (GraphPad Software, Inc., CA, USA).

Results
Effects of cystatin C on growth of P. gingivalis and viability of HGF's
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The antimicrobial activity of cystatin C on P.gingivalis was analyzed in a time and dose- CF" iné

dependent manner as shown in (Fig. 1a). It reached its maximal antimicrobial activity at 24 h

with concentrations between 0.1 and 0.3 pg/mL.

The concentration of 0.3 pg/mL inhibited 75% of bacteria growth after 24h of incubation when CEliminéz

compared to the control group (p <0.05). Inhibition of bacterial growth (83.3%) was observed
after 48 h of culture (p <0.05). At a concentration of 0.9 ug/mL a marked growth inhibition was
observed throughout the incubation time. All the analyzed concentrations of cystatin C showed
no effect on the viability of HGFs cells, as illustrated in (Fig. 1b). These findings reveal the
antimicrobial activity of cystatin C against P. gingivalis and did not affect the viability of HGFs.

Hence, we decided to perform all the experimental assays with a cystatin C MIC at 0.3 pug/mL.

Effect of cystatin C on the production of pro- and anti-inflammatory cytokines

TNF-a and IL-1P were evaluated in supernatants of HGFs incubated with P. gingivalis and - ( Con formato: Izquierda

cystatin C (0.3 pg/mL) for 24 h. P. gingivalis induced the production of 1000 pg/mL and 750 (Eliminé:

pg/mL of TNF-a and IL-1p, respectively, when compared to the control group (p = 0.0001) (Figs

2a, 2b). However, when HGFs were incubated with the bacteria and cystatin C, a statistically

significant decrease was observed jn the TNF-a (p = 0.0001) and IL-18 (p < 0.05) productions, CEliminéz

compared to HGFs. In contrast, no changes were observed in IL-10 production by HGFs
incubated with P. gingivalis alone, when compared to controls, whereas cystatin C stimulated de
production and secretion of IL-10 (500 pg/mL). Furthermore, the co-incubation of P. gingivalis
with cystatin C significantly increased the production of IL-10 (900 pg/mL), when compared
with the control group and with HGFs infected with the bacterium (p = 0.0001), (Fig.2c). These

results suggest that cystatin C participates in the regulatory inflammatory process, by reducing CElimin():

inflammatory cytokines and increasing anti-inflammatory cytokines.

Cystatin C decreases ROS and NO production on HGFs incubated with P. gingivalis

A significant increase was observed in the production of ROS and NO in HGF's incubated with (F" iné

P. gingivalis, compared to the controls (p = 0.0001). No significant differences were observed in
the production of ROS in HGF's incubated with cystatin C (p >0.05) (Fig.3a). In contrast, a
significant decrease in ROS was observed after the incubation of HGFs with P. gingivalis and

cystatin C, compared to the control (p = 0.001), (Fig. 3a).



FQS Furthermore, a significant increase of NO (9 uM) was observed after the incubation of HGFs with CF" iné

399  P. gingivalis, when compared with the control group (p =0.0001). Yet when HGFs were incubated

|400 with P. gingivalis and cystatin C, a decrease of NO (3 uM) (p = 0.001) was observed yegarding CEliminti: with regard to
401  the incubation with P. gingivalis alone (Fig. 3b).
402
03  Discussion - ( Con formato: Izquierda
04  In this study, we analyzed the antimicrobial activity of cystatin C against P gingivalis, which CElimind:

405  contributes to the development of chronic periodontitis. The immunological responses occurring
406  in HGFs after the infection with this key periodontal pathogen were evaluated. P. gingivalis
407  exhibits a variety of virulence factors that enable it to colonize oral soft tissues and evade

408  immune responses. It has been demonstrated that P. gingivalis triggers and suppresses the

409 immune responses in HGFs, suggesting that the pathogenic effects of P. gingivalis are mainly
410  related to the action of gingipains, which participate in the inflammatory and immune response
411 of HGFs (Palm, Khalaf & Bengtsson, 2015; Bengtsson, Khalaf & Palm, 2015). Additionally, P.
412 gingivalis has a direct modulatory function on the immune response of fibroblasts through the
413  catalytic activities of gingipains, targeting fibroblast-derived inflammatory mediators at the

414  protein level (Palm, Khalaf & Bengtsson, 2013). P. gingivalis secretes three related cysteine

415  proteases (gingipains), which constitute its main virulence factors. Two gingipains are specific
416  for Arg-Xaa peptide bonds (HRgpA and RgpB), whereas Kgp cleaves after a Lys residue

417  (Imamura, 2003). Interestingly, gingipains are involved in the disruption of host defense

418  inflammatory reactions and hinder P. gingivalis clearance by the immune system (Uehara et al.,
419  2008; Guo, Nguyen & Potempa, 2010). Human gingival fibroblasts play an important part in the

20  innate immune system by sensing microbial invasion and responding to it by producing and

4
|421 secreting inflammatory mediators. HGFs recognize P. gingivalis during the early stages of CElimin():

422  periodontitis and establish an inflammatory response in the periodontal tissue (Palm, Half &

423  Bengtsson, 2015). The secretion of TNF-a and IL-18 by HGFs favor the recruitment of

424  macrophages and neutrophils to the site of infection, as well as the expression of MMP-1, MMP-
425 13, MMP-8, and MMP-9, which contribute to the degradation of the extracellular matrix of the
426  periodontal tissue as well as the reabsorption of bone tissue (Ara et al., 2009; Song et al., 2021;
427  Cheng et al., 2020; Franco et al., 2017; Siu et al; 2020; Menaka et al., 2009).
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Interleukin-1p (IL-1B), belongs to the IL-1 family and plays an important role against microbial
infections and participates regulating innate immune and inflammatory responses. The

upregulation of IL-1f during P. gingivalis infection suggests that IL-1p is a critical cytokine in

(Dio formato: Fuente: Cursiva

the host’s defense against P. gingivalis infection during the initial phases of inflammation

(Dinarello, 2009). In the early stages of P. gingivalis infection, IL-1f plays an important role in

(Bliming:

combating the invading pathogen as part of the innate immune response and participates in
almost all events involved in the activation and regulation of inflammation (Menu & Vince,
2011). This kind of inflammasome-independent IL-1p activation can substantially contribute to
tissue inflammation (Latz & Xiao & Stutz, 2013).

We now demonstrate that cystatin C down-regulates the production of IL-1p and TNF-a in HFGs
co-incubated with P. gingivalis. Our finding is in accordance with the literature, where cystatin C
has been shown to down-regulate the production of IL-1 and TNF-a in monocytes stimulated
with bacterial LPS (Gren et al., 2016). In addition to cystatin C, other salivary antimicrobial
peptides, such as histatin 5 and histatin 1, also down-regulate inflammatory cytokines like IL-6,
IL-8, IL-1P, and TNF-a in fibroblasts and macrophages (Imatani et al., 2000; Lee et al., 2021).
Our data also show that cystatin C enhances IL-10 production by HFGs incubated with P.
gingivalis, which could represent an important mechanism to inhibit an excessive inflammatory
response of HGFs to the P. gingivalis infections. The cytokine IL-10 can inhibit pro-
inflammatory responses, due to its ability to reduce the production of TNF-q, IL-6, and IL-1
cytokines (Sun et al., 2020). Our results suggest that cystatin C could be an important
multifunctional modulator of the innate immune responses in HGFs.

Jn addition to cytokine production, HGFs also produce microbicidal mediators such as ROS and

(Biimino

NO, when they are infected with P. gingivalis. High doses of these molecules have been shown
to be cytotoxic to periodontal tissue (Nogueira et al., 2016), since their excessive production may

lead to tissue breakdown, including inhibition of energy-generating enzymes, triggering DNA

injury, oxidation and nitration reactions, (Wang, Huang & He, 2019; Bodis & CEliminéz
Haregewoin,1993). ROS causes oxidative damage to proteins and DNA, it interferes with cell

growth, and induces apoptosis in gingival fibroblasts, causing periodontitis (Kanzaki et al., 2017;

Cheng et al., 2015; Tomofuji et al., 2006; Marayuma et al., 2011)._In addition to the damage CEliminé: I

caused by ROS, an increase of iNOS expression and NO concentration also leads to severe

damage related to bone resorption, as shown in an experimental rat model of periodontitis
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(Wang, Huang & He 2019). Thus, many inflammatory mediators are crucial for the development
of early periodontal disease, where NO is one of the main inflammatory factors (Pacher

Beckman, & Liaudet, 2007). P. gingivalis induces NO production and inducible nitric oxide

synthase (iNOS) expression in immune and nonimmune host cells (Sun et al., 2010). Although

macrophages are the source of the iNOS expression, NO production is elevated in HGFs that are

stimulated by TNF- o, IL-1p, and IFN-y. NO high concentrations they have a side effect on the

periodontal tissue, favoring vasodilation and platelet aggregation diminish, which can contribute

to gingival bleeding, aside from having cytotoxic effects on the surrounding tissue, increasing

the severity of the periodontitis (Boutrin et al., 2012).

Our data now demonstrated that P. gingivalis stimulates NO release by HGFs and that the co-

v

(Eliming

incubation of the bacterium with cystatin C significantly down-regulates both ROS and NO
productions. These findings are in accordance with the literature, showing that other peptides,
such as hBD3 and sublancin, also reduce the production of ROS in endothelial cells and NO in
peritoneal macrophages, respectively (Wang, Huang & He, 2019; Bian et al., 2017). The results

of our study suggest that NO expression could lead to the gradual progression of periodontitis

after proinflammatory cytokine production by HGFs infected by P. gingivalis and that cystatin C
protects from tissue damage through the reduction of these free radicals. The importance of ROS
in periodontal diseases was previously demonstrated by Cheng et al, who showed that LPS from
P. gingivalis up-regulated ROS in periodontal ligament fibroblasts (Cheng et al., 2015; Goltz et
al., 2014). The release of inflammatory mediators including interleukins, chemokines, adhesion
molecules, and ROS could be.could be triggered by bacteria LPS (Goraca et al., 2013; Melo et
al., 2010; Sanikidze et al., 2006; Bykov et al , 2003).,

NN

Antimicrobial peptides are included in the immune innate defense system in the oral cavity CE“mi“é:
(Greer, Zenobia & Darveau 2013). The antimicrobial peptide cystatin C belongs to the type 2
family of the cystatin superfamily, it is ubiquitously distributed in plants, animals, and
microorganisms (Shamsi & Bano, 2017). Saliva from the parotid gland of humans contain 0.9 B ‘CEliminéz
ug/mL of ¢ystatin C (Gorr S, 2009). The main function of cystatin C is the inhibition of cysteine (El‘m“‘o :
proteases, by binding to their active sites, evading the cleavage of peptide bonds (van Wyk, et ‘ EE::::Z o
al., 2016). The mechanisms leading to the reduction of the inflammatory mediators by cystatin C “CEliminé: ¢
are possibly explained by observations made with a homologous molecule, DsCistatin, isolated ‘(Elimin():

AN A

from the tick Dermacentor silvarum. This peptide was shown to be internalized by endocytosis
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in mouse macrophages stimulated with LPS from Borrelia burgdorferi. It reduced the
inflammatory cytokines IL-1f, IFN-y, TNF-a, and IL-6 by the degradation of the TRAF6
protein, thereby preventing the phosphorylation of IkBa and the subsequent nuclear transport of
NF-«B, leading to the decrease of inflammatory cytokines (Sun et al., 2018). We speculate that
cystatin C possibly follows this route to reduce inflammatory mediators in HGFs incubated with
P. gingivalis.

Our data now show that cystatin C possibly plays an important antimicrobial and anti-
inflammatory role that regulates the response of human gingival fibroblast towards P. gingivalis,

helping to avoid tissue damage and destruction.

Conclusions
Cystatin C exhibits a dual activity during P. gingivalis infection. Antimicrobial activity was

demonstrated without cytotoxic effects on HGFs. Furthermore, cystatin C also exhibited

(Etiming: C

immunomodulatory functions, decreasing the inflammatory response of fibroblasts. Knowledge
on the immunomodulatory properties of cystatin C could aid in the design of new therapeutic

approaches to improve the treatment of periodontal diseases.
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