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Abstract 23 
 24 

Background. Periodontal disease is considered one of the most prevalent chronic infectious 25 

diseases, often leading to the disruption of tooth-supporting tissues, including alveolar bone, 26 

causing tooth mobility and loss. Porphyromonas gingivalis is considered the major etiological 27 

agent of this disease, having a plethora of virulence factors, including, lipopolysaccharides, 28 

hemolysins, and proteinases. Antimicrobial peptides are one of the main components of the innate 29 

immune response that inhibit the growth of P. gingivalis. The aim of this study was to analyze the 30 

antimicrobial activity of Cystatin C and to assess the effect on the inflammatory and anti-31 

inflammatory cytokines, the production of reactive oxygen species, and in the release of nitric 32 

oxide by human gingival fibroblasts incubated with P. gingivalis in the presence and absence of 33 

cystatin C. 34 

Methods. P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured with 35 

human gingival fibroblasts (HGFs) ATCC CRL-2014.  The effect of cystatin on growth of P. 36 

Eliminó: effect 37 



gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-38 

10) cytokines were determined by ELISA in the supernatants of HGFs incubated with P. gingivalis 39 

exposed to cystatin C. Additionally, nitrites and reactive oxygen species (ROS) production were 40 

evaluated. 41 

 Results. Cystatin C inhibited the growth of P. gingivalis without affecting HGFs. Incubation of 42 

HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β. In contrast, HGFs 43 

incubated with P. gingivalis exposed to cystatin C showed a decreased production of both 44 

cytokines, whereas IL-10 was enhanced. Incubation of HGFs with P. gingivalis led to an increased 45 

NO and ROS production, which was reduced in the presence of the peptide. 46 

Conclusions. Cystatin C inhibits the growth of Porphyromonas gingivalis and decreases the 47 

inflammatory cytokines, ROS, and NO production during infection of HGFs with P. gingivalis. 48 

Knowledge on the antimicrobial and immunomodulatory properties of cystatin C could aid in the 49 

design of new therapeutic approaches to facilitate the elimination of this bacterium to improve the 50 

treatment of periodontal disease. 51 

 52 
Introduction 53 
 54 
     Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory 55 

response and progressive loss of tooth supporting tissues (Könönen et al., 2019) Porphyromonas 56 

gingivalis is a periodontal pathogen bacterium implicated as a major, etiological agent in 57 

periodontitis (van Winkelhoff et al., 2002). This bacterium has been recovered from periodontal 58 

pockets in a high percentage (75.8%) of patients with periodontitis (Rafiei et al., 2017). 59 

     The most abundant cell types in periodontal connective tissues are gingival fibroblasts (GF), 60 

where they participate in the repair of periodontal tissues during inflammatory periodontal 61 

diseases (Lee, et al., 2013). GF also promotes periodontal wound healing (Smith et al., 2019; 62 

Baek et al., 2013). 63 
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Furthermore, LPS of P. gingivalis increases their superoxide concentrations after exposure to 66 

human gingival fibroblasts (HGFs) (Gölz et al., 2014). Thus, these cells can also participate in 67 

the progression of periodontitis, inducing the release of inflammatory such as; nitric oxide, 68 

cytokines, reactive oxygen species (ROS), and nitric oxide (How et al., 2016; Kirkwood et al., 69 

2007; Gölz et al., 2014; Herath et al., 2016).  70 

    Cytokines are involved in the initiation and progression of periodontal disease (Ramadan et 71 

al., 2020). Even though secreted cytokines promote the elimination of bacteria, the 72 

overproduction of pro-inflammatory cytokines may participate directly in periodontal 73 

breakdowns, such as the breakdown of collagen periodontal attachment loss, and alveolar bone 74 

resorption (Gabay, Lamachia & Palmer, 2010). TNF-α and IL-1β are the major secreted pro-75 

inflammatory cytokines, that are important markers of periodontitis progression and severity. and 76 

they are also the main inducers of effector molecules that cause the breakdown of periodontal 77 

tissues (Gomes et al., 2016). TNF-α and IL-1β are produced by several cell types including 78 

dendritic cells, macrophages, periodontal ligament cells, osteoblasts, and gingival fibroblasts and 79 

can act as multifunctional molecules (Cheng et al., 2020). IL-1β promotes production of 80 

metalloproteinases (MMPs), which are involved in the extracellular matrix degradation and, in 81 

turn, bone resorption and periodontal tissue destruction (Aleksandrowicz et al., 2021). TNF-α, 82 

participates in the bone resorption process, inducing receptor activators for nuclear factor -kB 83 

(RANK) expression in osteoclast precursors and RANKL expression in osteoblast (Pan, Wang & 84 

Chen, 2019). In addition, TNF-α and IL-1β also induce reactive oxygen species (ROS) 85 

generation in periodontal tissue (Wang et al., 2014), where oxidative stress has been shown to be 86 

involved in periodontitis (Tomofuji et al., 2006; Maruyama et al., 2011).These pro-inflammatory 87 

mediators are required for the immune defense against bacteria, yet their uncontrolled activity 88 

leads the accumulation of ROS (superoxide radicals, hydrogen peroxide, hydroxyl radicals and 89 

singlet oxygen) (Gölz et al., 2014). Even though these products stimulate proliferation and 90 

differentiation of cultured human periodontal ligament fibroblasts at low concentrations, their 91 

presence in higher concentrations can induce pathogen killing and cytotoxic effects on 92 

periodontal tissues and pathogen killing (Chapple & Matthews 2007). Zhu et al. (2020) 93 

demonstrated that after the stimulation of HGFs with LPS, ROS production in mitochondria 94 

(mtROS) were significantly enhanced these results indicate that oxidative stress can be induced 95 

during periodontitis (Liu et al., 2021). It is noteworthy that P. gingivalis is resistant to oxidative 96 
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burst killing due to its antioxidant enzymes, such as thiol peroxidases and rubrerythrin. 108 

Furthermore, these bacteria accumulate a hemin layer on the cell surface that protects the 109 

bacteria from oxidative stress (Wang et al., 2014; Henry, McKenzie, Robles & Fletcher, 2012).  110 

On the other hand, IL-10, an anti-inflammatory cytokine that suppresses the inflammatory 111 

responses (Al-Rasheed et al., 2003), also protects from tissue destruction by inhibiting both 112 

matrix metalloproteinases (MMPs) and receptor activators for nuclear factor-kB (RANK) 113 

systems, leading to the differentiation and activation of osteoclasts (Garlet et al., 2006).      114 

Stimulation with bacteria or bacterial components like LPS induce the production of 115 

inflammatory cytokines, such as interleukin 1, -6, -8, and nitric oxide (NO), in human 116 

monocytes, endothelial cells, macrophages, and gingival fibroblasts (Gutierrez-Venegas et al., 117 

2005; Staudte et al., 2010; Gölz et al, 2014). P. gingivalis triggers the production of NO by 118 

activating the expression of inducible nitric oxide synthases (NOS) (Sun, et al. 2010; Brennan, 119 

Thomas, & Langdon, 2003). It is noteworthy that it can resist NO stress and maintain nontoxic 120 

intracellular NO concentrations (Zumf, 2002). Thus, a high concentration of NO fails to 121 

eliminate this bacterium, yet it can exert a deleterious effect on the periodontal tissue, favoring 122 

vasodilation and diminishing platelet aggregation, which contributes to gingival bleeding. These 123 

toxic effects on the surrounding tissue increase the severity of periodontitis (Boutrin et al., 2012). 124 

It has been suggested that the inducible nitric oxide synthase (iNOS) may be involved in 125 

periodontal disease (Batista et al., 2002), because usually  periodontal pathogenic bacteria 126 

increase the production  of iNOS , including HGFs (Sosroseno, et al., 2009). 127 

Furthermore, cytokines and chemokines produced by gingival fibroblasts in response to P. 128 

gingivalis infection could increase and their effects on leukocytes are modulated by the 129 

enzymatic activity of P. gingivalis-derived proteinases, that cleave and disrupt their functions 130 

(Calkins et al. 1998; Kobayashi, Isogi & Hirose 2003; Palm, Khalaf & Bengtsson, 2015). The 131 

production of P. gingivalis cysteine proteinases are associated with the growth and establishment 132 

of P. gingivalis, they are divided into arginine-specific (Rgp) and lysine-specific (Kgp) 133 

proteinases. Additionally, these cysteine proteases exert potent immunomodulatory effects on 134 

human gingival fibroblasts. The main causative factor of tissue damage involved in the disease 135 

progression, could be the gingipains of the bacterium, even though P. gingivalis is considered an 136 

opportunistic pathogen. Thus, control of proteolytic enzymes of P. gingivalis could represent an 137 

interesting target for the treatment of periodontitis (Torbjörn, Atika &Hazem, 2015).  138 
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Antimicrobial peptides (AMPs) are part of the innate defense system in the oral cavity, where 162 

cystatins play an important role. Cystatin C belongs to the type 2 family of the cystatin 163 

superfamily, it is ubiquitously distributed in plants and animals (Shamsi & Bano, 2017). In the 164 

parotid gland of humans, it is present in saliva at a concentration of 0.9 µg/mL (Gorr, 2012). The 165 

main function of cystatin C is the inhibition of cysteine proteases by binding to their active sites 166 

(Palm, Khalaf & Bengtsson, 2015). It also exerts several immunomodulatory functions and 167 

possesses the ability to regulate innate immune responses (Vray, Hartmann & Hoebeke, 2002). 168 

The aim of this study was to assess the effect that cystatin C exerts on cytokine production, NO 169 

and ROS production by human gingival fibroblasts incubated with P. gingivalis in order to be 170 

able to evaluate its potential therapeutic use against one of the main etiological agents causing 171 

periodontitis, as well as its potential impact on the severity of periodontal disease.  172 

 173 
Materials & Methods 174 
 175 
 Cells culture 176 
Human gingival fibroblasts (HGFs) (ATCC, CRL-2104) were seeded at a density of 5×103 177 

cells/cm2 and cultured in 75 cm2 culture flasks in water-saturated atmosphere at 37°C plus 178 

5% CO2 and maintained in Dulbecco´s modified Eagle high glucose medium (Sigma Aldrich, 179 

Saint Louis, MO, USA), supplemented with 10% fetal bovine serum (GIBCO BRL, 180 

Gaithersburg, MD, USA), containing 10 U penicillin plus 25 μg streptomycin /mL) (Sigma 181 

Aldrich).  The fibroblasts were cultured to confluence, at a density of 2.5´105 cells/mL, washed 182 

twice with phosphate-buffered saline, and dissociated with 0.25% trypsin and 1 mM EDTA for 5 183 

min at 37°C, 5% CO2 (Sigma Aldrich, Saint Louis, MO, USA). The cells were used at passages 184 

3-7.  185 

 186 
Bacterial growth 187 
 188 
P. gingivalis strain ATCC 33277 was cultured in brain-heart-infusion and in broth-heart-brain 189 

extract (BHI; BD Bioxon, Milan, Italy) containing 5 µg/mL of hemin (Sigma-Aldrich, Munich, 190 

Germany) supplemented with  1 µg/mL of menadione (Sigma-Aldrich) cultured  at 37°C for 24 h  191 

in anaerobic conditions, using the BBL-GasPak jar system (BD Biosciences) 192 
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After cultivation for 24 h, bacteria were recovered by centrifugation (10 min at 10000 rpm), 214 

washed and resuspended in Krebs-Ringer-Glucose (KRG) buffer (120 mM NaCl, 4.9 mM KCl, 215 

1.2 mM MgSO4, 1.7 mM KH2PO4, 8.3 mM Na2HPO4, 10 mM glucose, and 1.1 mM CaCl2, pH 216 

7.3). Bacterial growth was monitored spectrophotometrically (Jenway Genova R0027, Fischer 217 

Scientific, USA) at 675 nm. The bacterial density was visually adjusted to a turbidity of 0.5 218 

McFarland (1×108 colony-forming units (CFU/mL) (Mc Farland, 1907 Emani et al., 2014)). 219 

Ethical approval was given by the Ethics Committee of the School of Medicine (UNAM) with 220 

reference number C54-11. 221 

 222 

Antibacterial assay 223 

Lyophilized cystatin C was obtained from Pichia Pastoris (Sigma Aldrich, St. Louis, MO) and 224 

reconstituted in Tris Base NaCl Buffer (pH 7.4). Minimum inhibitory concentrations (MIC) of 225 

Cystatin C were determined using the microdilution method in 96-well microtiter plates (Costar, 226 

Corning Life Sciences) (Eloff, 1998; Jadaun et al., 2007). Briefly, an inoculum of P. gingivalis 227 

(1x106 CFU/mL) containing KRG Buffer was placed in each well. Subsequently, different cystatin 228 

C concentrations (0.1, 0.3, 0.5, 0.7, 0.9 µg/mL) were incubated with the bacteria for 1, 12, 24, and 229 

48 h, under anaerobiosis conditions at 37°C. After the incubation period, 20 µL of Presto Blue Cell 230 

Viability Reagent (Invitrogen, Thermo Fisher Scientific) per well were added. The plates were 231 

incubated for 30 min at 37°C in the dark. Finally, the plates were read in a microplate reader 232 

(Multiskan SkyHigh Microplate Spectrophotometer) at a 675 nm wavelength. 233 

 234 

Cell Viability assay  235 

HGFs were seeded at a density of 1x105 cells/well in 24-well plates for 24 h, at 37°C with 5% 236 

CO2. Different concentrations of cystatin C (0.1, 0.3, 0.5,0.7,0.9 µg/ml) were added and incubated 237 

for 24 h. After incubation time, 25 µl of XTT/PBS solution (4 mg/4ml) were added per well, for 238 

40 minutes at room temperature, in the dark. Subsequently, microplate plates were read at a 239 

wavelength of 450 nm in a microplate spectrophotometer (Multiskan SkyHigh Microplate 240 

Spectrophotometer). 241 

 242 

Treatment of human gingival fibroblasts (HGFs) with P. gingivalis 243 
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Human gingival fibroblasts, at a seeding density of 5´105 cells/well, were cultured in a Costarâ 264 

24-well plate (Corning Life Sciences, Corning, NY, USA) in DMEM medium at 37°C in an 265 

atmosphere of 5% CO2. After the incubation period, fresh medium without antibiotics was added 266 

to HGFs, before they were treated with P. gingivalis. HGFs were stimulated with bacteria, at 267 

multiplicities of infection (MOI) of 1:100 for 24 h, and with cystatin C at a concentration of 0.3 268 

µg/mL at 37°C for 24 h, to perform cytokine assays, and evaluate ROS, and NO. Control groups 269 

include HGFs without stimulation or stimulated with 100 ng/mL of LPS (LPS from Escherichia 270 

coli O111:B4, Sigma Aldrich), or with10µg/mL of peptidoglycans (Peptidoglycan from 271 

Staphylococcus aureus, Sigma Aldrich). 272 

 273 

 274 

Cytokine assays 275 

For cytokine assays, HGFs were incubated with P. gingivalis (MOI 1:100) and/or with cystatin C 276 

at a concentration of 0.3 µg/mL at 37°C for 24 h. Control groups included HGFs without 277 

stimulation or stimulated with LPS 100 ng/mL (LPS from Escherichia coli O111:B4, Sigma 278 

Aldrich) or with peptidoglycan 10 µg/mL (Peptidoglycan from Staphylococcus aureus, Sigma 279 

Aldrich). ELISAs were performed to determine TNF-a, IL-1β, and IL-10, using the Ready-Set-280 

Go! ELISA kits (BD Biosciences, Cytokine ELISA Protocol, San Diego, CA, USA), following 281 

the manufacturer’s protocol. Dilutions were prepared in dilution buffer. Briefly, 96-well plates 282 

with lat-bottom (Costarâ, Corning Life Sciences) were coated with anti-human monoclonal 283 

antibodies recognizing IL-1β, IL-10 or TNF-a  (BD Biosciences, Pharmingen). After blocking 284 

with the assay solution (PBS-0.5% casein diluted in 1 M NaOH) an overnight incubation at 4°C 285 

was done in order to eliminate  non-specific binding, for this 100 µL of standard TNF-a, IL-1β, 286 

or IL-10 (BD Bioscience, Pharmingen) of supernatants were added. The microplate was washed 287 

to remove unbound enzyme-labeled antibodies. The amount of horseradish peroxidase in each 288 

well was revealed by the addition of a substrate solution. Finally, the reaction was stopped by the 289 

addition of 0.18 M sulfuric acid and the plates were read at 405 nm (ELISA microplate reader, 290 

Bio-Rad, Hercules, CA, USA).      291 

     The cytokine concentrations were calculated by regression analysis from a standard curve. 292 

The detection limit of the assay was 15 to 2000 pg/mL. 293 

 294 
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 Measurement of NO production  318 

The NO production by HGFs incubated with P. gingivalis and/or cystatin C at 37°C was assayed 319 

by measuring the accumulation of nitrate in culture supernatants. Briefly, HGFs were stimulated 320 

with P. gingivalis (MOI 1:100) and with 0.3 µg of cystatin C, at 37°C for 24 h. Thereafter, 100 321 

µL of Griess reagent (1% sulphanilamide, 0.1% naphthylethylene diamine dihydrochloride, and 322 

2.5% phosphoric acid) (Sigma Aldrich) were added at equal volumes of culture supernatants in a 323 

96- well plate (Costarâ, Corning Life Sciences) and left at room temperature for 30 min. The 324 

absorbance of these supernatants were read at 550 nm (Multiskan SkyHigh Microplate 325 

Spectrophotometer) and the nitrate concentrations were calculated from a standard curve 326 

established with serial dilutions of NaNO2 (Sigma-Aldrich) in the culture medium. Control 327 

groups included HGFs without stimulation or stimulated with LPS or peptidoglycan. 328 

 329 

 Detection of Reactive Oxygen Species (ROS) 330 

HGFs were seeded on 24-well plates (Costarâ, Corning Life Sciences) at a density of (5x105), 331 

infected with P. gingivalis (MOI 1:100) and stimulated with 0.3 µg/ml of cystatin C at 37°C for 332 

24 h. The cells were incubated with 100 µg/mL [2 µM/mL] of 2,7 dichlorodidrofluoroescein 333 

diacetate (H2-DCFDA) for 30 min in the dark at room temperature. Cells were rinsed twice with 334 

PBS, pH 7.2 and detached from the wells with 0.25% Trypsin/EDTA (Sigma Aldrich). The 335 

samples were resuspended in PBS, pH 7.2, with 1% FBS and analyzed on a FACS Canto II BD 336 

Biosciences flow cytometer. Data analysis was performed using FlowJo software (USA). Control 337 

groups included HGFs without stimulation or stimulated with LPS or peptidoglycan. 338 

 339 

Statistical analysis 340 

Experimental and control conditions were statistically compared for significance using analysis 341 

of variance (ANOVA), followed by Benferroni correction. The predetermined level of 342 

significance was p < 0.05. Statistical analysis was performed with the GraphPad, Prism v.6 343 

software (GraphPad Software, Inc., CA, USA). 344 

 345 

Results 346 
Effects of cystatin C on growth of P. gingivalis and viability of HGFs 347 
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The antimicrobial activity of cystatin C on P.gingivalis was analyzed in a time and dose-360 

dependent manner as shown in (Fig. 1a). It reached its maximal antimicrobial activity at 24 h 361 

with concentrations between 0.1 and 0.3 µg/mL. 362 

      The concentration of 0.3 µg/mL inhibited 75% of bacteria growth after 24h of incubation when 363 

compared to the control group (p <0.05). Inhibition of bacterial growth (83.3%) was observed 364 

after 48 h of culture (p <0.05). At a concentration of 0.9 µg/mL a marked growth inhibition was 365 

observed throughout the incubation time. All the analyzed concentrations of cystatin C showed 366 

no effect on the viability of HGFs cells, as illustrated in (Fig. 1b). These findings reveal the 367 

antimicrobial activity of cystatin C against P. gingivalis and did not affect the viability of HGFs. 368 

Hence, we decided to perform all the experimental assays with a cystatin C MIC at 0.3 µg/mL. 369 

 370 
Effect of cystatin C on the production of pro- and anti-inflammatory cytokines  371 
 372 
TNF-α and IL-1β were evaluated in supernatants of HGFs incubated with P. gingivalis and 373 

cystatin C (0.3 µg/mL) for 24 h. P. gingivalis induced the production of 1000 pg/mL and 750 374 

pg/mL of TNF-α and IL-1β, respectively, when compared to the control group (p = 0.0001) (Figs 375 

2a, 2b). However, when HGFs were incubated with the bacteria and cystatin C, a statistically 376 

significant decrease was observed in the TNF-α (p = 0.0001) and IL-1β (p < 0.05) productions, 377 

compared to HGFs. In contrast, no changes were observed in IL-10 production by HGFs 378 

incubated with P. gingivalis alone, when compared to controls, whereas cystatin C stimulated de 379 

production and secretion of IL-10 (500 pg/mL). Furthermore, the co-incubation of P. gingivalis 380 

with cystatin C significantly increased the production of IL-10 (900 pg/mL), when compared 381 

with the control group and with HGFs infected with the bacterium (p = 0.0001), (Fig.2c). These 382 

results suggest that cystatin C participates in the regulatory inflammatory process, by reducing 383 

inflammatory cytokines and increasing anti-inflammatory cytokines. 384 

 385 

Cystatin C decreases ROS and NO production on HGFs incubated with P. gingivalis  386 

A significant increase was observed in the production of ROS and NO in HGFs incubated with 387 

P. gingivalis, compared to the controls (p = 0.0001). No significant differences were observed in 388 

the production of ROS in HGFs incubated with cystatin C (p >0.05) (Fig.3a). In contrast, a 389 

significant decrease in ROS was observed after the incubation of HGFs with P. gingivalis and 390 

cystatin C, compared to the control (p = 0.001), (Fig. 3a). 391 
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Furthermore, a significant increase of NO (9 µM) was observed after the incubation of HGFs with 398 

P. gingivalis, when compared with the control group (p = 0.0001). Yet when HGFs were incubated 399 

with P. gingivalis and cystatin C, a decrease of NO (3 µM) (p = 0.001) was observed regarding 400 

the incubation with P. gingivalis alone (Fig. 3b). 401 

 402 
Discussion 403 

In this study, we analyzed the antimicrobial activity of cystatin C against P gingivalis, which 404 

contributes to the development of chronic periodontitis. The immunological responses occurring 405 

in HGFs after the infection with this key periodontal pathogen were evaluated.  P. gingivalis 406 

exhibits a variety of virulence factors that enable it to colonize oral soft tissues and evade 407 

immune responses. It has been demonstrated that P. gingivalis triggers and suppresses the 408 

immune responses in HGFs, suggesting that the pathogenic effects of P. gingivalis are mainly 409 

related to the action of gingipains, which participate in the inflammatory and immune response 410 

of HGFs (Palm, Khalaf & Bengtsson, 2015; Bengtsson, Khalaf & Palm, 2015). Additionally, P. 411 

gingivalis has a direct modulatory function on the immune response of fibroblasts through the 412 

catalytic activities of gingipains, targeting fibroblast-derived inflammatory mediators at the 413 

protein level (Palm, Khalaf & Bengtsson, 2013). P. gingivalis secretes three related cysteine 414 

proteases (gingipains), which constitute its main virulence factors. Two gingipains are specific 415 

for Arg-Xaa peptide bonds (HRgpA and RgpB), whereas Kgp cleaves after a Lys residue 416 

(Imamura, 2003). Interestingly, gingipains are involved in the disruption of host defense 417 

inflammatory reactions and hinder P. gingivalis clearance by the immune system (Uehara et al., 418 

2008; Guo, Nguyen & Potempa, 2010). Human gingival fibroblasts play an important part in the 419 

innate immune system by sensing microbial invasion and responding to it by producing and 420 

secreting inflammatory mediators. HGFs recognize P. gingivalis during the early stages of 421 

periodontitis and establish an inflammatory response in the periodontal tissue (Palm, Half & 422 

Bengtsson, 2015). The secretion of TNF-α and IL-1β by HGFs favor the recruitment of 423 

macrophages and neutrophils to the site of infection, as well as the expression of MMP-1, MMP-424 

13, MMP-8, and MMP-9, which contribute to the degradation of the extracellular matrix of the 425 

periodontal tissue as well as the reabsorption of bone tissue (Ara et al., 2009; Song et al., 2021; 426 

Cheng et al., 2020; Franco et al., 2017; Siu et al; 2020; Menaka et al., 2009). 427 
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Interleukin-1β (IL-1β), belongs to the IL-1 family and plays an important role against microbial 432 

infections and participates regulating innate immune and inflammatory responses. The 433 

upregulation of IL-1β during P. gingivalis infection suggests that IL-1β is a critical cytokine in 434 

the host’s defense against P. gingivalis infection during the initial phases of inflammation 435 

(Dinarello, 2009). In the early stages of P. gingivalis infection, IL-1β plays an important role in 436 

combating the invading pathogen as part of the innate immune response and participates in 437 

almost all events involved in the activation and regulation of inflammation (Menu & Vince, 438 

2011). This kind of inflammasome-independent IL-1β activation can substantially contribute to 439 

tissue inflammation (Latz & Xiao & Stutz, 2013).  440 

We now demonstrate that cystatin C down-regulates the production of IL-1β and TNF-α in HFGs 441 

co-incubated with P. gingivalis. Our finding is in accordance with the literature, where cystatin C 442 

has been shown to down-regulate the production of IL-1β and TNF-α in monocytes stimulated 443 

with bacterial LPS (Gren et al., 2016). In addition to cystatin C, other salivary antimicrobial 444 

peptides, such as histatin 5 and histatin 1, also down-regulate inflammatory cytokines like IL-6, 445 

IL-8, IL-1β, and TNF-α in fibroblasts and macrophages (Imatani et al., 2000; Lee et al., 2021).  446 

Our data also show that cystatin C enhances IL-10 production by HFGs incubated with P. 447 

gingivalis, which could represent an important mechanism to inhibit an excessive inflammatory 448 

response of HGFs to the P. gingivalis infections. The cytokine IL-10 can inhibit pro-449 

inflammatory responses, due to its ability to reduce the production of TNF-α, IL-6, and IL-1 450 

cytokines (Sun et al., 2020). Our results suggest that cystatin C could be an important 451 

multifunctional modulator of the innate immune responses in HGFs. 452 

In addition to cytokine production, HGFs also produce microbicidal mediators such as ROS and 453 

NO, when they are infected with P. gingivalis. High doses of these molecules have been shown 454 

to be cytotoxic to periodontal tissue (Nogueira et al., 2016), since their excessive production may 455 

lead to tissue breakdown, including inhibition of energy-generating enzymes, triggering DNA 456 

injury, oxidation and nitration reactions, (Wang, Huang & He, 2019; Bodis & 457 

Haregewoin,1993). ROS causes oxidative damage to proteins and DNA, it interferes with cell 458 

growth, and induces apoptosis in gingival fibroblasts, causing periodontitis (Kanzaki et al., 2017; 459 

Cheng et al., 2015; Tomofuji et al., 2006; Marayuma et al., 2011). In addition to the damage 460 

caused by ROS, an increase of iNOS expression and NO concentration also leads to severe 461 

damage related to bone resorption, as shown in an experimental rat model of periodontitis 462 
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(Wang, Huang & He 2019). Thus, many inflammatory mediators are crucial for the development 467 

of early periodontal disease, where NO is one of the main inflammatory factors (Pacher 468 

Beckman, & Liaudet, 2007). P. gingivalis induces NO production and inducible nitric oxide 469 

synthase (iNOS) expression in immune and nonimmune host cells (Sun et al., 2010). Although 470 

macrophages are the source of the iNOS expression, NO production is elevated in HGFs that are 471 

stimulated by TNF- α, IL-1β, and IFN-γ. NO high concentrations they have a side effect on the 472 

periodontal tissue, favoring vasodilation and platelet aggregation diminish, which can contribute 473 

to gingival bleeding, aside from having cytotoxic effects on the surrounding tissue, increasing 474 

the severity of the periodontitis (Boutrin et al., 2012). 475 

      Our data now demonstrated that P. gingivalis stimulates NO release by HGFs and that the co-476 

incubation of the bacterium with cystatin C significantly down-regulates both ROS and NO 477 

productions. These findings are in accordance with the literature, showing that other peptides, 478 

such as hBD3 and sublancin, also reduce the production of ROS in endothelial cells and NO in 479 

peritoneal macrophages, respectively (Wang, Huang & He, 2019; Bian et al., 2017). The results 480 

of our study suggest that NO expression could lead to the gradual progression of periodontitis 481 

after proinflammatory cytokine production by HGFs infected by P. gingivalis and that cystatin C 482 

protects from tissue damage through the reduction of these free radicals. The importance of ROS 483 

in periodontal diseases was previously demonstrated by Cheng et al, who showed that LPS from 484 

P. gingivalis up-regulated ROS in periodontal ligament fibroblasts (Cheng et al., 2015; Goltz et 485 

al., 2014). The release of inflammatory mediators including interleukins, chemokines, adhesion 486 

molecules, and ROS could be.could be  triggered  by bacteria LPS (Goraca et al., 2013; Melo et 487 

al., 2010; Sanikidze et al., 2006; Bykov et al., 2003). 488 

Antimicrobial peptides are included in the immune innate defense system in the oral cavity 489 

(Greer, Zenobia & Darveau 2013). The antimicrobial peptide cystatin C belongs to the type 2 490 

family of the cystatin superfamily, it is ubiquitously distributed in plants, animals, and 491 

microorganisms (Shamsi & Bano, 2017). Saliva from the parotid gland of humans contain 0.9 492 

µg/mL of cystatin C (Gorr S, 2009). The main function of cystatin C is the inhibition of cysteine 493 

proteases, by binding to their active sites, evading the cleavage of peptide bonds (van Wyk, et 494 

al., 2016). The mechanisms leading to the reduction of the inflammatory mediators by cystatin C 495 

are possibly explained by observations made with a homologous molecule, DsCistatin, isolated 496 

from the tick Dermacentor silvarum. This peptide was shown to be internalized by endocytosis 497 
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in mouse macrophages stimulated with LPS from Borrelia burgdorferi. It reduced the 508 

inflammatory cytokines IL-1β, IFN-γ, TNF-α, and IL-6 by the degradation of the TRAF6 509 

protein, thereby preventing the phosphorylation of IκBα and the subsequent nuclear transport of 510 

NF-κB, leading to the decrease of inflammatory cytokines (Sun et al., 2018). We speculate that 511 

cystatin C possibly follows this route to reduce inflammatory mediators in HGFs incubated with 512 

P. gingivalis. 513 

Our data now show that cystatin C possibly plays an important antimicrobial and anti-514 

inflammatory role that regulates the response of human gingival fibroblast towards P. gingivalis, 515 

helping to avoid tissue damage and destruction. 516 

 517 

Conclusions 518 

Cystatin C exhibits a dual activity during P. gingivalis infection. Antimicrobial activity was 519 

demonstrated without cytotoxic effects on HGFs. Furthermore, cystatin C also exhibited 520 

immunomodulatory functions, decreasing the inflammatory response of fibroblasts. Knowledge 521 

on the immunomodulatory properties of cystatin C could aid in the design of new therapeutic 522 

approaches to improve the treatment of periodontal diseases. 523 

  524 
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