
Submitted 4 August 2022
Accepted 22 September 2022
Published 25 October 2022

Corresponding author
Ana María Fernández-Presas, pre-
sas@unam.mx

Academic editor
Bernardo Franco

Additional Information and
Declarations can be found on
page 12

DOI 10.7717/peerj.14232

Copyright
2022 Blancas-Luciano et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Antimicrobial and anti-inflammatory
activity of Cystatin C on human gingival
fibroblast incubated with Porphyromonas
gingivalis
Blanca Esther Blancas-Luciano1, Ingeborg Becker-Fauser2,
Jaime Zamora-Chimal2, José Delgado-Domínguez2, Adriana Ruíz-Remigio2,
Elba Rosa Leyva-Huerta3, Javier Portilla-Robertson3 and
Ana María Fernández-Presas1,4

1Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México,
Mexico City, México

2Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México,
Mexico City, México

3Departmento de Medicina Oral y Patología, División de Posgrado, Facultad de Odontología, Universidad
Nacional Autónoma de México, Mexico City, México

4Centro de investigación en Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte,
Mexico City, México

ABSTRACT
Background. Periodontal disease is considered one of the most prevalent chronic in-
fectious diseases, often leading to the disruption of tooth-supporting tissues, including
alveolar bone, causing tooth mobility and loss. Porphyromonas gingivalis is considered
the major etiological agent of this disease, having a plethora of virulence factors,
including, lipopolysaccharides (LPS), hemolysins, and proteinases. Antimicrobial
peptides are one of themain components of the innate immune response that inhibit the
growth of P. gingivalis. The aim of this study was to analyze the antimicrobial activity of
cystatinC and to assess the effect on the inflammatory and anti-inflammatory cytokines,
the production of reactive oxygen species, and in the release of nitric oxide by human
gingival fibroblasts incubated with P. gingivalis in the presence and absence of cystatin
C.
Methods. P. gingivalis ATCC 33277 was exposed to cystatin C for 24h and co-cultured
with human gingival fibroblasts (HGFs) ATCC CRL-2014. The effect of cystatin on
growth of P. gingivalis and HGFs was evaluated. Pro-inflammatory (TNFα, IL-1β) and
anti-inflammatory (IL-10) cytokines were determined by ELISA in the supernatants
of HGFs incubated with P. gingivalis exposed to cystatin C. Additionally, nitrites and
reactive oxygen species (ROS) production were evaluated.
Results. Cystatin Cinhibited the growth of P. gingivalis without affecting HGFs.
Incubation of HGFs with P. gingivalis led to a significant increase of TNF-α and IL-1β.
In contrast, HGFs incubated with P. gingivalis exposed to cystatin C showed a decreased
production of both cytokines, whereas IL-10 was enhanced. Incubation of HGFs with
P. gingivalis led to an increase of nitric oxide (NO) and ROS production, which was
reduced in the presence of the peptide.
Conclusions. Cystatin C inhibits the growth of P. gingivalis and decreases the
inflammatory cytokines, ROS, and NO production during infection of HGFs with
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P. gingivalis. Knowledge on the antimicrobial and immunomodulatory properties of
cystatin C could aid in the design of new therapeutic approaches to facilitate the
elimination of this bacterium to improve the treatment of periodontal disease.

Subjects Biochemistry, Cell Biology, Microbiology, Dentistry
Keywords Porphyromonas gingivalis, Human gingival fibroblasts, Cystatin C , Cytokines, Nitric
oxide, Reactive Oxigen Species

INTRODUCTION
Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory
response and progressive loss of tooth supporting tissues (Könönen, Gursoy & Gursoy,
2019) Porphyromonas gingivalis is a periodontopathogen bacterium implicated as a
major, etiological agent in periodontitis (Van Winkelhoff et al., 2002). This bacterium
has been recovered from periodontal pockets in a high percentage (75.8%) of patients with
periodontitis (Rafiei et al., 2017).

The most abundant cell types in periodontal connective tissues are gingival fibroblasts
(GF), where they participate in the repair of periodontal tissues during inflammatory
periodontal diseases (Lee, Lee & Jang, 2013). GF also promotes periodontal wound healing
(Smith et al., 2019; Baek, Choi & Ji, 2013).

Furthermore, LPS of Porphyromonas gingivalis increases their superoxide concentrations
after the exposure to human gingival fibroblasts (HGFs) (Staudte et al., 2010; Gölz et al.,
2014). Thus, these cells can also participate in the progression of periodontitis, inducing
the release of inflammatory such as mediators nitric oxide cytokines, and reactive oxygen
species (ROS), and nitric oxide (How, Song & Chan, 2016; Kirkwood et al., 2007; Gölz et al.,
2014; Herath et al., 2016).

Cytokines are involved in the initiation and progression of periodontal disease (Ramadan
et al., 2020) Even though secreted cytokines promote the elimination of bacteria, the
overproduction of pro-inflammatory cytokines may participate directly in periodontal
breakdowns, such as the breakdown of collagen periodontal attachment loss, and
alveolar bone resorption (Gabay, Lamacchia & Palmer, 2010). TNF-α and IL-1β are the
major secreted pro-inflammatory cytokines, that are important markers of periodontitis
progression and severity. They are also the main inducers of effector molecules that cause
the breakdown of periodontal tissues (Gomes et al., 2016). TNF-α and IL-1β are produced
by several cell types including dendritic cells, macrophages, periodontal ligament cells,
osteoblasts, and gingival fibroblasts and can act as multifunctional molecules (Cheng et
al., 2020). IL-1 β promotes production of metalloproteinases (MMPs), which are involved
in the extracellular matrix degradation and, in turn, bone resorption and periodontal
tissue destruction (Aleksandrowicz et al., 2021). TNF-α, participates in the bone resorption
process, inducing RANK expression in osteoclast precursors and RANKL expression in
osteoblast (Pan, Wang & Chen, 2019). In addition, TNF-α and IL-1 β also induce reactive
oxygen species (ROS) generation in periodontal tissue (Wang et al., 2014), where oxidative
stress has been shown to be involved in periodontitis (Tomofuji et al., 2006; Maruyama et
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al., 2011).These pro-inflammatory mediators are required for the immune defense against
bacteria, yet their uncontrolled activity leads the accumulation of ROS (superoxide radicals,
hydrogen peroxide, hydroxyl radicals and singlet oxygen) (Gölz et al., 2014). Even though
these products stimulate proliferation and differentiation of cultured human periodontal
ligament fibroblasts at low concentrations, their presence in higher concentrations can
induce pathogen killing and cytotoxic effects on periodontal tissues and pathogen killing
(Chapple & Matthews, 2007). Zhu et al. (2020) demonstrated that after the stimulation of
HGFs with LPS, ROS production in mitochondria (mtROS) was significantly enhanced,
these results indicate that oxidative stress can be induced during periodontitis (Liu et
al., 2022). It is noteworthy that P. gingivalis is resistant to oxidative burst killing due
to its antioxidant enzymes, such as thiol, and rubrerythrin. Furthermore, these bacteria
accumulate a hemin layer on the cell surface that protects the bacteria from oxidative stress
(Wang et al., 2014; Henry et al., 2012).

On the other hand, IL-10, an anti-inflammatory cytokine that suppresses the
inflammatory responses (Al-Rasheeda et al., 2004), also protects from tissue destruction
by inhibiting both matrix metalloproteinases (MMPs) and receptor activators for nuclear
factor-kB (RANK) systems, leading to the differentiation and activation of osteoclasts
(Garlet et al., 2006). Stimulation with bacteria or bacterial components like LPS induce
the production of inflammatory cytokines, such as interleukin 1, −6, −8, and nitric
oxide (NO), in human monocytes, endothelial cells, macrophages, and gingival fibroblasts
(Gutiérrez-Venegas et al., 2005; Staudte et al., 2010; Gölz et al., 2014). P. gingivalis triggers
the production of NO by activating the expression of inducible nitric oxide synthases
(Sun et al., 2010; Brennan, Thomas & Langdon, 2003). It is noteworthy that it can resist NO
stress and maintain nontoxic intracellular NO concentrations (Zumft, 2002). Thus, a high
concentration of NO fails to eliminate this bacterium, yet it can exert a deleterious effect on
the periodontal tissue, favoring vasodilation and diminishing platelet aggregation, which
contributes to gingival bleeding. These toxic effects on the surrounding tissue increase the
severity of periodontitis (Boutrin et al., 2012). It has been suggested that the inducible nitric
oxide syntase (iNOS) may be involved in periodontal pathogenesis (Batista et al., 2002),
since common periodontal pathogens can induce the expression of iNOS in various host
cells, including HGFs (Sosroseno, Bird & Seymour, 2009).

Additionally, cytokines and chemokines expressed by gingival fibroblasts in response
to P. gingivalis can accumulate and their subsequent action on leukocytes is modulated
due to the enzymatic activity of P. gingivalis-derived proteinases, that cleave and inhibit
their biological properties (Calkins et al., 1998; Kobayashi-Sakamoto, Isogai & Hirose, 2003;
Palm, Khalaf & Bengtsson, 2015). The production of P. gingivalis cysteine proteinases
are associated with the growth and establishment of P. gingivalis, they are divided into
arginine-specific (Rgp) and lysine-specific (Kgp) proteinases. Additionally, these cysteine
proteases exert potent immunomodulatory effects on human gingival fibroblasts. Themain
causative factor of tissue damage involved in the disease progression, could be the gingipains
of the bacterium ,even though P. gingivalis is considered an opportunistic pathogen. Thus,
control of proteolytic enzymes of P. gingivalis could represent an interesting target for the
treatment of periodontitis (Torbjörn, Atika & Khalaf, 2015).
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Antimicrobial peptides (AMPs) are part of the innate defense system in the oral
cavity, where cystatins play an important role. Cystatin C belongs to the type 2 family
of the cystatin superfamily, it is ubiquitously distributed in plants and animals (Shamsi
& Bano, 2017). In the parotid gland of humans, it is present in saliva at a concentration
of 0.9 µg/mL (Gorr, 2012). The main function of cystatin C is the inhibition of cysteine
proteases by binding to their active sites (Palm, Khalaf & Bengtsson, 2015). It also exerts
several immunomodulatory functions and possesses the ability to regulate innate immune
responses (Vray, Hartmann & Hoebeke, 2002).

The aimof this studywas to assess the effect that cystatinC exerts on cytokine production,
NO and ROS production by human gingival fibroblasts incubated with P. gingivalis in order
to be able to evaluate its potential therapeutic use against one of the main etiological agent
causing periodontitis, as well as its potential impact on the severity of periodontal disease.

MATERIALS & METHODS
Cells culture
Human gingival fibroblasts (HGFs) (ATCC, CRL-2104) were seeded at a density of 5 ×
103 cells per cm2 and cultured in 75 cm2 culture flasks in a water saturated atmosphere at
37 ◦C and 5% CO2 and maintained in Dulbecco’s modified Eagle high glucose medium
(Sigma Aldrich, Saint Louis, MO, USA), supplemented with 10% fetal bovine serum
(GIBCOBRL, Gaithersburg,MD, USA), containing 10U penicillin/25µg streptomycin/mL
(Sigma Aldrich). The fibroblasts were cultured to confluence, at a density of 2.5 × 105

cells/mL, washed twice with phosphate-buffered saline, and dissociated with 0.25% trypsin
and 1 mM EDTA for 5 min at 37 ◦C, 5% CO2 (Sigma Aldrich, Saint Louis, MO, USA). The
cells were used at passages 3–7.

Bacterial growth
P. gingivalis strain ATCC 33277 was cultured in brain-heart-infusion and in broth-heart-
brain extract (BHI; BD Bioxon, Milan, Italy) containing 5 µg/mL of hemin (Sigma-Aldrich,
Munich, Germany) and 1 µg/mL of menadione (Sigma-Aldrich) under anaerobiosis using
the anaerobic BBL-GasPak jar system (BD Biosciences) at 37 ◦C for 24 h.

After 24 h of culturing, bacteria were harvested by centrifugation for 10 min at 10,000
rpm and then washed and resuspended in Krebs-Ringer-Glucose (KRG) buffer (120 mM
NaCl, 4.9 mMKCl, 1.2 mMMgSO4, 1.7 mMKH2PO4, 8.3 mMNa2HPO4, 10 mM glucose,
and 1.1 mM CaCl2, pH 7.3). Bacterial growth was monitored spectrophotometrically
(Jenway Genova R0027, Fischer Scientific, USA) at 675 nm. The bacterial density was
visually adjusted to a turbidity of 0.5 McFarland (1× 108 colony-forming units; (CFU/mL)
(Mc Farland, 1907; Emani, Gunjiganur & Mehta, 2014). Ethical approval was given by the
Ethics Committee of the School of Medicine (UNAM) with reference number C54-11.

Antibacterial assay
Lyophilized Cystatin C was obtained from Pichia Pastoris (Sigma Aldrich, St. Louis, MO)
and reconstituted in Tris Base NaCl Buffer (pH 7.4). Minimum inhibitory concentrations
(MIC) of Cystatin C was determined using the microdilution method in 96-well microtiter
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plates (Costar, Corning Life Sciences) (Eloff, 1998; Jadaun et al., 2007). Briefly, an inoculum
of P. gingivalis (1 × 106 CFU/ mL) containing KRG Buffer was placed in each well.
Subsequently, different cystatin C concentrations (0.1, 0.3, 0.5, 0.7, 0.9 µg/mL) were
incubated with the bacteria, for 1, 12, 24, and 48 h, under anaerobiosis conditions, at
37 ◦C. After the incubation period, 20 µL of Presto Blue Cell Viability Reagent (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) per well were added. The plates were
incubated for 30 min at 37 ◦C in the dark. Finally, the plates were read in a microplate
reader (Multiskan SkyHigh Microplate Spectrophotometer), at a 675 nm wavelength.

Cell viability assay
HGFs were seeded at a density of 1 × 105 cells/well in 24-well plates for 24 h, at 37 ◦C
with 5% CO2. Different concentrations of Cystatin C (0.1, 0.3, 0.5, 0.7, 0.9 µg/mL) were
added and incubated for 24 h. After incubation time, 25 µl of XTT/PBS solution (4 mg/4
mL) were added per well, for 40 min at room temperature, in the dark. Subsequently,
microplate plates were read at a wavelength of 450 nm in a microplate spectrophotometer
(Multiskan SkyHigh Microplate Spectrophotometer).

Treatment of human gingival fibroblasts (HGFs) with P. gingivalis
Human gingival fibroblasts, at a seeding density of 5× 105/well, were cultured in a Costar R©

24-well plate (Corning Life Sciences, Corning, NY, USA) in D-MEM medium at 37 ◦C in
an atmosphere of 5% CO2. After the incubation period, fresh medium without antibiotics
was added to HGFs, before they were treated with P. gingivalis.HGFs were stimulated with
bacteria, at multiplicities of infection (MOI) of 1:100 for 24 h, and with cystatin C at a
concentration of 0.3 µg/mL at 37 ◦C for 24 h, to perform cytokine assays, and evaluate
ROS, and NO. Control groups include HGFs without stimulation or stimulated with LPS
and peptidoglycans.

Cytokine assays
For cytokine assays, HGFs were incubated with P. gingivalis (MOI 1:100) and /or cystatin C
at a concentration of 0.3 µg/mL at 37 ◦C for 24 h. Control groups included HGFs without
stimulation or stimulated with LPS 100 ng/mL (LPS from Escherichia coli O111:B4; Sigma
Aldrich), or with peptidoglycan 10µg/mL (Peptidoglycan from Staphylococcus aureus;
Sigma Aldrich). ELISAs were performed to determine TNF-α, IL-1 β, and IL-10, using
the Ready-Set-Go! ELISA kits (Cytokine ELISA Protocol; BD Biosciences, San Diego,
CA, USA), according to the manufacturer’s protocol. Dilutions were prepared in dilution
buffer. Briefly, 96-well flat-bottom plates (Costar R©, Corning Life Sciences) were coated
with anti-human TNF-α, IL-1 β, or IL-10 monoclonal antibodies (BD Biosciences,
Pharmingen). After blocking with the assay solution (PBS−0.5% casein diluted in 1 M
NaOH) overnight at 4 ◦C to avoid non-specific binding, 100 µL of standard TNF-α, IL-1
β, or IL-10 (BD Bioscience, Pharmingen) of supernatants were added. The microplate
was washed to remove unbound enzyme-labeled antibodies. The amount of horseradish
peroxidase bound to each well was determined by the addition of a substrate solution. The
reaction was stopped by the addition of sulfuric acid and the plates were read at 405 nm
(ELISA microplate reader; Bio-Rad, Hercules, CA, USA).
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The cytokine concentration was calculated by regression analysis from a standard curve.
The detection limit of the assay was 15 to 2000 pg/mL.

Measurement of NO production
The NO production by HGFs incubated with P. gingivalis and/or cystatin C at 37 ◦C was
assayed by measuring the accumulation of nitrate in culture supernatants. Briefly, HGFs
were stimulated with P. gingivalis (MOI 1:100) and with 0.3 µg of cystatin C, at 37 ◦C for
24 h. Thereafter, 100 µL of Griess reagent (1% sulphanilamide, 0.1% naphthylethylene
diamine dihydrochloride, and 2.5% phosphoric acid) (Sigma Aldrich) were added at equal
volumes of culture supernatants in a 96- well plate (Costar R©; Corning Life Sciences) and
left at room temperature for 30 min. The absorbance of these supernatants was read at 550
nm (Multiskan SkyHigh Microplate Spectrophotometer) and the nitrate concentrations
were calculated from a standard curve established with serial dilutions of NaNO2 (Sigma-
Aldrich) in the culture medium. Control groups included HGFs without stimulation or
stimulated with LPS or peptidoglycan.

Detection of Reactive Oxygen Species (ROS)
HGFs were seeded on 24-well plates (Costar R©; Corning Life Sciences) at a density
of (5 × 105), infected with P. gingivalis (MOI 1:100) and stimulated with 0.3 µg/mL
of cystatin C at 37 ◦C for 24 h. The cells were incubated with 100 µg/ mL of 2,7
dichlorodidrofluoroescein diacetate (H2-DCFDA) [2 µM/mL] for 30 min in the dark
at room temperature. Cells were rinsed twice with PBS, pH 7.2 and detached from the
wells with 0.25% Trypsin/EDTA (Sigma Aldrich). The samples were resuspended in PBS,
pH 7.2, with 1% FBS and analyzed on a FACS Canto II BD Biosciences flow cytometer.
Data analysis was performed using FlowJo software (USA). Control groups included HGFs
without stimulation or stimulated with LPS or peptidoglycan.

Statistical analysis
Experimental and control conditions were statistically compared for significance using
analysis of variance (ANOVA), followed by Benferroni correction. The predetermined
level of significance was p< 0.05. Statistical analysis was performed with the GraphPad,
Prism v.6 software (GraphPad Software, Inc., CA, USA).

RESULTS
Effects of cystatin C on growth of P. gingivalis and viability of HGFs
The antimicrobial activity of cystatin C on P.gingivalis was analyzed in a time and dose-
dependent manner as shown in (Fig. 1A). It reached its maximal antimicrobial activity at
24 h with concentrations between 0.1 and 0.3 µg/mL.

The concentration of 0.3µg/mL inhibited 75%of bacteria growth after 24 h of incubation
when compared to the control group (p< 0.05). Inhibition of bacterial growth (83.3%) was
observed after 48 h of culture (p< 0.05). At a concentration of 0.9 µg/mL a marked growth
inhibition was observed throughout the incubation time. All the analyzed concentrations
of cystatin C showed no effect on the viability of HGFs cell, as illustrated in (Fig. 1B).
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Figure 1 Effect of cystatin C on Porphyromonas gingivalis growth and cell viability. Effect of cystatin C
on (A) Porphyromonas gingivalis growth and (B) Cell viability of HGFs. The results are expressed as mean
± SD of the average of five independent assays. Statistical differences are expressed as (*) p < 0.05 when
compared to non-treated control P. gingivalis bacteria.

Full-size DOI: 10.7717/peerj.14232/fig-1

These findings reveal the antimicrobial activity of cystatin C against P. gingivalis and did
not affect the viability of HGFs. Hence, we decided to perform all the experimental assays
with a cystatin C MIC at 0.3 µg/mL.

Effect of cystatin C on the production of pro- and anti-inflammatory
cytokines
TNF-α and IL-1 β were evaluated in supernatants of HGFs incubated with P. gingivalis
and cystatin C (0.3 µg/mL) for 24 h. P. gingivalis induced the production of 1000 pg/ mL
and 750 pg/mL of TNF-α and IL-1 β, respectively, when compared to the control group
(p= 0.0001) (Figs. 2A and 2B). However, when HGFs were incubated with the bacteria and
cystatin C, a statistically significant decrease was observed in the TNF-α ( p= 0.0001) and
IL-1 β (p< 0.05) productions, compared to HGFs. In contrast, no changes were observed
in IL-10 production by HGFs incubated with P. gingivalis alone, when compared to
controls, whereas cystatin C stimulated de production and secretion of IL-10 (500 pg/mL).
Furthermore, the co-incubation of P. gingivalis with cystatin C significantly increased the
production of IL-10 (900 pg/mL), when compared with the control group and with HGFs
infected with the bacterium (p= 0.0001), (Fig. 2C). These results suggest that cystatin C
participates in the regulatory inflammatory process, by reducing inflammatory cytokines
and increasing anti-inflammatory cytokines.

Cystatin C decreases ROS and NO production on HGFs incubated with
P. gingivalis
A significant increase was observed in the production of ROS and NO in HGFs incubated
with P. gingivalis, compared to the controls (p= 0.0001). No significant differences were
observed in the production of ROS in HGFs incubated with cystatin C (p> 0.05) (Fig. 3A).
In contrast, a significant decrease in ROS was observed after the incubation of HGFs with
P. gingivalis and cystatin C, compared to the control (p= 0.001), (Fig. 3A).
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Figure 2 Cytokines assays in HGFs incubated with P. gingivalis and stimulated with cystatin C. (A)
Expression of TNF- α, (B) IL- β, (C) IL-10. The results are expressed as mean± SD of the average of five
independent assays. Statistical differences are expressed as (*) p < 0.05, (**) p < 0.001, (***) p < 0.0001,
compared to control groups.

Full-size DOI: 10.7717/peerj.14232/fig-2

Furthermore, a significant increase of NO (9 µM) was observed after the incubation of
HGFs with P. gingivalis, when compared with the control group (p= 0.0001). Yet when
HGFs were incubated with P. gingivalis and cystatin C, a decrease of NO (3µM) (p= 0.001)
was observed with regard to the incubation with P. gingivalis alone (Fig. 3B).

DISCUSSION
In this study, we analyzed the antimicrobial activity of cystatin C against P gingivalis, which
contributes to the development of chronic periodontitis. The immunological responses
occurring in HGFs after the infection with this key periodontal pathogen were evaluated.
P. gingivalis exhibits a variety of virulence factors that enable it to colonize oral soft
tissues and evade immune responses. It has been demonstrated that P. gingivalis triggers
and suppresses the immune responses in HGFs, suggesting that the pathogenic effects
of P. gingivalis are mainly related to the action of gingipains, which participate in the
inflammatory and immune response of HGFs (Palm, Khalaf & Bengtsson, 2015; Bengtsson,
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Porphyromonas gingivalis incubated with HGFs and cystatin C. (A) ROS production in HGFs infected with
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Full-size DOI: 10.7717/peerj.14232/fig-3

Khalaf & Khalaf, 2015). Additionally, P. gingivalis has a direct modulatory function on
the immune response of fibroblasts through the catalytic activities of gingipains, targeting
fibroblast-derived inflammatory mediators at the protein level (Palm, Khalaf & Bengtsson,
2013). P. gingivalis secretes three related cysteine proteases (gingipains), which constitute its
main virulence factors. Two gingipains are specific for Arg-Xaa peptide bonds (HRgpA and
RgpB), whereas Kgp cleaves after a Lys residue (Imamura, 2003). Interestingly, gingipains
are involved in the disruption of host defense inflammatory reactions and hinder P.
gingivalis clearance by the immune system (Uehara et al., 2008; Guo, Nguyen & Potempa,
2010). Human gingival fibroblasts play an important part in the innate immune system by
sensing microbial invasion and responding to it by producing and secreting inflammatory
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mediators. HGFs recognize P. gingivalis during the early stages of periodontitis and
establish an inflammatory response in the periodontal tissue (Palm, Khalaf & Bengtsson,
2015). The secretion of TNF-α and IL-1 β by HGFs favor the recruitment of macrophages
and neutrophils to the site of infection, as well as the expression of MMP-1, MMP-13,
MMP-8, and MMP-9, which contribute to the degradation of the extracellular matrix of
the periodontal tissue as well as the reabsorption of bone tissue (Ara et al., 2009; Song et
al., 2021; Cheng et al., 2020; Franco et al., 2017).

Interleukin-1 β (IL-1 β), belongs to the IL-1 family and plays an important role
against microbial infections and participates regulating innate immune and inflammatory
responses. The upregulation of IL-1 β during P. gingivalis infection suggests that IL-1 β
is a critical cytokine in the host’s defense against P. gingivalis infection during the initial
phases of inflammation (Dinarello, 2009). In the early stages of P. gingivalis infection, IL-1
β plays an important role in combating the invading pathogen as part of the innate immune
response and participates in almost all events involved in the activation and regulation
of inflammation (Menu & Vince, 2011). This kind of inflammasome-independent IL-1 β
activation can substantially contribute to tissue inflammation (Latz, Xiao & Stutz, 2013).

We now demonstrate that cystatin C down-regulates the production of IL-1 β and
TNF-α in HFGs co-incubated with P. gingivalis. Our finding is in accordance with the
literature, where cystatin C has been shown to down-regulate the production of IL-1 β
and TNF-α in monocytes stimulated with bacterial LPS (Gren et al., 2016). In addition
to cystatin C, other salivary antimicrobial peptides, such as histatin 5 and histatin 1, also
down-regulate inflammatory cytokines like IL-6, IL-8, IL-1 β, and TNF-α in fibroblasts
and macrophages (Imatani et al., 2000; Lee et al., 2021).

Our data also show that cystatin C enhances IL-10 production by HFGs incubated
with P. gingivalis, which could represent an important mechanism to inhibit an excessive
inflammatory response of HGFs to the P. gingivalis infections. The cytokine IL-10 can
inhibit pro-inflammatory responses, due to its ability to reduce the production of TNF-α,
IL-6, and IL-1 cytokines (Sun et al., 2020). Our results suggest that cystatin C could be an
important multifunctional modulator of the innate immune responses in HGFs.

In addition to cytokine production, HGFs also produce microbicidal mediators such as
ROS and NO, when they are infected with P. gingivalis. High doses of these molecules have
been shown to be cytotoxic to periodontal tissue (Nogueira et al., 2016), since their excessive
production may lead to tissue breakdown, including inhibition of energy-generating
enzymes, triggering DNA injury, oxidation and nitration reactions (Wang, Huang & He,
2019; Bodis & Haregewoin, 1993). ROS causes oxidative damage to proteins and DNA,
it interferes with cell growth, and induces apoptosis in gingival fibroblasts, causing
periodontitis (Kanzaki et al., 2017; Cheng et al., 2015; Tomofuji et al., 2006; Maruyama
et al., 2011). In addition to the damage caused by ROS, an increase of iNOS expression
and NO concentration also leads to severe damage related to bone resorption, as shown
in an experimental rat model of periodontitis (Wang, Huang & He, 2019). Thus, many
inflammatory mediators are crucial for the development of early periodontal disease,
where NO is one of the main inflammatory factors (Pacher, Beckman & Liaudet, 2007)
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Our data now demonstrated that P. gingivalis stimulates NO release by HGFs and that
the co-incubation of the bacterium with cystatin C significantly down-regulates both
ROS and NO productions. These findings are in accordance with the literature, showing
that other peptides, such as hBD3 and sublancin, also reduce the production of ROS in
endothelial cells and NO in peritoneal macrophages, respectively (Wang, Huang & He,
2019; Bian et al., 2017). The results of our study suggest that NO expression could lead to
the gradual progression of periodontitis after proinflammatory cytokine production by
HGFs infected by P. gingivalis and that cystatin C protects from tissue damage through
the reduction of these free radicals. The importance of ROS in periodontal diseases was
previously demonstrated by Cheng et al. (2015), who showed that LPS from P. gingivalis
up-regulated ROS in periodontal ligament fibroblasts (Cheng et al., 2015; Gölz et al., 2014).
The release of inflammatory mediators including interleukins, chemokines, adhesion
molecules, and ROS could be could be triggered by bacteria LPS (Goraca et al., 2013; Melo
et al., 2010; Sanikidze et al., 2006; Bykov et al., 2003).

Antimicrobial peptides are included in the immune innate defense system in the oral
cavity (Greer, Zenobia & Darveau, 2013). The antimicrobial peptide cystatin C belongs
to the type 2 family of the cystatin superfamily, it is ubiquitously distributed in plants,
animals, and microorganisms (Shamsi & Bano, 2017). Saliva from the parotid gland of
humans contains 0.9 µg/mL of Cystatin C (Gorr, 2009). The main function of cystatin C
is the inhibition of cysteine proteases, by binding to their active sites, evading the cleavage
of peptide bonds (Van Wyk et al., 2016). The mechanisms leading to the reduction of the
inflammatory mediators by cystatin C are possibly explained by observations made with
a homologous molecule, DsCistatin, isolated from the tick Dermacentor silvarum. This
peptide was shown to be internalized by endocytosis in mouse macrophages stimulated
with LPS from Borrelia burgdorferi. It reduced the inflammatory cytokines IL-1 β, IFN-
γ , TNF-α, and IL-6 by the degradation of the TRAF6 protein, thereby preventing the
phosphorylation of IκBα and the subsequent nuclear transport of NF-κB, leading to the
decrease of inflammatory cytokines (Sun et al., 2018). We speculate that cystatin C possibly
follows this route to reduce inflammatory mediators in HGFs incubated with P. gingivalis.

Our data now show that cystatin C possibly plays an important antimicrobial and
anti-inflammatory role that regulates the response of human gingival fibroblast towards P.
gingivalis, helping to avoid tissue damage and destruction.

CONCLUSIONS
Cystatin C exhibits a dual activity during P. gingivalis infection. Antimicrobial activity was
demonstrated without cytotoxic effects on HGFs. Furthermore, Cystatin C also exhibited
immunomodulatory functions, decreasing the inflammatory response of fibroblasts.
Knowledge on the immunomodulatory properties of cystatin C could aid in the design of
new therapeutic approaches to improve the treatment of periodontal diseases.
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