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ABSTRACT
Background: Herbivory and extreme soils are drivers of plant evolution. Adaptation
to extreme soils often implies substrate-specific traits, and resistance to herbivory
involves tolerance or avoidance mechanisms. However, little research has been done
on the effect of grazing on plant communities rich in edaphic endemics growing on
extreme soils. A widespread study case is gypsum drylands, where livestock grazing
often prevails. Despite their limiting conditions, gypsum soils host a unique and
highly specialised flora, identified as a conservation priority.
Methods: We evaluated the effect of different grazing intensities on the assembly of
perennial plant communities growing on gypsum soils. We considered the
contribution of species gypsum affinity and key functional traits of species such as
traits related to gypsum specialisation (leaf S accumulation) or traits related to plant
tolerance to herbivory such as leaf C and N concentrations. The effect of grazing
intensity on plant community indices (i.e., richness, diversity, community
weighted-means (CWM) and functional diversity (FD) indices for each trait) were
modelled using Generalised Linear Mixed Models (GLMM). We analysed the relative
contribution of interspecific trait variation and intraspecific trait variation (ITV) in
shifts of community index values.
Results: Livestock grazing may benefit gypsum plant specialists during community
assembly, as species with high gypsum affinity, and high leaf S contents, were more
likely to assemble in the most grazed plots. Grazing also promoted species with traits
related to herbivory tolerance, as species with a rapid-growth strategy (high leaf N,
low leaf C) were promoted under high grazing conditions. Species that ultimately
formed gypsum plant communities had sufficient functional variability among
individuals to cope with different grazing intensities, as intraspecific variability was
the main component of species assembly for CWM values.
Conclusions: The positive effects of grazing on plant communities in gypsum soils
indicate that livestock may be a key tool for the conservation of these edaphic
endemics.
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INTRODUCTION
Herbivory by domestic and wild ungulates is one of the main drivers of global vegetation
dynamics. Grazing mammals affect plant performance by biomass removal (Huntly, 1991)
and, accordingly, plants have developed a wide array of adaptations to cope with grazing
disturbance throughout evolution (Díaz et al., 2007). Grazing is usually considered a
crucial biotic filter by restricting the range of trait values to those of species that survive and
establish successfully (Violle et al., 2007). Grazing can also exert contrasting effects on
plant community properties. In productive environments, grazing may alleviate
plant-plant competition through changes in competitive hierarchies (Noy-Meir, Gutman
& Kaplan, 1989; Louda, Keeler & Holt, 1990), biomass removal and trampling associated
with grazing can also create spatial heterogeneity (Moret-Fernández et al., 2011), and thus
allow species coexistence due to niche differentiation (Rosemond, Mulholland & Elwood,
1993). However, the selective removal of less grazing-tolerant species may also result in a
reduction in species richness and diversity (Milchunas, Sala & Lauenroth, 1988),
particularly when soil resources are scarce and plant productivity is low (Cingolani,
Noy-Meir & Díaz, 2005).

Extreme soils, such as saline, limestone, serpentine or gypsum, have particular physical
and chemical characteristics that restrict plant growth and species distribution (Rorison,
1960; Kazakou et al., 2008; Munns & Tester, 2008; Moore et al., 2014). Due to these
constraints, atypical substrates are also major drivers of plant evolution (Hulshof &
Spasojevic, 2020), leading to the development of specialised floras with numerous
edaphic-endemics (Braun-Blanquet, 1932). Plants have developed different mechanisms to
cope with the harsh conditions of extreme soils, and edaphic-endemics are usually soil
specialists with substrate-specific strategies (Kruckeberg & Rabinowitz, 1985). These
strategies allow them to optimise their performance and growth over other plants in their
singular habitat (Cody, 1978), but may render them less competitive on non-extreme soils,
which would explain why edaphic-endemics are frequent in plant communities associated
with extreme soils (Rajakaruna, 2004).

The assemblage of plant communities on extreme soils has traditionally been explained
in relation to plant adaptation to the limiting conditions of these special substrates
(Caçador, Tibério & Cabral, 2007; Kazakou et al., 2008; Luzuriaga, González & Escudero,
2015; Luzuriaga et al., 2020). Plant communities associated with extreme soils are open
shrublands or grasslands (Brady, Kruckeberg & Bradshaw, 2005; Mota et al., 2017),
generally associated with large mammal herbivory and livestock grazing (Asner & Levick,
2012; Bakker et al., 2016). Consequently, the effect of grazing on plant community
composition could be combined with soil restrictions in these systems. Evidence of the
effect of grazing on vegetation in extreme soils is controversial. Ballesteros et al. (2013) and
Pueyo et al. (2008) reported negative consequences on the abundance of two gypsum
endemic species due to grazing, while other studies found that livestock grazing favoured
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edaphic-endemics over other plant species in extreme soils (Bonis et al., 2005; Beck et al.,
2015). Most of these studies analysed the effect of grazing on individual species growing on
extreme soils, but more studies at the community level are lacking.

Gypsum plant communities offer an excellent study system to evaluate the joint effect of
extreme soils and grazing on plant community assemblage. The weathering of gypsum
rock generates an unusual soil with high Ca and S content and low P availability that
severely limits plant life due to nutrient imbalances (FAO, 1990; Casby-Horton, Herrero &
Rolong, 2015). Gypsum soils occur worldwide in drylands, where extensive grazing almost
always occurs (Pueyo et al., 2008; Akhani, 2015). The flora associated with gypsum is a
unique endemic flora identified as an international conservation priority (Moore et al.,
2014; Escudero et al., 2015), composed by edaphic-endemics, which are soil specialists
(Palacio et al., 2007), and also species with wide ecological ranges (Meyer, 1980). Gypsum
endemics show generally high affinity for gypsum soils (Luzuriaga, González & Escudero,
2015), also referred as gypsophily value (Mota, Sánchez-Gómez & Guirado, 2011;
Musarella et al., 2018), and have foliar chemical composition characterized by high foliar
S-accumulation (Duvigneaud & Denaeyer-De Smet, 1966; Salmerón-Sánchez et al., 2014;
Merlo et al., 2019). Braun-Blanquet & de Bolòs (1957) suggested that plant communities
rich in edaphic-endemics might be favoured by moderate grazing in gypsum soils, as
grazing hardens soil conditions and impedes the weathering of gypsum, preventing the
formation of a more organic soil that would favour other plant communities without
gypsum endemics. However, no previous studies have evaluated the effect of livestock
grazing on the assembly of species with different affinity for gypsum soils, or its
relationship to the foliar composition of gypsum plants.

In this context, functional traits may play a key role in species composition on extreme
soils with different intensities of herbivory. Plant functional traits that favour persistence
under grazed conditions can be classified into avoidance and tolerance mechanisms (Briske
& Richards, 1995). Avoidance mechanisms include traits that reduce plant accessibility and
palatability, whereas tolerance traits lead to increased growth rate to compensate for
biomass loss due to grazing. Leaf C and N content indicate species tolerance to grazing
(Capó et al., 2021), where high N content is generally related to high growth rates
(Pérez-Harguindeguy et al., 2013) and thus, to species that are able to compensate the
biomass lost by herbivory (Grime, 2006). Moreover, leaf S content is a functional trait
related to plant specialisation to gypsum soils (Merlo et al., 2019; Cera et al., 2021),
although its ecological significance remains unknown (Palacio et al., 2007). High leaf S
content could play a significant role in grazing-avoidance in gypsum environments
(Palacio et al., 2014), because foliar S accumulation has been related to herbivore-deterrent
compounds in Brassicales as glucosinlates (Ernst, 1990), and in some species of Acacia as
crystals with S (He et al., 2015).

The aim of this study was to evaluate the extent to which the assembly of perennial plant
communities under different grazing intensities and on high gypsum soils, is mediated by
the affinity of species for gypsum, by species traits related to gypsum adaptation (leaf S
concentration) or by traits related to plant tolerance to herbivory such as leaf C and N
concentrations. If stressful conditions derived from atypical gypsum soils are the main
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selective force shaping plant communities on gypsum, we would expect gypsum-endemics
to dominate over other species, independently of the grazing pressure. In this sense, the
assembly of plant communities in gypsum environments would mainly depend on the
gypsum affinity of plants (Luzuriaga, González & Escudero, 2015, Luzuriaga et al., 2020)
and species with high S leaf content would be always dominant in plant assemblages.
However, if grazing is the main factor driving plant assembly on gypsum plant
communities, species with a rapid-growth strategy (i.e., species with high leaf N content
and tolerance mechanisms, Grime, 2006) and/or with deterrent traits (avoidance
mechanisms, Briske & Richards, 1995) would be dominant under high grazing pressure in
relation to non-grazed conditions. This would lead to increased values of community
weighted mean (CWM) for leaf N and decreased leaf N functional diversity in the most
grazed plant communities. Finally, if as expected, herbivores have historically played an
important role in shaping plant assembly in extreme soils of the Mediterranean region
(Braun-Blanquet & de Bolòs, 1957; Montserrat-Martí & Gómez-García, 2019), edaphic-
endemics should have developed both mechanisms to tolerate or avoid grazing and
mechanisms to persist in restrictive soils. In this context, species with high affinity
for gypsum and traits to cope with restrictions typical of gypsum soils (i.e., leaf S-
accumulation), also fitted with traits to tolerate (i.e., high growth rates) or avoid herbivory
would be favoured under grazing conditions, increasing CWMs values of leaf S and
gypsophily value (GV) and decreasing their functional diversity in the most grazed
conditions.

We also evaluated the contribution of intraspecific trait variability to cope with different
levels of herbivory during the species assembly process. For this purpose, we applied the
method proposed by Lepš et al. (2011) and de Bello et al. (2011) to disentangle the effects of
interspecific vs intraspecific trait variability on species assembly. In this context, if species
adapted to gypsum are also adapted to grazing disturbance, we would expect responses at
the population level (i.e., intraspecific variability), since species would have enough
intraspecific variability to cope with changes in grazing intensity. Otherwise, if species
adapted to gypsum are not necessarily adapted to cope with grazing disturbance, we would
expect those species that cannot withstand grazing would disappear when grazing intensity
increases. This would lead to a shift in species composition (inter-specific variability)
depending on their ability to cope with herbivory regardless of their soil affinity, so we
would expect species assembly to be mainly due to species turnover.

MATERIALS AND METHODS
Study site
This study was conducted in three locations in the Middle Ebro Valley (NE Spain): Pedriza
(Mediana de Aragón 41�24′17″N, 0�41′20″W), Corral del Hoyo (Mediana de Aragón
41�25′38″N, 0�44′45″W) and Valdemolino (Mediana de Aragón 41�27′30″N, 0�45′31″W)
(Figure S1). All of them have gypsum soils as their main lithology and have a semi-arid
Mediterranean climate with mean annual temperature of 14.9 �C and mean total annual
rainfall of 353.9 mm yr-1 (data from the nearest weather station at Farlete 41�50′56″ N,
0�30′19″ O). The landscape in this area consists mainly of low hills (480 m.a.s.l. average)
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and flat-bottomed valleys, which are currently cultivated (Foronda et al., 2019).
Above-ground vegetation in the three locations was predominantly composed of shrubs,
forbs and grasses, like Brachypodium retusum (Pers.) P.Beauv., Gypsophila struthium
subsp. hispanica (Willk.) G.López, Helianthemum squamatum (L.) Dum.Cours.,Herniaria
fruticosa L. and Plantago albicans L. The vegetation structure in our study sites was a
matrix of plant patches and bare soil, with total vegetation cover of 25.45% ± 12.97 on
average. The gypsum outcrops of the Middle Ebro Valley have a large legacy of extensive
grazing practices, although these have now been drastically reduced in most areas
(Braun-Blanquet & de Bolòs, 1957; Pueyo et al., 2008).

Plant community surveys
We conducted vegetation surveys in June 2018, a year with wetter than average conditions
according to a multiscale drought index (SPEI, (Vicente-Serrano et al., 2017)). We carried
out three independent grazing gradients, one in each location, to reduce the influence of
other environmental variables. In addition, locations were selected in the same region to
avoid climatic biases. Gradients were established by selecting three flat hilltop sites with
different grazing intensity in each location (Figure S1). Each gradient included one site
with no grazing for a few decades (hereafter referred to as low grazing), one site with
medium grazing and one site with high grazing pressure near the pens. The current grazing
intensity was estimated by interviewing local farmer, as described in Pueyo et al. (2008),
with whom ongoing communication is maintained. Thirty-five 2 × 2 m plots were
randomly established within each grazing intensity site (5,000 m2) in each of the three
locations (35 plots × 3 grazing intensities × 3 locations; N = 315 plots). In each plot, every
species occurrence was recorded and species cover visually estimated. All plant taxa
present on plots were listed, and a score was derived based on species cover in that plot.
Cover, as defined for our purpose, is the fraction of the total plot area that is occupied by a
particular species when viewed from directly above. Species were identified in the field and
revised taxonomically in the laboratory using specific literature (Castroviejo S (coord. gen.),
1986; Aizpuru et al., 1999). Nomenclature followed The International Plant Names Index
(IPNI, 2021). In addition, total vegetation cover and maximum vegetation height were
measured per plot.

Soil sample collection and analyses
Three soil samples per site were collected from 5 to 15 cm depth, removing the surface
crust (N = 27), to characterise soil physicochemical properties (Table S1). All soil samples
were air dried for 2 months and subsequently sieved through a 2 mm sieve before physical
and chemical analyses. Gypsum content was measured according to (Artieda, Herrero &
Drohan, 2006). Soil texture was determined with a particle laser analyser (Mastersizer 2000
Hydro G, Malvern, UK). Soil pH and conductivity were measured with a pH/conductivity
meter (Orio StarA215, Thermo Scientific, Waltham-MA, USA) by diluting samples with
distilled water to 1:2.5 (w/v) and 1:5 (w/v), respectively. A subsample of each sieved soil
was finely ground using a ball mill (Retsch MM200, Restch GmbH, Haan, Germany) and
subsequently used to analyse the elemental concentrations of N and C with an elemental
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analyzer (TruSpec CN, LECO, St. Joseph-MI, USA), elemental analyses were performed by
EEZ-CSIC Analytical Services.

Gypsophily value
All perennial species recorded were classified by their affinity to gypsum soils using the
gypsophily value (hereinafter GV; Mota, Sánchez-Gómez & Guirado, 2011), as performed
in Luzuriaga et al. (2020). The GV was calculated by a group of experts on gypsum flora of
the Iberian Peninsula, using the Delphi technique (Mota et al., 2009). The GV ranges from
1 (species that avoid gypsum soils), 2 (species that have no preference for gypsum soils, but
grow on them), and from 3 to 5 for species with a preference for gypsum soils, with 5 for
strict gypsum species.

Measures of plant traits
Leaf traits were measured in each level of grazing (i.e., low, medium, high) in one location
(Valdemolino) which is the unique location with at least five replicates per species at each
site, with healthy adult plants. We measured on 14 perennial species, which were present in
the three sites with different grazing intensities in the location and accounted for 75.6% of
total plant cover (Table 1), although they were not present in all plots. The leaf traits
measured in Valdemolino were used to calculate community indices in the three locations
(explained below), using them as habitat-specific traits of each intensity of grazing. Leaf
samples were collected from five different individuals per species in each site. Mature,
non-senescent and undamaged leaves were collected. To assess the N, C and S
concentrations in leaves, leaf samples were dried to a constant weight at 50 �C during
5 days and subsequently finely ground using a ball mill (Retsch MM200, Restch GmbH,
Haan, Germany). N, C and S were analysed with an elemental analyser. N concentrations
were analysed in EEZ-CSIC Analytical Services (TruSpec CN, LECO, St. Joseph-MI, USA),
and C and S concentrations were measured in IPE-CSIC Analytical Services (TruSpec
CNS, LECO, St. Joseph-MI, USA).

Community level indices and statistical analyses
All statistical analyses and graphics were performed using R version 4.0.2. To characterise
gypsum affinity and leaf trait values (S, N and C leaf contents) at the community level, we
calculated the gypsophily value in each plot for gypsum affinity and Community Weighted
Means (CWM), and Functional Diversity indices (FD) for leaf traits. The CWM quantifies

Table 1 Total cover per plot. Total cover (%) and standard error per plot of all the species with
functional traits values.

Locality Low Medium High

Corral del Hoyo 59.9 ± 4.7 82.4 ± 5.2 100.0 ± 3.2

Pedriza 67.2 ± 2.4 67.2 ± 4.4 56.5 ± 4.2

Valdemolino 93.9 ± 3.5 84.2 ± 4.1 80.2 ± 2.4

Averaged total 73.7 ± 3.5 77.9 ± 2.7 80.1 ± 2.7
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the mean contribution of species with different traits to each species assemblage (Garnier,
Navas & Grigulis, 2016). It was calculated as:

CWM ¼
Xn

i¼1

pitraiti (1)

where pi represents the plant cover of species i and traiti the value of that specific trait for
the species i. We used the dbFD function in the FD package version 1.0-12 (Laliberté &
Shipley, 2011).

The FD evaluates the dispersion of trait values in the community. It was calculated as:

FD ¼
Xn

i¼1

Xn

j¼1

pipjdij (2)

where pi and pj represent the plant cover of species i and j, respectively; dij the distance
between both species in the functional space. We used the quadratic diversity of RaoQ
(Botta-Dukát, 2005) using the melodic function (de Bello et al., 2016) and Gower
dissimilarity matrices of species-specific trait values. Also, we calculated Simpson index
using the melodic function, as:

E ¼ 1�
Xn

i¼1

p2i (3)

A PERMANOVA based on Bray-Curtis distances and type III Sum of Squares was
performed to assess differences in species composition among the 315 plots using adonis
function in the vegan package version 2.4-6 (Oksanen et al., 2007). To prepare data for
PERMANOVA, species that appeared in less than 5% of the plots were removed and cover
data were square root-transformed, to avoid statistical biases of rare species. Grazing
intensity was considered as a fixed factor with three levels, and location as strata. Soil
properties were included in the model as a covariate. This covariate was the main
ordination axis of a Principal Component Analysis (PCA) performed with the soil
physicochemical features measured at each site after scaling all variables using the rda
function in the vegan package version 2.4-6 (Oksanen et al., 2007). Non-metric
Multidimensional Scaling (NMDS) was used to represent relationships among species
composition, environmental features (pH, conductivity, soil C, soil N, gypsum content,
and sand, loam and clay proportions), and grazing intensity of plots. We used cover data of
the 30 species from the 315 plots and metaMDS and envfit functions in the vegan package
version 2.4-6 (Oksanen et al., 2007).

The effect of grazing intensity on plant community properties was evaluated using
Generalised Linear Mixed Models (GLMM) with grazing intensity as a fixed factor, and
plot nested into location as random factors. We modelled eleven response variables at the
community level: total vegetation cover, maximum canopy height, taxonomic diversity
(Simpson index), gypsum affinity and CWM and FD indices for three leaf functional traits
(S, N and C contents) (see below for CWM for gypsum affinity species). Over- and
under-dispersion and normality of models residuals were detected using simulateResiduals
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function in the DHARMa package version 0.3.1 (Hartig, 2017). lmer function was applied
when normality of residuals was fulfilled, otherwise the Gamma distribution was applied
using the glmer function in the lme4 package version 1.1.5 (Bates et al., 2015) or, in case
residuals were over- or under-dispersed, we used the glmmTMB function in the glmmTMB
package version 1.1 (Magnusson et al., 2019). F-test was used to test the significance of
GLMM, except when using the glmmTMB function. When differences were statistically
significant, we assessed multiple comparisons among levels of grazing intensity with the
glht function in the multcomp package version 1.4-13 in R (Hothorn, Bretz & Hothorn,
2009), applying a Bonferroni correction. In the case of CWM for gypsum affinity of species,
the standard regression analysis on species-specific traits could increase type I error rates
in the CWM approach (Braak, Peres-Neto & Dray, 2018). Thus, we used the max test
approach (row- and column-based permutation) to explore the correlation of CWM with
grazing intensity (Zelený, 2018a), using test_cwm function in the weimea package version
0.1.4 (Zelený, 2018b). On the other hand, we used a standard parametric test for leaf
content CWM values, because it is not clear that habitat-specific CWM values suffer from
the same bias, as no species-level value is applied to all plots (Zelený, 2018a).

We used the method proposed by Lepš et al. (2011) and de Bello et al. (2011) to
disentangle the effects of interspecific vs intraspecific trait variability on species assembly
processes. We calculated three components for each index (CWM and FD) per plot:
(1) The “Fixed” component: was calculated using the mean value of each trait measured
over all 15 individuals of that species in the three grazing intensity levels of the study;
(2) The “Specific” component: was calculated using the trait average values of each species
measured over all five individuals of that species at that particular level of grazing intensity;
(3) The “Intra-specific” component: was calculated as the average difference between
specific and fixed values. Sum of Squares was calculated for each component and trait
using a parametric method (lmer function) with plot nested within location as random
factors when residuals fitted a normal distribution, and a non-parametric one (adonis
function with Euclidean distance) with location as strata, otherwise. Finally, we plotted the
Sum of Squares decomposition of each CWM and FD values on grazing intensity to
understand the relative contribution of interspecific variation, intraspecific trait variation
and their covariation in community composition under different grazing intensities.

RESULTS
Variation in species composition
We found 52 perennial plant species (Table S2). Total plant cover and canopy height
decreased from low to high grazing intensities (Fig. 1, Table 2). Plant composition was
significantly different among grazing levels (F-ratio = 17.213, P-value = 0.001,
TVE = 9.68%), as well as in response to soil features (F-ratio = 10.37, P-value = 0.001,
TVE = 2.92%; Figure S2, Table S3). Specifically, Soil C (R2 = 0.41) and gypsum content
(R2 = 0.32) explained the largest proportion of variability in plant species composition
(Table S3).
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Gypsum affinity and leaf traits (C, N, S-contents) at the community
level
Gypsum specialists were favoured over non-specialists with increasing grazing (Fig. 2, see
means and SE between locations in Figure S3). Our results showed higher CWM of
gypsophily values (referred to GV) on the most heavily grazed plots than on the less grazed
ones using a standard test (Table 3). However, these results may be slightly optimistic:
when we applied a correction to avoid type I error (i.e., max test) the row-based test
was statistically significant (P-value = 0.001), but the column-based test was not (P-value
= 0.413). Plants with a rapid-growth strategy (high leaf N, low leaf C) and high leaf S
were more likely to assemble in the most grazed plots, since CWM values of leaf C
decreased and CWM values of leaf N and leaf S increased in higher grazing intensities
(Fig. 2, Table 3). Medium grazing intensity was the most heavily filtered level on leaf C and
leaf N, since plant communities showed the lowest FD values. Contrastingly, FD values of
leaf S were statistically different (Table 3) and decreased with increasing grazing pressure
(Fig. 2, P-adjusted = 0.06 between High and Low intensity). However, all plots along the

Figure 1 Differences in community properties and the gypsophily value among grazing intensity
levels. Differences in community properties and the gypsophily value among grazing intensity levels.
Mean values ± standard errors are represented. Different letters indicate significant differences among
levels of grazing intensity after multiple comparison tests with Bonferroni correction (P < 0.05).

Full-size DOI: 10.7717/peerj.14222/fig-1

Table 2 Effect of grazing intensity on the main features of plant community properties and the
gypsophily value after GLMMs. Effect of grazing intensity on the main features of plant community
properties and the gypsophily value after GLMMs. Chi-square values obtained by Wald tests based on
generalised linear mixed models plus the family of error distributions and link functions assumed in the
models are indicated. Id: identity link function; Log: logarithmic link function. Superscripts indicate
GLMMs were run with the glmmTMB function to correct for dispersion of residuals.

Family (link) Df Chis-square Pr(>Chisq)

Vegetation cover (%) Gamma (Log)1 2 41.889 0.001

Canopy height (cm) Gamma (Id)1 2 76.541 0.001

Simpson Index Binomial1 2 1.506 0.471

Gypsophily value Gaussian 2 30.32 0.001
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gradient were heavily filtered, since FD values of leaf traits were generally lower than the
Simpson Index (leaf C = 0.22 ± 0.01, leaf N = 0.25 ± 0.01, leaf S = 0.18 ± 0.01), which was
equal along the gradient (Mean = 0.78 ± 0.01).

Figure 2 CWM and FD of leaf traits at the community level in different grazing intensities. CWM
and FD of leaf traits at the community level in different grazing intensities. Means ± standard errors are
shown. Different letters indicate significant differences among levels of grazing intensity (low, medium
and high) after multiple comparisons with Bonferroni correction (P < 0.05).

Full-size DOI: 10.7717/peerj.14222/fig-2

Table 3 Results of generalised linear mixed models (GLMMs) for community weighted mean
(CWM) and functional diversity indices. Results of generalised linear mixed models (GLMMs) for
community weighted mean (CWM) and functional diversity indices. Chi-square values obtained by
Wald test based on GLMMs. The family of error distributions and link functions assumed in each model
are also indicated. Id: identity link function; Log: logarithmic link function. FD: functional diversity
values. Superscript indicate analysed with glmmTMB function to correct for dispersion of residuals.

Community-weighted mean

Family (link) Df F-ratio Pr(>F)

Leaf C Gaussian 2 18.23 0.001

Leaf N Gaussian 2 67.34 0.001

Leaf S Gaussian 2 31.81 0.001

Functional diversity

Family (link) Df F-ratio Pr(>F)

Leaf C Gaussian 2 22.06 0.001

Leaf N Gaussian 2 31.995 0.001

Leaf S Gamma (Id) 2 6.7121 0.035
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Overall, the process of species assembly in different grazing intensities was mainly
determined by intraspecific shifts in functional traits (Fig. 3), since CWMs of leaf traits
along the grazing intensity gradient were largely explained by ITV. Contrastingly, the
amplitude of the range of trait values that occur in different grazing intensities was
explained by species turnover, since shifts in FDs of studied leaf traits were explained
mainly by interspecific trait variability (Fig. 3). Further, the contribution of interspecific
and ITV on CWM and FD values were positively correlated for leaf N and negatively for
leaf S. Leaf C showed a positive correlation for FD and negative for CWM values (Fig. 3).

DISCUSSION
Our results provide evidence that livestock grazing may benefit soil specialist species
during community assembly. Specifically, the relative abundance of gypsum specialists and
of the leaf S content of species increased in species assemblages under medium and high
grazing intensities. Although some studies found that certain soil specialists are more
vulnerable to herbivory than their non-specialist relatives (Dechamps et al., 2008; Kay
et al., 2011; Strauss & Boyd, 2011), our results highlight that under medium grazing
pressure species with higher affinity for gypsum soils were favoured. Our results showed a

Figure 3 Decomposition of the variability in CWM and FD values explained by grazing intensity
following Lepš et al. (2011). Decomposition of the variability in CWM and FD values explained by
grazing intensity following Lepš et al. (2011). The dark grey portion of bars corresponds to the con-
tribution of interspecific variability and the light grey portion to intraspecific effects. Black lines denote
total variation. The ranges between the top of the bar and the black line correspond to the effect of
covariation between inter and ITV; if the line is right to the bar the covariation is positive, and if the line
crosses the bar, the covariation is negative. Full-size DOI: 10.7717/peerj.14222/fig-3
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clear trend of increasing relative abundance of gypsum specialists along the grazing
gradient, although some caution should be applied to the statistical interpretation of this
result. The sampling design should include more replicates of grazing level per site rather
than using pseudoreplicates (i.e., plots), which could result in low β-diversity within sites,
and increase type I error rates in the CWM approach (Zelený, 2018a). Further, the trend of
increasing relative abundance of gypsum specialists was different between the three
locations studied, although the highest values of GV were always reported in the medium
and high grazing intensity site. Despite these concerns, our study is a remarkable result
that aligns with previous studies of plant communities growing on extreme soils, such as
white sands of tropical forests (Fine, Mesones & Coley, 2004), serpentine grasslands (Beck
et al., 2015) and saline soils (Bonis et al., 2005). All these studies found that the occurrence
of edaphic specialists was dependent on herbivory, most likely because herbivores
modified competitive plant-plant interactions (Louda, Keeler & Holt, 1990; Grover & Holt,
1998) and may benefit the less competitive soil specialist species.

Our study showed that species prone to accumulate S in their leaves were favoured in
medium and highly grazed conditions (i.e., larger CWM values for the leaf-S trait). Leaf
S-accumulation is usually related to gypsum specialist species (Merlo et al., 2019), but the
specific ecological role of S-accumulation in gypsum plants remains unknown (Palacio
et al., 2007). It has been described that a high translocation of the excess element in soil to
plant tissues (i.e., S in gypsum soils) could be a strategy to optimise plant growth in
extreme soils by avoiding interference of that specific element with plant metabolism
(Kabata-Pendias, 2010; Tran et al., 2020). Other studies proposed that high leaf S content
could be related to a herbivore-deterrent strategy to avoid biomass loss in nutrient-limited
habitats (Ernst, 1990; Palacio et al., 2014), as proposed for some species of Brassicales and
Acacia (He et al., 2014; Tuominem et al., 2019). These results point at a selection of
increased foliar S accumulation in plants growing on gypsum as a mechanism to deter
herbivores (Boyd, 2007;Hoerger, Fones & Preston, 2013). These results are compatible with
a potential role of herbivory as a selective force underlying the evolution of edaphic
specialists (Fine et al., 2006; Lau et al., 2008), promoting the selection of foliar S
accumulation in gypsum specialists. Therefore, it could be interpreted that foliar S
accumulation could be an adaptive strategy of gypsum specialists to obtain better
performance in gypsum environments disturbed by herbivores, where nutritional and
water stresses are also present.

Some authors suggested that when resource availability is scarce, the costs of losing
plant tissues due to herbivory are high, and plants that invest in chemical defences should
be selected (Coley, Bryant & Chapin, 1985), mainly because the ability to compensate
biomass losses is dependent on resource availability (Strauss et al., 1999). Thus, tolerance
to herbivory is expected to be low in edaphically stressful substrates. Nevertheless, our
results showed that species with higher leaf-N contents were selected in highly grazed
compared to low grazed conditions (i.e., greater CWM of leaf-N and low leaf-C in highly
grazed sites), suggesting that species with comparatively higher growth rates under the low
resource availability of gypsum soils may have been favoured under grazing. These species
could also be soil specialists. In the case of gypsum environments, soil specialists are
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expected to perform better in their atypical substrate than other soils (Cera et al., 2021).
Also, they are more likely to assemble in gypsum soils than other soils (Luzuriaga,
González & Escudero, 2015), as we observed high relative abundance of gypsum specialists
along the gradient, regardless of grazing pressure. High foliar N concentrations could also
be related to the accumulation of N-rich unpalatable compounds, more aligned with a
grazing-avoidance strategy (Tuominem et al., 2019). However, such compounds are also
frequently C-rich (Tuominem et al., 2019), which would have resulted in higher C
concentrations, contrary to our observation of decreased foliar C in high grazing plots.

The effect of grazing on gypsum plant communities varied with grazing intensity.
Low and medium grazed plots showed similar plant cover, but medium grazed plots
displayed lower FD values (narrower range of trait values) than low and high grazed plots
for leaf C and leaf N. Both leaf traits are linked to plant growth strategy (Grime et al., 1997;
Pérez-Harguindeguy et al., 2016), indicating a narrow range of growth rate values of the
species that assemble in medium grazed plots. These results can be explained by the effect
of different grazing intensities on plant competiveness in the stressful conditions of
gypsum soils. The higher FD in low grazed plots can be explained by the hypothesis of
limiting similarity (Abrams, 1983). In these plots, there is high competition for resources
due to the nutrient scarcity of gypsum soils (Boukhris & Lossaint, 1970). Species with
different N requirements can coexist, because N acquisition niches do not overlap
(Montesinos-Navarro et al., 2017), leading to higher FD values of traits related to growth
strategy than medium grazed plots. Contrastingly, the top-down effect of sheep in high
grazed plots seems to be due to disturbance associated to grazing that may reduce the
biomass of dominant species (Noy-Meir, Gutman & Kaplan, 1989), alter the harsh physical
crust typical of gypsum soils (Moret-Fernández et al., 2011) and eventually create new gaps
for colonisation (Rosemond, Mulholland & Elwood, 1993). These processes may allow
species with contrasting growth rates to coexist in heavily grazed conditions.

The relative contribution of species turnover and intraspecific trait variability on the
species assembly process at different grazing intensities (Lepš et al., 2011) has been poorly
analysed. Our results showed that intraspecific variability was the main component of
species assembly for CWM values, while shifts in FD resulted from species turnover.
The design of this study did not allow checking whether intraspecific variation was due to
plastic responses of plants or heritable differences between genotypes (Bolnick et al., 2011).
Furthermore, the design of our study limited the exploration of interspecific trait variation,
as we analysed leaf traits in only a subset of 14 species growing along the gradient. The high
relevance of ITV indicates that the species that finally conformed gypsum plant
communities had enough functional variability among individuals to cope with different
grazing intensities. Considering that livestock has been a usual anthropogenic activity since
the Neolithic in the Iberian Peninsula (Balaguer et al., 2014), our results are compatible
with the hypothesis that grazing has acted as an evolutionary driver over time, promoting a
regional species pool fitted with successful strategies and enough functional variability
among individuals to cope with herbivory. Consequently, in our study system, grazing did
not act strictly as a biotic filter selecting certain species and jeopardizing others, but it acted
in a subtler way, modifying the range of values of each plant trait selected during plant
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community conformation. This is a remarkable result that aligns with previous studies on
the effect of herbivory on plant community assembly in environments with a long
evolutionary history of grazing, such as Tibetan alpine meadows (Niu et al., 2016), and
Inner Mongolia grasslands (Zheng et al., 2015).

CONCLUSIONS
To sum up, our results are compatible with the notion that grazing has likely been a
powerful evolutionary driver in the conformation of plant assemblages on gypsum soils.
Our results seem to indicate that herbivores may promote plant edaphic specialists in
gypsum soils. Extensive livestock grazing should be considered as key tool to promote
plant communities in gypsum soils where endemics persist, and should be evaluate with
long-term studies, monitoring the intensity of livestock to avoid over-grazing, and linked
other factors, such as climatic, that could affect the assemblage of communities.
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