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Ecosystem restoration and reforestation initiatives can operate at large spatial scales,
whereas monitoring is often limited to spatially restricted field measures that are time- and
-labour intensive and unable to accurately cover the hundreds to thousands of hectares
under restoration. Recent advances in remote sensing technologies coupled with deep
learning algorithms provide an unprecedented opportunity for monitoring changes in
vegetation cover at spatial and temporal scales. Data generated in this manner can feed
directly into adaptive management practices and provide insights into regeneration
dynamics. Here we demonstrate that coupling imagery acquired using different models of
Unoccupied Aerial Vehicles (UAVs), and under heterogeneous illumination conditions, with
Convolutional Neural Network (CNN) segmentation algorithms accurately classified the
canopy cover of Portulacaria afra Jacq. - the target species for the restoration of Albany
Subtropical Thicket vegetation, endemic to South Africa. The model presented here is
widely transferable to restoration monitoring as its application does not require any
knowledge of the CNN model, or specialist training, can be applied to imagery generated
by a range of UAV models, and will reduce the sampling effort required to track restoration
trajectories in space and time. This will contribute to more effective management or
restoration sites and promote collaboration between scientists and practitioners.
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16 Abstract

17 Ecosystem restoration and reforestation initiatives can operate at large spatial scales, whereas 
18 monitoring is often limited to spatially restricted field measures that are time- and -labour 
19 intensive and unable to accurately cover the hundreds to thousands of hectares under 
20 restoration. Recent advances in remote sensing technologies coupled with deep learning 
21 algorithms provide an unprecedented opportunity for monitoring changes in vegetation cover at 
22 spatial and temporal scales. Data generated in this manner can feed directly into adaptive 
23 management practices and provide insights into regeneration dynamics. Here we demonstrate 
24 that coupling imagery acquired using different models of Unoccupied Aerial Vehicles (UAVs), 
25 and under heterogeneous illumination conditions, with Convolutional Neural Network (CNN) 
26 segmentation algorithms accurately classified the canopy cover of Portulacaria afra Jacq. - the 
27 target species for the restoration of Albany Subtropical Thicket vegetation, endemic to South 
28 Africa. The model presented here is widely transferable to restoration monitoring as its 
29 application does not require any knowledge of the CNN model or specialist training, can be 
30 applied to imagery generated by a range of UAV models, and will reduce the sampling effort 
31 required to track restoration trajectories in space and time. This will contribute to more effective 
32 management or restoration sites and promote collaboration between scientists and 
33 practitioners.

34 Introduction

35 With the United Nations �Decade on Ecosystem Restoration� underway, there are likely to be 
36 global increases in the extent of restoration initiatives. These initiatives will require methods for 
37 accurately monitoring the trajectories of restoration efforts in an efficient and cost-effective 
38 manner (de Almeida et al., 2020; Méndez-Toribio et al., 2021; Murcia et al., 2016). Additionally, 
39 these methods should be easily transferable, allowing non-experts to collect data at large spatial 
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40 and temporal scales. Recent advances in remote sensing technologies and deep learning 
41 algorithms may provide the tools required for restoration practitioners (Brodrick et al., 2019;
42 Kattenborn et al., 2021; Zhu et al., 2017). The work presented here demonstrates that using 
43 standard and low-cost  �out-of-the-box� Unoccupied Aerial Vehicles (UAVs) coupled with 
44 Convolutional Neural Network (CNN) algorithms allows for the detection and quantification of 
45 Portulacaria afra Jacq. in restoration plots established between 2007 and 2008. P. afra is 
46 regarded as an ecosystem engineer in the Albany Subtropical Thicket biome (van Luijk et al. 
47 2013; Wilman et al. 2014), endemic to South Africa, and is the target species for large scale 
48 restoration initiatives (Mills et al., 2015; Mills and Cowling, 2006; van der Vyver et al., 2021a). It 
49 is estimated that up to 1.2 million hectares of the thicket biome exhibits some level of 
50 degradation (Lloyd et al., 2002) and in need of restoration intervention. With approximately 7000 
51 ha of plantings completed by 2017 (Mills and Robson, 2017), it is likely that the scale of thicket 
52 restoration will reach the tens of thousands of hectares in coming years. Thus, the monitoring 
53 tool presented here could prove invaluable to the rapid monitoring and management of thicket 
54 restoration initiatives.
55 The thicket biome is largely confined to the Eastern Cape Province of South Africa and is 
56 characterized as a low growing, spinescent, dense woodland system with high standing 
57 biomass often dominated by a matrix of the succulent tree, P. afra (Vlok et al., 2003). Occurring 
58 within a semi-arid environment, the high productivity of thicket is globally unique, with litter 
59 production rates comparable to that of some temperate forest systems (Lechmere-Oertel et al., 
60 2008). This productivity formed the basis for wool, and mohair production in the region (Beinart, 
61 2008; Oakes, 1973; Stuart-Hill, 1992)s. While resistant to herbivory by indigenous browsers 
62 (Stuart-Hill, 1992, but see Landman et al., 2012), thicket vegetation is prone to P. afra 
63 denudation (due to the species' high palatability) when subjected to prolonged periods of 
64 browsing by domestic livestock (Hoffman and Cowling, 1990; Lechmere-Oertel et al., 2008). 
65 This results in a structural shift from a dense, closed-canopy woodland to an open habitat 
66 consisting of a handful of remnant and isolated woody species that occur within a matrix of bare 
67 soil, ephemeral herbs, grasses and dwarf shrubs (Lechmere-Oertel et al., 2008; Sigwela et al., 
68 2009; Stuart-Hill, 1992).
69 The change in P. afra abundance due to unsustainable browsing practices pushes the system 
70 to a point where the natural regeneration (seed set and asexual reproduction via rooted lateral 
71 branches) of this species becomes insufficient to overcome rates of canopy reduction and 
72 mortality (Lechmere-Oertel et al., 2008). The environmental buffering effects of P. afra improves 
73 soil organic matter (Lechmere-Oertel et al., 2008) and water infiltration (Mills and de Wet, 2019; 
74 van Luijk et al., 2013) required for the recruitment of canopy tree species (Sigwela et al., 2009; 
75 Wilman et al., 2014), thus playing an important role in community assembly processes. The loss 
76 of P. afra cover, therefore, triggers a series of feedback loops that set the ecosystem onto a 
77 trajectory towards degradation: the lack of vegetation cover exposes the soils to erosion, 
78 depleting carbon stocks  (Cowling and Mills, 2011; Lechmere-Oertel et al., 2008, 2005; Mills and 
79 Fey, 2004), which in turn disrupts hydrological processes such as water infiltration and retention 
80 (Cowling and Mills, 2011; Mills and de Wet, 2019; van Luijk et al., 2013), leading to further 
81 disruption of ecological functioning and ultimately biodiversity loss (Fabricius et al., 2003; 
82 Sigwela et al., 2009).
83 Active restoration of degraded P. afra thicket has been sponsored, at a landscape scale, by the 
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84 South African Government, in an initiative called the Subtropical Thicket Restoration Project 
85 (STRP). This aims to generate employment opportunities that will, ultimately, be funded by the 
86 global carbon market (Marais et al., 2009). The high productivity of P. afra thicket coupled with 
87 the ease of propagation (i.e. through the planting of unrooted P. afra truncheons into degraded 
88 habitat: Mills and Cowling, 2006; van der Vyver et al., 2021), lends the vegetation type well to 
89 carbon credit generation, sequestering up to 15.4 t CO₂ ha⁻¹ yr⁻¹ (Mills and Cowling, 2014). 
90 However, restoration success and carbon sequestration are measured over decades, while 
91 implementation success and restoration trajectories must be monitored over shorter time spans 
92 to allow for adaptive management. This monitoring is often limited to field measures that are 
93 time- and labour-intensive when having to cover hundreds to thousands of hectares. However, 
94 recent technological advancements have increased the availability of remote sensing data, 
95 providing solutions to this challenge in restoration (Almeida et al., 2021; Chen et al., 2021; 
96 Wang et al., 2021).
97 Novel aerial imagery platforms, such as UAVs, make the generation of high-resolution remote 
98 sensing data rapidly available with relatively little sampling effort (Colomina and Molina, 2014). 
99 These platforms require little specialist training and can provide high resolution data at spatial 

100 and temporal scales. Given the accelerated availability and volumes of such data, automated 
101 approaches are required to harness their full potential (Kattenborn et al., 2021). Convolutional 
102 Neural Networks (CNNs) are particularly well suited to the analysis of vegetation, due to this 
103 class of algorithms being designed to extract features in data (spatial features in the case of 
104 aerial imagery) that best describe the target object (e.g. leaf and canopy shapes, edges 
105 between individuals, and individual species spectral properties). Training the model to extract 
106 the desired features is particularly efficient as the algorithm itself is able to learn what patterns 
107 are important based on the reference material. This is done in sequential batches, enabling the 
108 model to cope with large amounts of data, which facilitates the training of models that are 
109 transferable across sites and remote sensing data conditions. CNNs have thus been applied in 
110 the identification of individual plant traits (e.g. growth form: Fromm et al., 2019 and Sylvain et 
111 al., 2019; and plant phenology: Hasan et al., 2018), species (Fricker et al., 2019 and Wagner et 
112 al., 2020), and communities (Kattenborn et al., 2019) from aerial imagery.

113 The growing interest in the global carbon market presents restoration initiatives with novel 
114 funding structures (Galatowitsch, 2009), that are likely to contribute to the upscaling of thicket 
115 restoration initiatives (Marais et al., 2009; Mills et al., 2015). This upscaling will require effective 
116 means of monitoring change in canopy cover, at a range of spatial and temporal scales, to 
117 inform adaptive management practices. By coupling imagery derived from readily available �out-
118 of-the-box� UAV�s and CNN segmentation algorithms, this work successfully classifies canopy 
119 cover of reintroduced P. afra in experimental thicket restoration plots established between 2008 
120 and 2009 (Mills et al., 2015). This demonstrates that commercially available UAVs coupled with 
121 CNN algorithms can provide rapid and accurate estimates of P. afra cover for restoration 
122 initiatives at low cost and without expert training. Implementation of this monitoring approach will 
123 allow for the rapid monitoring of changes in vegetation cover and facilitate adaptive 
124 management by allowing fine-scaled temporal monitoring of restoration sites.

125 Materials & Methods
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126 Study site and UAV data acquisition

127 A total of 300 experimental restoration plots were established in degraded habitat across the 
128 global extent of P. afra dominated thicket vegetation (as delineated by Vlok et al., 2003). Each 
129 plot consisted of a 0.25 ha (50 x 50 m) herbivore exclosure that was fenced to a height of 1.2 m. 
130 These experimental plots tested a range of P. afra planting strategies (briefly described in van 
131 der Vyver et al., 2021), but produced highly variable results, with survival ranging between 0 - 
132 100% between plots (Mills and Robson, 2017; van der Vyver et al., 2021b). Furthermore, the 
133 complete or partial removal of fencing exposed some experimental plots to herbivory (van der 
134 Vyver et al., 2021a), and differences in local climatic and soil conditions (Vlok et al., 2003) may 
135 have resulted in differences in the rate of P. afra growth. Thus, P. afra cover is highly variable 
136 between these plots. Aerial imagery for thirty-two experimental plots that reflect this variability in 
137 P. afra cover was aquired to train and test the CNN based segmentation models.
138 For this, RGB imagery was acquired in thirty-two individual flights in 2020-2021 using a DJI 
139 Phantom 4 Pro (n = 12) and DJI Mavic 2 Pro (n = 20). The imagery was acquired at different 
140 times and dates. This resulted in very diverse image properties, such as image brightness, 
141 contrast, or the presence, orientation and size of cast shadows. The flying height was 30 m 
142 above ground, with 10 m spacing between photographs, and this resulted in a Ground Sampling 
143 Distance (GSD) of ~0.9cm/pixel. Flight plans were generated using a custom script in R 
144 (V1.4.1717), and FlyLitchi (V4.22, www.flylitchi.com) was used to operate the UAV during 
145 flights. Imagery was stitched using Metashape (V1.7.2, Agisoft LLC). Examples of the images 
146 generated are provided in Figure 1.
147 Reference data was generated by visual interpretation of the orthoimagery in a GIS 
148 environment, where  P. afra crowns were delineated by means of manually geocoded polygons. 
149 For each orthoimage and plot, the reference data acquisition targeted an area of approximately 
150 12.5 by 12.5 m. After visual interpretation, the shapefiles were converted to a binary mask 
151 (presence vs. absence of P. afra) with a raster resolution corresponding to the respective 
152 orthoimage.
153 CNN model training and validation

154 For training the CNN, non-overlapping tile pairs of 128 by 128 pixels were seamlessly cropped 
155 from the orthoimages (predictors) and the masks (reference). For this, only the visually 
156 interpreted (P. afra cover) portion of the reference images was considered (cf. previous section). 
157 As a segmentation algorithm, we implemented the Unet architecture (Ronneberger et al., 2015). 
158 The Unet architecture is composed of an encoder and a decoder part, which are linked with skip 
159 connection. Both the encoder and decoder parts contain pooling operations, which reduce the 
160 spatial resolution of the feature maps. In the encoder part, the model extracts the image 
161 features for detecting P. afra at multiple spatial scales. The skip-connections transfer the 
162 activation maps of each spatial scale to the decoder part, which, hence, enables segmentation 
163 of the crown dimensions at the original spatial resolution of the input imagery.  Here, we used 
164 encoder and decoder parts composed of 4 convolutional blocks, where each block consists of 
165 two convolutional layers followed by a batch normalization and max pooling operation. As 
166 activation functions, we used Gaussian Error Linear Units (GELU).  Similar setups have been 
167 successfully applied in previous studies (Kattenborn et al., 2019; Schiefer et al., 2020).
168 To avoid optimistic model evaluation by spatially autocorrelated training and validation data 
169 (Ploton et al. 2021), we randomly split all available data on a plot basis, where a portion of plots 
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170 was used for model training (n=24) and model testing (n=8). The training data was again split in 
171 training (7/8) and validation data (1/8), whereas the validation data was used to monitor the 
172 training process. The models were trained in 100 epochs and the final model used for further 
173 analysis was selected based on the lowest loss on the validation data. As a loss function, we 
174 used the binary cross-entropy. Training the model took about 457 minutes using an NVIDIA 
175 A6000. The final model performance for the tiles that were included in the training, validation 
176 and testing was reported using the F1-score (also known as dice coefficient). Additionally, we 
177 performed a t-Test to assess if F1-scores differed significantly between imagery obtained with 
178 the DJI Phantom 4 Pro and the DJI Mavic 2 Pro.
179 The final model was used to predict P. afra crowns in all orthoimagery. The prediction was 
180 performed using a moving window approach, in which individual tiles of the same size as used 
181 for model training (128 x 128 pixels) were seamlessly cropped from the orthoimagery. The final 
182 model was then applied on these tiles and the predictions were stored as a prediction raster 
183 containing the class probability (0 = absence & 1 = presence of P. afra). To reduce edge effects 
184 (potential mispredictions at the border of tiles), we applied this procedure two times, where the 
185 locations of extracting the tiles were shifted by 50 % of the tile size (64 pixels). The two resulting 
186 prediction rasters were averaged and a threshold of (0.5) was applied to produce a binary 

187 classification output.

188 Results
189 The model performance in terms of F1-score was 0.932 for the training data, 0.926 for the 
190 validation data and 0.936 for the test data obtained from the entirely independent plots. The F1-
191 score for most individual plots was at least 0.9 (n = 29), 3 plots with F1-scores lower than 0.9 
192 were observed. The lower accuracy of two of these plots resulted from misinterpretations of the 
193 reference data and in one case from false-positive predictions in very dark and large cast 
194 shadows. No significant difference in F1-scores was detected between predictions obtained for 
195 the DJI Phantom 4 Pro and the DJI Mavic 2 Pro (t = 1.5283, df = 24.84, p-value = 0.1391, 
196 Figure 2).

197 Discussion
198 The application of CNN machine learning models proved suitable for the classification and 
199 quantification of P. afra cover in the heterogenous RGB aerial imagery, generated from 
200 commercially available �out of the box� UAV models (Figure 3). The method presented here 
201 proved to be transferable across different UAV models, sites and illumination conditions with no 
202 apparent loss of performance (Figure 2).
203 Where multiple UAV flights are required for data collection, it is common practice to limit flights 
204 to the same time of day and on clear days so as to minimize the potential effects of solar angle 
205 and radiance on model performance (Abdulridha et al., 2019; Adak et al., 2021; Eskandari et al., 
206 2020; Guo et al., 2020; Lopatin et al., 2019). This was not the case here, UAV data acquisition 
207 was not restricted to specific illumination conditions, no image corrections or cross-calibrations 
208 were conducted, and the model was trained using images sourced under a range of conditions 
209 and using different models of UAV�s. Despite this, model performance was comparable to other 
210 studies (see studies reviewed in Kattenborn et al., 2021), highlighting the robust nature of the 
211 CNN model applied, which should, therefore, be easily transferable for the quantification of P. 

212 afra cover in restoration sites across the Albany Thicket biome in South Africa.  
213 The ease of use and transferability of aerial image classification models presents new 
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214 opportunities for defining and tracking restoration targets across a range of spatial and temporal 
215 scales. Loewensteiner et al. (2021) demonstrate the importance of temporal scale in defining 
216 restoration targets, applying CNN models to the classification of woody cover in a Savanna 
217 ecosystem over a 66 year time period. Woody cover was found to be variable over time, thus, 
218 restoration targets for the system should fall within a spectrum of woody cover and are not 
219 required to reflect the current state of the reference ecosystem. A similar approach could be 
220 applied to describe restoration targets and planting densities in thicket restoration, as the 
221 current practice aims to generate a dense closed canopy with individual P. afra reintroduced at 
222 high densities (1-2 m spacing). Additionally, it may be possible to detect return of ecosystem 
223 functioning using aerial imagery. This may include measures of structural complexity, indicative 
224 of biodiversity returns (Camarretta et al., 2020), or regeneration dynamics (e.g. measures of 
225 target species cover as presented here for P. afra) and seedling recruitment (Buters et al., 2019; 
226 Fromm et al., 2019).
227 The application of the model presented here will allow thicket restoration initiatives to rapidly 
228 collect data from a range of different UAV models for temporal monitoring of restoration 
229 trajectories, informing adaptive management practices (Camarretta et al., 2020). This currently 
230 presents a major challenge in thicket restoration as field-based monitoring often takes place in 
231 distant rural areas, where P. afra has coalesced to form a fairly impenetrable barrier of 
232 vegetation, and requires expert training in ecological monitoring techniques. Repeat aerial 
233 imagery can be generated, by almost anyone with a little training,  for restoration sites with no 
234 increase in sampling effort over time. The data generated can potentially be sent to a 
235 centralised repository for analysis, bridging the science-practice gap  (Dickens and Suding, 
236 2013) and promoting further collaboration within the Albany Subtropical Thicket restoration 
237 community (Mills et al., 2015). This will provide managers with estimates of plant density (using 
238 blob detection, which separates individuals in the CNN classification: Kattenborn et al., 2021); 
239 accurate estimates of plant survival in the first year of implementation (comparing plant density 
240 changes between flights); and estimates of plant cover changes overtime to ensure 
241 interventions can be made if plant cover is lost due to disturbance (e.g. frost: Duker et al. 2015, 
242 or herbivory: van der Vyver et al. 2021). In such cases, actions can be informed by the scienftific 
243 community and implemented by managers and landowners to remediate the processes 
244 threatening the restoration initiative.
245 Aerial imagery-based monitoring is well suited to collecting data at spatial scales relevant to 
246 ecosystem restoration. The spatial extent to which a UAV can collect data is confined by the 
247 battery life (flight time), whereas the classification of these images using CNN models has the 
248 potential to classify vegetation dynamics at large spatial scales (Flood et al., 2019; Timilsina et 
249 al., 2020). Cloud computing provides a possible means of overcoming the computational load of 
250 processing large data (see Kattenborn et al. 2021 for a summary of available servers for CNN 
251 data analysis), making the classification of large spatial areas feasible for a greater number of 
252 practitioners. This may prove invaluable for the upscaling of thicket restoration in South Africa, 
253 with an estimated 1.2 million ha of degraded ecosystems having some restoration potential 
254 (Lloyd et al., 2002).
255 While we have presented the first CNN model relevant to the restoration of the Albany 
256 Subtropical Thicket biome, and that could be applied to monitoring restoration at scale, we do 
257 not harness the full capabilities of machine learning in this study. Here, we used the well-known 
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258 Unet algorithm (Ronneberger et al., 2015), while CNN-based segmentation algorithms are 
259 steadily advancing (Minaee et al., 2021). Likewise, UAV and sensor technology continue to 
260 advance, improved image resolution and spectral range of drone imagery are likely to come at 
261 lower prices, making detection of finer scaled patterns possible without having to decrease flight 
262 altitudes. Additionally,  the three-dimensional mapping of vegetation cover using LiDAR 
263 technologies provides opportunities to estimate plant biomass without labour intensive fieldwork 
264 (Shendryk et al., 2020; ten Harkel et al., 2019). This may aid in estimating carbon sequestration 
265 in restoration sites to assist in carbon credit verification and issuing for the global carbon 
266 market. Harris et al. (2021) present an example of this, reporting a significant correlation 
267 between above-ground carbon estimates calculated from remote sensed P.afra canopies and 
268 field measures. Increased image resolution can provide novel insights into P. afra recruitment 
269 dynamics, and further developing the CNN model to classify multiple species (as per Fricker et 
270 al., 2019 and Kattenborn et al., 2019) can provide insights into biodiversity return with relatively 
271 low sampling effort (a laborious task to complete using manual field measures, last undertaken 
272 by van der Vyver et al., 2013). Thus, it is evident that the work present here should inspire 
273 future application of UAV imagery to the ecology and management of Albany Subtropical 
274 Thicket vegetation.  

275 Conclusions
276 Recent advancements in machine learning and remote sensing technologies have provided 
277 unprecedented access to, and automated processing of earth imagery. This can potentially 
278 transform monitoring of ecosystem restoration practices, shifting protocols from time and 
279 resource exhaustive field measures to remote sensing approaches. Here we demonstrated the 
280 utility of standard �out of the box� UAV data coupled with CNN models to classify and quantify P. 

281 afra cover in thicket restoration plots. The models were transferable across different plot 
282 properties, illumination conditions, and UAV models. The integration of this model in the 
283 monitoring of thicket restoration will aid in the planned upscaling of Albany Subtropical Thicket 
284 restoration and generate valuable temporal data for evaluating restoration trajectories and 
285 demographic processes. This will promote collaborative efforts between scientists and 
286 practitioners, strengthening the restoration community. Importantly, the integration of this 
287 monitoring approach does not require any technical knowledge of the CNN model, or special 
288 skill sets to fly commercially available UAVs, and can thus reduce the sampling effort required 
289 for monitoring restoration at scale.
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Figure 1
Photographs of three experimental restoration plots.

(A-C) Experimental restoration plots in context. Note the open woodland (degraded thicket)
surrounding the plots in relation to the dense woodland (intact thicket) in the background.
(D-F) Arial images of the above restoration plots used for P. afra canopy cover classification.
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Figure 2
Model performance estimates using F1-scores, (train) Training data, (val) the validation
data and (test) data of entirely independent plots.
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Figure 3
Prediction results of the final CNN model on the orthoimagery.

Top: The orthoimagery overlaid by the reference polygons (white). Bottom: Orthoimagery
overlaid with reference polygons (white) and segmentation results (purple). EPSG: 32735.
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