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ABSTRACT
Ecosystem restoration and reforestation often operate at large scales, whereas
monitoring practices are usually limited to spatially restricted field measurements
that are (i) time- and labour-intensive, and (ii) unable to accurately quantify
restoration success over hundreds to thousands of hectares. Recent advances in
remote sensing technologies paired with deep learning algorithms provide an
unprecedented opportunity for monitoring changes in vegetation cover at spatial and
temporal scales. Such data can feed directly into adaptive management practices and
provide insights into restoration and regeneration dynamics. Here, we demonstrate
that convolutional neural network (CNN) segmentation algorithms can accurately
classify the canopy cover of Portulacaria afra Jacq. in imagery acquired using
different models of unoccupied aerial vehicles (UAVs) and under variable light
intensities. Portulacaria afra is the target species for the restoration of Albany
Subtropical Thicket vegetation, endemic to South Africa, where canopy cover is
challenging to measure due to the dense, tangled structure of this vegetation.
The automated classification strategy presented here is widely transferable to
restoration monitoring as its application does not require any knowledge of the CNN
model or specialist training, and can be applied to imagery generated by a range of
UAV models. This will reduce the sampling effort required to track restoration
trajectories in space and time, contributing to more effective management of
restoration sites, and promoting collaboration between scientists, practitioners and
landowners.
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INTRODUCTION
With the United Nations “Decade on Ecosystem Restoration” underway, there is likely to
be a global increase in the extent of restoration initiatives. These initiatives will require
methods for accurately monitoring the trajectories of restoration efforts in an efficient and
cost-effective manner (de Almeida et al., 2020;Méndez-Toribio, Martínez-Garza & Ceccon,
2021; Murcia et al., 2016). Additionally, these methods should be easily transferable,
allowing non-experts to collect data at large spatial and temporal scales. Recent advances in
remote sensing technologies and deep learning algorithms may provide the tools required
for restoration practitioners (Brodrick, Davies & Asner, 2019; Kattenborn et al., 2021; Zhu
et al., 2017). The work presented here demonstrates that using standard and low-cost
“out-of-the-box” unoccupied aerial vehicles (UAVs) coupled with convolutional neural
network (CNN) algorithms allows for the detection and quantification of Portulacaria afra
Jacq. across experimental restoration plots established between 2007 and 2008.
Portulacaria afra is regarded as an ecosystem engineer in the Albany Subtropical Thicket
biome (van Luijk et al., 2013; Wilman et al., 2014) and is the target species for large-scale
restoration initiatives (Mills et al., 2015; Mills & Cowling, 2006; van der Vyver, Mills &
Cowling, 2021). It is estimated that up to 1.2 million hectares of the Thicket biome is
degraded to some extent (Lloyd, van den Berg & Palmer, 2002), and requires some form of
intervention to prevent the complete collapse of ecosystem functioning. With
approximately 7,000 ha of plantings having been completed by 2017 (Mills & Robson,
2017), it is likely that the scale of thicket restoration will reach the tens of thousands of
hectares in coming years due to the surge of investment into the carbon market and
restoration initiatives across the world. Thus, the approach presented here could be
invaluable for the cost-effective monitoring and management of thicket restoration
initiatives.

The Thicket biome is largely confined to the Eastern Cape Province of South Africa and
is characterized as a low-growing, spinescent, dense woodland system with high standing
biomass often dominated by a matrix of the succulent shrub, P. afra (Vlok, Euston-Brown
& Cowling, 2003). Occurring within a semi-arid environment, the high productivity of
thicket is globally unique, with litter production rates comparable to that of some
temperate forest systems (Lechmere-Oertel et al., 2008). This productivity has formed the
foundation for the wool and mohair industry in the region (Beinart, 2008; Oakes, 1973;
Stuart-Hill, 1992). While reported to be resistant to herbivory by certain indigenous
browsers (Stuart-Hill, 1992, but see Landman et al., 2012), thicket vegetation can be rapidly
cleared of P. afra (due to the species’ high palatability) when subjected to intensive
browsing by domestic livestock (Hoffman & Cowling, 1990; Lechmere-Oertel et al., 2008).
This results in a structural shift from a dense, closed-canopy woodland to an open habitat
consisting of a handful of remnant and isolated woody species that occur within a matrix
of bare soil, ephemeral herbs, grasses and dwarf shrubs (Lechmere-Oertel et al., 2008;
Sigwela et al., 2009; Stuart-Hill, 1992).

The change in P. afra cover due to unsustainable live-stock management pushes the
system to a point where the natural regeneration of this species (i.e. seed set and asexual
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reproduction via rooting of lateral branches) cannot overcome rates of canopy reduction
and mortality (Lechmere-Oertel et al., 2008). The environmental buffering effects of P. afra
increase the amount of soil organic matter (Lechmere-Oertel et al., 2008), improving water
infiltration (van Luijk et al., 2013) and water holding capacity (Mills & de Wet, 2019).
The canopy of P. afra creates the cool shaded microhabitat required for the recruitment of
canopy tree species (Sigwela et al., 2009;Wilman et al., 2014), thus facilitating community
assembly processes. The loss of P. afra cover triggers a series of feedback loops that steers
the ecosystem towards an alternate state with limited ecological functioning. The lack of
vegetation cover exposes the soils to erosion which results in the depletion of soil organic
carbon (Cowling & Mills, 2011; Lechmere-Oertel et al., 2008; Lechmere-Oertel, Kerley &
Cowling, 2005; Mills & Fey, 2004), and disrupts hydrological processes such as water
infiltration and subsequent retention (Cowling & Mills, 2011; Mills & de Wet, 2019; van
Luijk et al., 2013). This leads to further loss of ecological processes and ultimately,
significant loss of biodiversity (Fabricius, Burger & Hockey, 2003; Sigwela et al., 2009).

Active restoration of degraded P. afra thicket has been tested in experimental plots
established across the biome by the government-funded Subtropical Thicket Restoration
Project (STRP). This initiative aimed to generate employment that would transition
towards funding support from the global carbon market (Marais et al., 2009). The high
productivity of succulent thicket and the ease of propagation of P. afra (i.e. through the
planting of unrooted branches into degraded habitat:Mills & Cowling, 2006; van der Vyver,
Mills & Cowling, 2021), make this vegetation ideal for the generation of carbon credits,
as it sequesters up to 15.4 t CO2 ha

−1 yr−1 (Mills & Cowling, 2014). However,
ecosystem-level restoration success and carbon sequestration are measured over decades
whereas implementation success and restoration trajectories must be monitored over
shorter time frames to enable adaptive management. This monitoring is often limited to
costly techniques that are time- and labour-intensive when hundreds to thousands of
hectares need to be covered. Fortunately, recent technological advances have provided
innovative techniques to overcome this challenge in restoration (Almeida et al., 2021; Chen
et al., 2021; Wang et al., 2021).

Increased accessibility of UAVs makes the generation of high-resolution remote sensing
data available with relatively little sampling effort (Colomina & Molina, 2014). These
platforms require little specialist training and can provide accurate data at both spatial and
temporal scales. Given the acceleration in availability and volumes of this data, automated
approaches to analyzing this data are essential to fully exploit its potential (Kattenborn
et al., 2021). Convolutional neural networks (CNNs) are particularly well suited to
vegetation analysis as they extract features in data (e.g., spatial features in the case of aerial
imagery) that best describe the target object (such as leaf and canopy shapes, edges between
individuals, and spectral properties of individual species). Training the model to extract
the desired features is particularly efficient as the algorithm itself is able to learn what
patterns are important based on reference material. This is done in sequential batches,
enabling the model to process large amounts of data, facilitating the training of models
with ample and diverse data so that they are transferable across sites and lighting
conditions. CNNs have thus been used to identify individual plant traits such as growth
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form (Fromm et al., 2019; Sylvain, Drolet & Brown, 2019), phenology (Hasan et al., 2018),
species (Fricker et al., 2019; Wagner et al., 2020), and communities (Kattenborn, Eichel &
Fassnacht, 2019) from aerial imagery.

The growing interest in the global carbon market presents restoration initiatives with
novel funding structures (Galatowitsch, 2009) that are likely to contribute to the upscaling
of Thicket restoration (Marais et al., 2009; Mills et al., 2015). This will require effective
monitoring of change in canopy cover at a range of spatial and temporal scales to inform
adaptive management practices. By pairing imagery derived from readily available “out-of-
the-box” UAVs and CNN segmentation algorithms, this study successfully classifies
canopy cover of reintroduced P. afra in experimental thicket restoration plots established
between 2008 and 2009 (Mills et al., 2015). Thus, we demonstrate that commercially
available UAVs and CNN algorithms can provide rapid and accurate estimates of P. afra
cover at low cost and without expert training. Implementation of this monitoring approach
will allow efficient monitoring of changes in vegetation cover and facilitate adaptive
management through fine-scaled spatio-temporal monitoring of restoration sites.

MATERIALS AND METHODS
Study site and UAV data acquisition
Between 2008 and 2009, approximately 300 experimental restoration plots were
established in degraded habitat across the global extent of P. afra dominated thicket
vegetation (as delineated by Vlok, Euston-Brown & Cowling, 2003). Each plot consisted of a
0.25 ha (50 × 50 m) herbivore exclosure that was fenced to a height of 1.2 m. These
experimental plots tested a range of P. afra planting strategies (briefly described in van der
Vyver, Mills & Cowling, 2021), but produced highly variable results, with survival ranging
between zero and nearly 100% between plots (van der Vyver et al., 2021). The complete or
partial removal of fencing exposed some experimental plots to herbivory (van der Vyver,
Mills & Cowling, 2021), and differences in local climatic and soil conditions (Vlok,
Euston-Brown & Cowling, 2003) may have resulted in differences in the rate of P. afra
survival and growth, resulting in highly variable cover between these plots (Duker et al.,
2020). In order to train and test the CNN-segmentation models, aerial imagery was
acquired for thirty-two experimental plots that reflect this variability in cover.

For this, RGB imagery was acquired from thirty-two plot-specific flights in 2020–2021
using a DJI Phantom 4 Pro (n = 12) and DJI Mavic 2 Pro (n = 20). Flights were conducted
at different times and dates, resulting in variable image brightness and contrast, and the
size and casting of shadows. The flight height was approximately 30 m above ground, with
10 m spacing between photographs, resulting in a Ground Sampling Distance (GSD) of
~0.9 cm/pixel. Flight plans were generated using a custom script in R (V1.4.1717), and
FlyLitchi (V4.22, www.flylitchi.com) was used to operate the UAV during flights. Imagery
was stitched using Metashape (V1.7.2; Agisoft LLC, Saint Petersburg, Russia). Examples of
the images generated are provided in Fig. 1.

Reference data was generated by visual interpretation of the orthoimagery, where P. afra
crowns were mapped by means of manually drawn polygons (using QGIS 3.24.0). For each
orthoimage and plot, the reference data acquisition targeted an area of approximately 12.5
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× 12.5 m. After visual interpretation, the shapefiles were converted to a binary mask
(presence vs. absence of P. afra) with a raster resolution corresponding to the respective
orthoimage.

CNN model training and validation
For training the CNN, non-overlapping tile pairs of 128 × 128 pixels were seamlessly
cropped from the orthoimages (predictors) and the masks (reference). For this, only the
visually interpreted (P. afra cover) portion of the reference images was considered (as per
previous section). The tile size of 128 × 128 pixels was chosen as at this spatial extent the
characteristic features of P. afra are still visible and large amounts of non-overlapping tiles
are available for model training.

As a segmentation algorithm, we implemented the Unet architecture (Ronneberger,
Fischer & Brox, 2015), which is known for its efficiency and widely used for segmentation
tasks in high resolution remote sensing images (Kattenborn et al., 2021). The Unet
architecture is composed of an encoder and a decoder part, which are linked with skip
connection (Fig. 2). Both the encoder and decoder parts contain pooling operations, which
reduce the spatial resolution of the feature maps. In the encoder part, the model extracts
the image features for detecting P. afra at multiple spatial scales. The skip-connections
transfer the activation maps of each spatial scale to the decoder part, which, hence, enables
segmentation of the crown dimensions at the original spatial resolution of the input
imagery. Here, we used encoder and decoder parts composed of four convolutional blocks,
where each block consists of three convolutional layers followed by a batch normalization
and max pooling operation. In the consecutive blocks, the convolutional layers had a depth
of 512, 256, 128 and 64 layers for the encoder part and equally but in reverse order for the

Figure 1 Photographs of three experimental restoration plots. (A–C) Experimental restoration plots
in context. Note the open woodland (degraded thicket) surrounding the plots in relation to the dense
woodland (intact thicket) in the background. (D–F) Arial images of the above restoration plots used for
P. afra canopy cover classification. Full-size DOI: 10.7717/peerj.14219/fig-1
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decoder part. As activation functions, we used Gaussian Error Linear Units (GELU).
Similar setups have been successfully applied in previous studies (Kattenborn, Eichel &
Fassnacht, 2019; Schiefer et al., 2020).

To avoid optimistic model evaluation by spatially autocorrelated training and validation
data (Ploton et al., 2020; Kattenborn et al., 2022), we randomly split all available data on a
plot basis, where a portion of plots was used for model training (n = 24) and the remainder
used for model testing (n = 8). The training data was again split in training (7/8) and
validation data (1/8), whereas the validation data was used to monitor the training process.
The models were trained in 200 epochs and the final model used for further analysis was
selected based on the lowest loss on the validation data (see S1 for training vs. loss-rate
curve). As a loss function, we used binary cross-entropy:

Loss ¼ 1
N

XN
i¼1

yi � logbyi þ ð1� yiÞ � logð1� byiÞ;

where N are the number of model outputs, byi is the model output and yi the target value.
Training the model took ~450 min using an NVIDIA A6000. The final model

performance for the tiles that were included in the training, validation and testing was
reported using the F1-score (also known as dice coefficient). Additionally, we performed a
t-test to assess if F1-scores differed significantly between imagery obtained with the DJI
Phantom 4 Pro and the DJI Mavic 2 Pro.

The final model was used to predict P. afra crowns in all orthoimagery. The prediction
was performed using a moving window approach, in which individual tiles of the same size
as used for model training (128 × 128 pixels) were seamlessly cropped from the
orthoimagery. The final model was then applied on these tiles and the predictions were
stored as a prediction raster containing the class probability (0 = absence & 1 = presence of
P. afra). To reduce edge effects (potential mispredictions at the border of tiles), we applied
this procedure two times, where the locations of extracting the tiles were shifted by 50% of

Figure 2 A schematic illustration of the Unet architecture and the tiled pairs of UAV imagery (left)
and corresponding binary segmentation masks (right). Full-size DOI: 10.7717/peerj.14219/fig-2
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the tile size (64 pixels). The average of two resulting prediction rasters were calculated and
a threshold of (0.5) was applied to produce a binary classification output.

RESULTS
The model performance in terms of F1-score was 0.995 for the training data, 0.969 for the
validation data and 0.966 for the test data obtained from the entirely independent plots.
The F1-score for the individual plots in the test dataset was at least 0.920 (Fig. 3). Visual
interpretation revealed that lower accuracies resulted from misinterpretations of the
reference data. No significant difference in F1-scores was detected between predictions
obtained for the DJI Phantom 4 Pro and the DJI Mavic 2 Pro (t = 1.5283, df = 24.84, p-
value = 0.1391, Fig. 3). The recall (mean = 0.962) and precision (mean = 0.965) metrics
derived from the test dataset indicate that no systematic over- or underprediction of P. afra
occurred (Fig. 3).

DISCUSSION
The application of CNNmachine learning models proved suitable for the classification and
quantification of P. afra cover in the highly variable RGB aerial imagery, generated from
commercially available ‘out of the box’ UAV models (Fig. 4). This approach to species
mapping has been widely applied for the classification of tree species in forest communities
(Fricker et al., 2019; Natesan, Armenakis & Vepakomma, 2019; Pinheiro et al., 2020;
Schiefer et al., 2020) and appears to be well suited to thicket vegetation that exhibits a
similar closed canopy structure (Vlok, Euston-Brown & Cowling, 2003). Furthermore, the
method presented here proved to be transferable across different UAV models, sites and
lighting conditions, with no apparent loss of performance (Fig. 3).

Where multiple UAV flights are required for data collection, it is common practice to
limit flights to the same time of day and on clear days so as to minimize the potential
effects of solar angle and radiance on model performance (see examples in Abdulridha,
Batuman & Ampatzidis, 2019; Adak et al., 2021; Eskandari et al., 2020; Guo et al., 2020;
Lopatin et al., 2019). This was not the case here. UAV data acquisition was not restricted to
specific illumination conditions, no image corrections or cross-calibrations were

Figure 3 Model performance estimates derived from the (train) training data, (val) the validation data and (test) data derived from entirely
independent plots and respective UAV acquisitions. Full-size DOI: 10.7717/peerj.14219/fig-3
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conducted, and the model was trained using images sourced under a range of conditions
and using different models of UAVs. Despite this, model performance was comparable to
other studies using CNN-based segmentation approaches (see studies reviewed in
Kattenborn et al., 2021), indicating that the model learned robust representations of P. afra
under a range of the above mentioned factors. Note, that the transferability of the models
was successfully tested with entirely independent image acquisitions, which may even
include acquisition and site conditions that were not explicitly included in model training
(cf. Kattenborn et al., 2022). Thus, the model presented here could be applied to quantify
P. afra cover in restoration sites across the Albany Subtropical Thicket biome in South
Africa.

The ease of use and transferability of aerial image classification models presents new
opportunities for defining and tracking restoration targets across a range of spatial and
temporal scales. Loewensteiner et al. (2021) demonstrate the importance of temporal scale
in defining restoration targets, by applying CNN models to classify woody cover in a

Figure 4 Prediction results of the final CNN model on the orthoimagery. Top: The orthoimagery overlaid by the reference polygons (white).
Bottom: Orthoimagery overlaid with reference polygons (white) and segmentation results (purple). EPSG: 32735.

Full-size DOI: 10.7717/peerj.14219/fig-4
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Savanna ecosystem over a 66 year time period. Woody cover was found to vary over time,
and thus restoration targets for the system should fall within the range of woody cover
detected and are not required to reflect the current vegetation structure of the reference
ecosystem. Similarly, the model presented here could be applied to images of intact thicket
ecosystems to better describe restoration targets and planting densities, as the current
practice aims to generate a dense closed canopy by reintroducing P. afra at high densities
(1–2 m spacing). Additionally, it may be possible to detect the return of ecosystem
functioning using aerial imagery. This may include measures of structural complexity,
indicative of biodiversity returns (Camarretta et al., 2020), or regeneration dynamics (e.g.,
measures of target species cover as presented here for P. afra, and for pioneer forest species
in Wagner et al., 2020) and seedling recruitment (Buters, Belton & Cross, 2019; Fromm
et al., 2019).

The data presented here demonstrates that thicket restoration initiatives could
efficiently analyze aerial imagery collected using different UAV models for temporal
monitoring of restoration trajectories, and inform adaptive management practices
(Camarretta et al., 2020). This, currently, presents a major challenge in thicket restoration
as field-based monitoring often takes place in remote areas where P. afra has coalesced to
form dense and impenetrable stands. Repeat aerial imagery can be collected for restoration
sites with no increase in sampling effort over time, and with little effort or training.
The data generated can potentially be sent to a centralized repository for analysis, bridging
the science-practice gap (Dickens & Suding, 2013) and promoting further collaboration
within the Albany Subtropical Thicket restoration community (Mills et al., 2015). This will
provide managers with estimates of plant density (for example, by using blob detection,
which separates individuals in the CNN classification: Kattenborn et al., 2021) and assist in
tracking changes in plant cover to ensure interventions can be made if plant cover is lost
due to disturbance (e.g., frost: Duker et al., 2015a, 2015b, or herbivory: van der Vyver et al.,
2021). In such cases, actions can be informed by the scientific community and
implemented by managers and landowners to remediate the processes threatening the
restoration initiative.

The approach presented here demonstrates the potential of monitoring P. afra cover at
local scales with great efficiency and flexibility, in rather inaccessible sites. However, the
spatial extent of UAV acquisitions with sufficient resolution is constrained by battery life—
for example, with the UAVs used in this study, imaging over approximately 15 ha requires
a fully charged battery when flying at a height of 60 m and multiple UAV acquisitions
would be required to evaluate P. afra cover for larger areas. However, other UAV designs,
such as fixed-wing, offer even better area coverage, and it is very likely that image
acquisition over large areas will be routinely achievable (Meneses et al., 2018).
An alternative approach for monitoring larger areas could also include the integration of
satellite imagery, where UAV-based estimates on P. afra cover are used to train machine
learning models with data from Earth Observation satellite data, such as from the Sentinel
or Landsat missions (see Kattenborn, Eichel & Fassnacht, 2019; Fraser, Van der Sluijs &
Hall, 2017; Fraser, Pouliot & van der Sluijs, 2022; Naidoo et al., 2021). Although such
satellite imagery features considerably lower spatial resolution, their high temporal and
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spectral resolution can suffice to differentiate plant species and hence enable them to
extrapolate cover from the local (UAV) to regional scales.

Another constraint of the proposed approach, from the practitioner’s perspective, may
be access to sufficient computing capabilities. High-resolution remote sensing data can
result in large data volumes and, although once trained, CNN models are quite efficient,
they are ideally applied with GPUs to process large datasets (Flood, Watson & Collett, 2019;
Brandt et al., 2020). Cloud computing can provide a possible means of overcoming these
computational loads for processing large datasets (see Kattenborn et al., 2021 for some
cloud platforms with GPU support), making the classification of large spatial areas feasible
for a greater number of practitioners. Cloud computing in combination with integrating
remote sensing data may thus prove invaluable for the upscaling of Thicket restoration in
South Africa, with an estimated 1.2 million ha of degraded ecosystems having some
restoration potential (Lloyd, van den Berg & Palmer, 2002).

While we have presented the first CNN model relevant to Albany Subtropical Thicket,
and that could be applied to monitoring restoration at scale, we do not harness the full
capabilities of machine learning in this study. Here, we used the well-known Unet
algorithm (Ronneberger, Fischer & Brox, 2015), while CNN-based segmentation
algorithms are steadily advancing (Minaee et al., 2021). UAV and sensor technologies also
continue to advance, with improved image resolution and the spectral range of drone
imagery becoming ever cheaper, which will make detection of finer-scale patterns possible
without having to decrease flight altitudes. Additionally, the three-dimensional mapping of
vegetation cover using LiDAR technologies provides opportunities to estimate plant
biomass without labor intensive fieldwork (Shendryk et al., 2020; ten Harkel, Bartholomeus
& Kooistra, 2019). This may aid in calculating carbon sequestration in restoration sites to
assist in carbon credit verification and generation for sale on the global carbon market.
Harris, Bolus & Reeler (2021) present a satellite-based example of this, reporting a
significant correlation between above-ground carbon stocks calculated from remotely
sensed P. afra-dominated vegetation canopies and field measures. In addition, increased
image resolution will likely provide better insights into P. afra recruitment dynamics, and
further developing the CNN model to classify multiple species (as per Fricker et al., 2019;
Kattenborn, Eichel & Fassnacht, 2019) can provide insights into biodiversity return with
minimal sampling effort. This is a laborious task to complete using manual field measures,
last undertaken by van der Vyver et al. (2013), requiring multiple days of field surveys to
cover relatively small areas—this can now be covered within a matter of hours using UAVs
by a non-specialist. Additionally, field measures are more prone to sampling biases,
whereas the repeated use of a CNN model will provide consistent and repeatable results.
Thus, it is evident that the work presented here should inspire the future application of
UAV imagery to the ecology and management of Albany Subtropical Thicket vegetation.

CONCLUSIONS
Recent advancements in machine learning and remote sensing technologies have provided
unprecedented ease of processing aerial imagery. This can potentially transform
monitoring of ecosystem restoration practices, shifting protocols from slow and expensive
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field measures to more efficient remote sensing approaches. Here we demonstrated the
utility of standard ‘out of the box’ UAV data coupled with CNN models to classify and
quantify P. afra cover in thicket restoration plots. The models were transferable across
imagery collected with different UAV models and under varying lighting conditions.
The integration of this model in the monitoring of thicket restoration will aid in the
planned upscaling of Albany Subtropical Thicket restoration and generate valuable
temporal data for evaluating restoration trajectories and demographic processes. This will
promote collaborative efforts between scientists and practitioners, strengthening the
restoration community. Importantly, the integration of this monitoring approach does not
require any technical knowledge of the CNNmodel, or special skill sets to fly commercially
available UAVs, and can thus improve efficiency while reducing the cost of sampling
efforts required for accurate monitoring of restoration at landscape scales.
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