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ABSTRACT
Background. Plants tolerant to low nitrogen are a quantitative trait affected by many
factors, and the different parameters were used for stress-tolerant plant screening
in different investigations. But there is no agreement on the use of these indicators.
Therefore, a method that can integrate different parameters to evaluate stress tolerance
is urgently needed.
Methods. Six maize genotypes were subject to low nitrogen stress for twenty days.
Then seventeen traits of the six maize genotypes related to nitrogen were investigated.
Nitrogen tolerance coefficient (NTC) was calculated as low nitrogen traits to high
nitrogen traits. Then principal component analysis was conducted based on the NTC.
Based on fuzzy mathematics theory, a D value (decimal comprehensive evaluation
value) was introduced to evaluate maize tolerant to low nitrogen.
Results. Three maize (SY998, GEMS42-I and GEMS42-II) with the higher D value
have better growth and higher nitrogen accumulation under low nitrogen conditions.
In contrast, Ji846 with the lowest D value has the lowest nitrogen accumulation and
biomass in response to nitrogen limitation. These results indicated that the D value
could help to screen low nitrogen tolerant maize, given that the D value was positively
correlated with low nitrogen tolerance in maize seedlings.
Conclusions. The present study introduced the D value to evaluate stress tolerance. The
higher the D value, the greater tolerance of maize to low nitrogen stress. This method
may reduce the complexity of the investigated traits and enhance the accuracy of stress-
tolerant evaluation. In addition, this method not only can screen potentially tolerant
germplasm for low-nitrogen tolerance quickly, but also can comprise the correlated
traits as many as possible to avoid the one-sidedness of a single parameter.

Subjects Agricultural Science, Molecular Biology, Plant Science
Keywords Principal component analysis, Nitrogen tolerance coefficient (NTC), Subordinate
function, D value, Maize, Nitrate, Ammonium, Nitrogen tolerance, Nitrogen transporter,
Gene expression

INTRODUCTION
Nitrogen is an essential nutrient for plant growth and development, and it is also a major
driving force for crop productivity improvement. Screening and developing varieties with
nitrogen efficient crop plays a pivotal role in agriculture’s sustainable development (Liu
et al., 2022). Nitrogen uptake and utilization efficiency for grain production depend on
those processes associated with absorption, translocation, assimilation and redistribution
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of nitrogen to operate effectively (Masclaux-Daubresse et al., 2010; Xu, Fan & Miller, 2012).
Plants uptake the nitrate through the low- and high-affinity nitrate transporters (Fan et
al., 2017; Vidal et al., 2020). While the ammonium uptake was mediated by the saturable
high-affinity (ammonium transporters) and the nonsaturable low-affinity (aquaporins
or cation channels) uptake system (Tegeder & Masclaux-Daubresse, 2018). The nitrate
reductase (NR), glutamine synthetase (GS) and glutamate synthase (GOGAT) were the
key enzymes for nitrogen assimilation that indirectly affect the metabolism, allocation and
remobilization of nitrogen in plants (Lea et al., 2006; Martin et al., 2006).

Maize (Zea mays L.) is an important food and forage crop in the world, as well as an
important energy crop (Yin et al., 2014). Moreover, maize is the crop with the highest
production among all crops and is also the crop with the greatest demand for nitrogen
(Sivasankar et al., 2012). Due to the differences in nitrogen absorption and utilization
among maize genotypes (Harvey, 1939), more focus was paid to screening and improving
nitrogen efficiency (Hirel et al., 2007). The greater differences in growth and yield among
the maize lines and hybrids were associated with both the nitrogen uptake and utilization
efficiency in response to low nitrogen stress (Hirel & Gallais, 2011). The root architecture
of maize is a key factor affecting the nitrogen absorption, and more photosynthate will
distribute to the root to enhance the root surface of the nitrogen-efficient maize under
nitrogen limitation (Sinclair & Vadez, 2002), The absorption of nitrogen in roots requires
the involvement of the high-affinity nitrogen transporter (NRT2 and AMT1), especially
under the nitrogen limitation (Dechorgnat et al., 2019). Among the fourZmNRT2 identified
in the maize genome, only ZmNRT2;1 and ZmNRT2;2 have proven to be correlated with
nitrate (NO3

−) uptake capacity (Plett et al., 2010; Garnett et al., 2013). Furthermore,
ZmAMT1;1a and ZmAMT1;3 have been identified to encode functional ammonium
transporters for high-affinity ammonium uptake in maize roots (Gu et al., 2013).

Nitrogen has significantly influenced the productivity and characteristics of maize
(Teixeira et al., 2014). However, the higher nitrogen fertilizer application led to negative
effects on the ecological environment because of lower nitrogen uptake and utilization
efficiencies of plants. Hence, it is increasingly important to screen nitrogen stress-tolerant
plants or explore nitrogen-efficient plants that are more efficient at nitrogen utilization and
better suited to nitrogen limitation. Plants tolerant to low nitrogen is a quantitative trait
affected by many factors which result in high cost both in time and resources of measuring
certain traits for screening nitrogen-tolerant maize. Fortunately, principal component
analysis is a quantitatively rigorous method for multivariate datasets simplification. It can
transform more original indicators into several new relatively independent comprehensive
indicators. The absolute subordination of elements to sets was broken in the theory
of fuzzy mathematics. Subordinate function analysis was one of effective ways used
in comprehensive evaluation of abiotic stresses (Shi et al., 2010). To comprehensively
evaluate the low nitrogen tolerance of maize varieties more conveniently and effectively, a
D value was introduced based on the fuzzy mathematics theory. Our study would provide
a comprehensive and dependable method for evaluating low tolerance in maize.
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MATERIAL AND METHODS
Plant material, growth and treatment conditions
The six maize, GEMS42-I, Ji846, SY998, CML223, CML114 and GEMS42-II, with a
significant difference in grain yield and nitrogen tolerance were used in the present study.
The surface-sterilized seeds germinated on wet sand in the culture room. Then, the
4-day-old seedlings were transferred into the nutrient solution for continuing growth.
The complete basal nutrient solution contained 0.24 g/L NH4NO3, 0.50 g/L MgSO4, 0.15
g/L KCl, 0.36 g/L CaCl2, 0.05 mM EDTA-Fe and a microelement solution (Hoagland &
Arnon, 1950). The nutrient solution containing 1/10 N of the complete nutrient solution
was used for low nitrogen treatment (-N), and the seedlings growing under the complete
nutrient were used as control (+N). Keep the culture room parameter as follow: 16 h of
light (300–320 µmol m−2 s−1) at 24 ◦C and 8 h of darkness at 22 ◦C photoperiods, and
relative humidity of 65–80%. Roots and leaves of all six maize were harvested separately
after growing under low nitrogen conditions for 20 days. Each treatment was replicated
three times.

Biomass and phenotypic characteristics of the root system
Root was floated in the water and scanned using the scanner (Epson Expression 11000XL)
to get the image. The root total length, root volume, root surface area and root average
diameter were calculated with Tennant’s statistical method in WinRHIZO Pro software
(Version 2.0, 2005; Regent Instrument Inc., Quebec, Canada) as previous study (Altaf et
al., 2022). The seedlings were washed with distilled water, and the fresh weight (FW) was
measured after drying with bibulous paper.

Measurement the NO −

3 and NH +4 content of the seedlings
For nitrates (NO3

−) determination, roots and shoots (approximately 0.5 g FW) were cut
into pieces and suspended in 5 mL boiling water for 10 min (Tang et al., 2013). Then the
supernatant was diluted to 25 mL. The assay mixture containing 0.1 mL samples and 0.4
mL 5% salicylic acid-sulfuric acid, was incubated at 20 ◦C for 20 min, then mixed with 9.5
mL 8% NaOH (w/v). Its absorbance was measured at 410 nm wavelength.

The ammonium (NH4
+) of root and shoot were extracted by homogenizing in 0.3 mM

H2SO4 (pH 3.5). After centrifugation at 3,900 g for 10 min, the supernatant was collected
using for the determination of ammonium (NH4

+) content as previously described (Lin
& Kao, 1996). After NO3

− the and NH4
+ determination, the root nitrogen accumulation,

shoot nitrogen accumulation and total plant nitrogen accumulation were calculated.

Enzyme activity assays
Approximately 0.5 g of fresh roots were homogenized with 10 mM Tris–HCl buffer (pH
7.6) containing 1 mM MgCl2, 1 mM EDTA and 1 mM β-mercaptoethanol in a chilled
pestle and mortar. After centrifugation at 15,000 g for 30 min (4 ◦C), the supernatant was
used as an enzyme extract (Ren et al., 2017).

The whole extraction procedure was carried out at 4 ◦ C.
For GS (EC6.3.1.2) activity assayed, a 1.0 mL reaction mixture (pH 8.0) contained

80 µmol Tris–HCl buffer, 40 µmol L-glutamic acid, 8.0 µmol ATP, 24 µmol MgSO4,
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and 16 µmol NH2OH and enzyme extract. The enzyme extract was added to initiate the
reaction. After incubation for 30 min at 30 ◦C, the reaction was stopped by adding two mL
2.5% (w/v) FeCl3 and 5% (w/v) trichloroacetic acid in 1.5 M HCl. After centrifugation at
3,000 g for 10 min, the absorbance of the supernatant was measured at 540 nm. GS activity
was expressed as 1.0 µM L-glutamate γ -monohydroxamate (GHA) formed g−1 FW h−1,
with µmol GHA g−1 FW h−1.

For GOGAT (EC1.4.7.1) activity assayed, a three mL reaction solution was prepared
with 25 mM Tris–HCl buffer (pH 7.6), which contained 0.5 mL enzyme extract, 0.05 mL
0.1 M 2-oxoglutarate, 0.1 mL 10 mM KCl, 0.2 mL 3 mM NADH and 0.4 mL 20 mM
L-glutamine. The reaction was initiated by adding L-glutamine immediately following the
enzyme preparation. The decrease in absorbance was recorded for 3 min at 340 nm. The
GOGAT activity was expressed as µmol NADH g−1 FW h−1.

NR (EC1.7.1.1) activity was determined according to Wojciechowska et al. with minor
modifications (Wojciechowska et al., 2016). The NR activity was expressed as µg NO2

− g−1

FW h−1.

Quantitative RT-PCR analysis
Total RNA was isolated using TRIzol reagent (Invitrogen, CA, USA) and then first-
strand cDNA was synthesized using the M-MLV Reverse Transcriptase (Promega, WI,
USA) according to the manufacturer’s instructions. For the quantitative real-time PCR
(qRT-PCR) experiment, 20 µL reaction components were prepared according to the
manufacturer’s protocol for SYBR Green Real Master Mix (TIANGEN, Beijing, China).
Using GAPDH (glyceraldehyde-3-phosphate dehydrogenase) as the endogenous control.
Real-timePCRwas conducted on theCFX96TM Real-TimePCRDetection System (Bio-Rad,
CA, USA), and the primer pairs used for quantitative RT-PCR were shown in supplemental
Table S1.

Data analysis and D value calculation
The standard deviation (SD) was used to express the sample variability in the present
study. All analyses of significance were conducted at the p < 0.05 level. Considering that
the biological differences among the different maize genotypes, evaluation of the low
nitrogen tolerance of maize by NTC may be more reasonable. The NTC was calculated
as NTC= low nitrogen trait

high nitrogen trait . Then principal component analysis was conducted based on
the NTC in SPSS (Statistical Product and Service Solutions) software (version 18.0). The
principal component (PCi, i = 1, 2 . . .n) with eigenvalue (λi, i = 1, 2 . . .n) >1 was selected
as new index. PCi is the i-the principal component. λi is the eigenvalue of the i-the principal
component. The eigenvalue (λi, i = 1, 2 . . .n) and factor score (FACi, i = 1, 2 . . .n) were
present in the results of the principal component analysis. The principal component value
Xi was calculated as Xi=FAC i× 2

√
λi (i = 1, 2 . . .n). Then the subordinate function

value was calculated as U (Xi)= Xi−Xmin
Xmax−Xmin (i = 1, 2 . . .n). Xmax and Xmin represent the

maximum and minimum value of the ith principal component, respectively. The weight
coefficient was calculated as W (i)= Pi∑n

i=1Pi
(i = 1, 2 . . .n). Pi represents the proportion of

variance explained by the i-the principal component. Finally, the D value was calculated as
D=

∑n
i=1[U(Xi)×W(i)] (i = 1, 2 . . .n).
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Statistical analysis
The standard deviation was used to express the sample variability in the present study. The
significance of differences was conducted using SAS 9.2 (SAS Institute, Cary, NC, USA).
Data were subjected to ANOVA using PROC LSD (p < 0.05) in SAS.

RESULTS
Plant physiological changes in response to nitrogen stress
Low nitrogen (ca. 0.3 mM NH4NO3) significantly inhibited the growth of Ji846 but not of
the other five genotypes of maize (Fig. 1), and even significantly increased the root biomass
of SY998 and GEMS42-II by 46% and 66%, respectively (Fig. 1C). Consider that root is the
primary organ for water and nutrients capturing, the morphology of root is investigated
by WinRHIZO Pro software. All of the root total length, root surface and root volume of
Ji846 were significantly decreased in response to low nitrogen stress, which decreased by
56%, 65% and 74%, respectively (Fig. 2). Root diameter of the six maize were decreased
in response to low nitrogen stress (Fig. 2B). In contrast, the root total length, root surface
and root volume of SY998 and GEMS42-II were prominently increased under low nitrogen
(Figs. 2B, 2D, 2E). Low nitrogen not affected the root total length, root surface and root
volume of GEMS42-I, CML223 and CML114 (Figs. 2B, 2D, 2E). These results indicated
that Ji846 was sensitive to low nitrogen stress.

NO−3 and NH +4 content in maize
Nitrate ion (NO3

−) and ammonium ion (NH4
+) are the main form of nitrogen for plant

absorption. Maize can uptake both nitrate and ammonium. Both the NO3
− and NH4

+

contents were significantly decreased in all maize genotypes under low nitrogen stress (Fig.
3). However, only the root NO3

− content of SY998 was significantly higher than the other
genotype under low nitrogen (Fig. 3A). Under low nitrogen stress, Ji846 has the lowest
NH4

+ content both in root and shoot, while the GEMS42-I and SY998 have the highest
NH4

+ content both in root and shoot (Figs. 3C and 3D). The lowest nitrogen accumulation
was observed in Ji846 (8.78 µg N plant−1) under nitrogen limitation, no matter in the
root, shoot, or total plant (Table 1). While the highest nitrogen accumulation was observed
in SY998 (153.87 µg N plant−1) under nitrogen limitation (Table 1). Interestingly, the
NO3

− content was higher than the NH4
+ content of all six maize, irrespective of the

nitrogen nutritional status of the plants. In the high nitrogen condition, the NO3
− of root

and shoot was 12.3 and 10.4 times the NH4
+ in Ji846, respectively. While under the low

nitrogen condition, the NO3
− of root and shoot was 7.1 and 6.6 times the NH4

+ in Ji846,
respectively (Fig. 3).

Expression of the nitrate and ammonium transporter genes
The expression of ZmNRT2;1 and ZmNRT2;2 in Ji846 and SY998 were significantly
increased under low nitrogen conditions (Figs. 4A and 4B). The expression of ZmNRT2;1
under low nitrogen was nine and three times the high nitrogen condition in Ji846 and
SY998, respectively. The expression of ZmNRT2;2 under low nitrogen was 41 and 11 times
the high nitrogen condition in Ji846 and SY998, respectively (Figs. 4A and 4B). In addition,
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Figure 1 The morphological appearance (A), roots biomass (B) and shoots biomass (C) of the differ-
ent genotype maize in response to low nitrogen stress. The different genotype maize subjected to nitro-
gen stress for three weeks. The +N and –N represent the seedling under high nitrogen (3 mM NH4NO3)
and low nitrogen (0.3 mM NH4NO3), respectively. Values represent the mean± SD, bars with different
letters show significant differences (ANOVA, LSD, P < 0.05).

Full-size DOI: 10.7717/peerj.14218/fig-1

the expression of ZmNRT2;2 in CML223 was also significantly increased (5 times) under
nitrogen limitation (Fig. 4B). For the ammonium transporters genes, the expression of
ZmAMT1;1a was significantly increased under nitrogen limitation in GEMS42-I, Ji846,
SY998 and GEMS42-II, which increased 16, 10, 20 and 3 times, respectively (Fig. 4C). The
expression of ZmAMT1;3 was significantly increased under nitrogen limitation in Ji846,
CML223, CML114 and GEMS42-II, which varied from 1.4 to 4.3 times (Fig. 4).

Nitrogen metabolism-related key enzymes activity assay
Low nitrogen significantly decreased the activities of key nitrogen metabolism enzymes in
some maize. The greatest reduction in the activities of NR (approximately 82%) in Ji846
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Figure 2 Effects of low nitrogen stress on root morphology. (A) Morphological appearance of roots, (B)
root total length, (C) root average diameter, (D) root surface area and (E) root volume. The +N and –N
represent the seedling under high nitrogen (3 mM NH4NO3) and low nitrogen (0.3 mM NH4NO3), re-
spectively. Values represent the mean± SD of ten seedlings in each treatment. Bars with different letters
show significant differences at p< 0.05.

Full-size DOI: 10.7717/peerj.14218/fig-2

(Fig. 5A), GS (approximately 88%) in Ji846 (Fig. 5B), (GOGAT approximately 56%) in
CML223 (Fig. 5C). The NR activities of GEMS42-I, CML223 and CML114 were decreased
60.3%, 68.6% and 48.6%, respectively (Fig. 5A). In addition, the lower activities of NR
and GS were observed in SY998, CML223 and GEMS42-II, irrespective of the nitrogen
condition (Figs. 5A and 5B). Nitrogen limitation affected the activity of GOGAT less than
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Figure 3 Effects of low nitrogen stress on nitrate (NO3

−) and ammonium (NH4
+) content of maize.

Fig. 3 Effects of low nitrogen stress on nitrate (NO3
−) and ammonium (NH4

+) content of maize. (A) Root
nitrate (NO3

−) content, (B) shoot nitrate (NO3
−) content, (C) root ammonium (NH4

+) content, (D)
shoot ammonium (NH4

+) content. The +N and –N represent the seedling under high nitrogen (3 mM
NH4NO3) and low nitrogen (0.3 mM NH4NO3), respectively. Values represent the mean± SD of ten
seedlings in each treatment. Bars with different letters show significant differences at p< 0.05.

Full-size DOI: 10.7717/peerj.14218/fig-3

Table 1 The nitrogen accumulation of each maize.

Maize
Genotype

Root (µg N plant−1) Shoot (µg N plant−1)] Total plant (µg N plant−1)

CK -N CK -N CK -N

GEMS42-I 29.74± 0.77e 16.85± 0.75 g 65.22± 0.18de 30.15± 1.39f 94.96± 0.95f 47.00± 0.64 g
Ji846 34.96± 0.24d 3.25± 0.70 h 68.68± 6.60d 5.52± 0.01 g 103.64± 6.35ef 8.78± 0.70 h
SY998 86.72± 1.04a 56.33± 0.46b 206.48± 23.85a 97.54± 1.68c 293.20± 22.80a 153.87± 1.22d
CML223 44.07± 3.05c 18.47± 0.28fg 79.82± 0.93cd 33.28± 0.06f 123.89± 2.12e 51.75± 0.34 g
CML114 37.45± 0.22d 20.91± 2.76f 143.35± 0.21b 42.96± 3.36ef 180.80± 0.01c 63.87± 0.61 g
GEMS42-II 42.40± 0.53c 36.39± 1.79d 185.37± 24.67a 76.15± 15.44cd 227.77± 24.14b 112.55± 17.24ef

that of NR and GS. The GOGAT activities only decreased in CML223 and GEMS42-II in
response to nitrogen limitation (Fig. 5C).

Principal component analysis based on the nitrogen tolerance
coefficient (NTC)
The first four principal components jointly explain the major part of the total variance
(96.8%), being PC1 responsible for 47.4%, PC2 for 21.6%, PC3 for 15.5% and PC4 for
12.3% of the total variance, respectively (Table 2). The eigenvalue of PC1, PC2, PC3 and
PC4 were 8.054, 3.676, 2.627 and 2.091, respectively (Table 2). The factor score of the four
principal components of each maize was directly extracted from the principal component
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Figure 4 Effects of low nitrogen stress on nitrogen transporter genes of maize roots. Effects of low
nitrogen stress on nitrogen transporter genes of maize roots. (A) ZmNRT2;1, (B) ZmNRT2;2, (C)
ZmAMT1;1a, (D) ZmAMT1;3 . The +N and –N represent the seedling under high nitrogen (3 mM
NH4NO3) and low nitrogen (0.3 mM NH4NO3), respectively. Values represent the mean±SD of ten
seedlings in each treatment. Bars with different letters show significant differences at p< 0.05.

Full-size DOI: 10.7717/peerj.14218/fig-4

Table 2 Eigenvalue, proportion and cumulative of the first four principal components based on the
nitrogen-tolerant index of maize.

Index Principal component

1 2 3 4

Eigenvalue 8.054 3.676 2.627 2.091
Proportion of variance explained (%) 47.376 21.622 15.455 12.299
Cumulative variance explained (%) 47.376 68.997 84.453 96.751
Weight coefficientW (i) 0.49 0.22 0.16 0.13

analysis results (Table 3). Then, the principal component value and subordinate function
value were calculated. Finally, each maize has a D value (Table 3). The SY998, GEMS42-I
and GEMS42-II have the higher D value that can define as low nitrogen tolerant maize,
while the Ji846 with a lower D value was defined as low nitrogen sensitive maize (Table 3).

DISCUSSION
Different maize performs quite differently in the complex physiology and development
of roots and shoots in response to nitrogen limitation (Hirel et al., 2001; Giehl, Gruber &
von Wirén, 2014). Investigation of the economic yield of crops under nitrogen deficient
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Table 3 The D value of each maize.

Maize Factor score
(FAC i)

Principal component value
(X)

Subordinate function value
U(X i)

Weight coefficient
W( i)

D
Value

FAC1 FAC2 FAC3 FAC4 X1 X2 X3 X4 U1 U2 U3 U4 W1 W2 W3 W4

GEMS42-I 0.17 1.72 −0.30 0.40 0.48 3.29 −0.49 0.58 0.68 1.00 0.47 0.79 0.74
Ji846 −1.88 −0.42 0.56 0.12 −5.34 −0.81 0.91 0.18 0.00 0.25 0.78 0.70 0.27
SY998 0.42 0.50 1.17 0.18 1.18 0.96 1.90 0.26 0.77 0.57 1.00 0.72 0.75
CML223 0.07 −0.61 −1.52 1.01 0.19 −1.16 −2.64 1.46 0.65 0.18 0.00 1.00 0.49
CML114 0.12 −0.07 −0.63 −1.93 0.33 −0.14 −1.02 −2.79 0.67 0.37 0.36 0.00 0.47
GEMS42-II 1.11 −1.12 0.72 0.22 3.16 −2.15 1.16 0.32 1.00 0.00 0.84 0.73

0.49 0.22 0.16 0.13

0.72
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Figure 5 Effects of low nitrogen stress on nitrogenmetabolism enzymes of maize roots. (A) Nitrate re-
ductase (NR) activity, (B) Glutamine synthetase (GS) activity, (C) Glutamate synthase (GOGAT) activity.
The +N and –N represent the seedling under high nitrogen (3 mM NH4NO3) and low nitrogen (0.3 mM
NH4NO3), respectively. Values represent the mean± SD of ten seedlings in each treatment. Bars with dif-
ferent letters show significant differences at p< 0.05.

Full-size DOI: 10.7717/peerj.14218/fig-5

soil is the most and objective method for screening low nitrogen tolerant plants. However,
this method that covers the whole growth period is time and labor-consuming. Therefore,
the effective evaluation of indicators of different maize genotypes are issue to be explored.
The morphological and physiological characteristics are widely used for low nitrogen
tolerant crop screening at the seedling stage. The root morphology changes affect the
nitrogen efficiency through the alteration of nitrogen absorption. The relative nitrogen
uptake could be an indicator of the low nitrogen tolerance evaluation of barley (Jiang et al.,
2019). The root architecture and function that contribute to nitrogen absorption efficiency
(Trachsel et al., 2011), and the morphology of roots were also closely associated with the
acquisition of nitrogen and the development of plant shoots (Mi et al., 2010; Lynch, 2013;
Li et al., 2017). The root and shoot biomass of Ji846 was significantly decreased under the
nitrogen limitation (Figs. 1B and 1C). In addition, the root total length, root surface and
root volume were significantly decreased in Ji846 under low nitrogen conditions (Fig.
2B, 2d and 2e). Ji846 has the lowest nitrogen accumulation under nitrogen limitation
(Table 1). These results indicated that Ji846 was potential nitrogen inefficient maize. The

Miao et al. (2022), PeerJ, DOI 10.7717/peerj.14218 11/17

https://peerj.com
https://doi.org/10.7717/peerj.14218/fig-5
http://dx.doi.org/10.7717/peerj.14218


shoot and root fresh weight of SY998, GEMS42-I and GEMS42-II have not significantly
inhibited by nitrogen limitation, which exhibited high nitrogen efficiency to maintain plant
growth (Fig. 1). The higher nitrogen accumulation of SY998, GEMS42-I and GEMS42-II
were observed under nitrogen limitation (Table 1). Therefore, SY998, GEMS42-I and
GEMS42-II may be the potential nitrogen-efficient maize. The root total length, root
surface and root volume were increased in SY998 and GEMS42-II in response to nitrogen
limitation (Fig. 2B, 2d and 2e). This consist with the previous study that plant shoots
could be associated with nitrogen efficiency in selecting for improving grain yield under
low nitrogen conditions (Chen et al., 2016). Recent studies show that the root weight and
root length of nitrogen-tolerant maize were significantly increased in response to nitrogen
limitation (Singh et al., 2022). In addition, the D value of the three maize is higher than
0.7, while the D value of Ji846 (potential nitrogen inefficient maize) is 0.27 in the present
study (Table 3). Therefore, according to D value for low nitrogen tolerance evaluation
was consistent with the physiological indicators. In addition, the complicated traits were
simplified to reflect the low nitrogen tolerance information of maize by introducing the D
value to evaluate stress tolerance.

NRT2 belongs to the high-affinity nitrate transporter. Previous research indicated that
the transcript levels of ZmNRT2 were induced by low nitrogen (Santi et al., 2003; Liu et al.,
2009). However, another study showed that the baseline transcript levels of ZmNRT2.1 and
ZmNRT2.2 were generally much higher than for any of the other transporters, regardless
of the external (Garnett et al., 2013). ZmAMT1;1a and ZmAMT1;3 are most probably
the major components in the high-affinity transport system in maize roots (Gu et al.,
2013). Interestingly, the higher expression of ZmNRT2;1, ZmNRT2;2, ZmAMT1;1a and
ZmAMT1;3 in Ji846 not increased its nitrate and ammonium content under nitrogen
limitation (Figs. 3 and 4). Ji846 even has the lowest nitrogen accumulation under nitrogen
limitation (Table 1). Among the three higher D value maize, the expression of ZmNRT2;1
andZmNRT2;2 only significantly increased in SY998 not inGEMS42-I andGEMS42-II (Fig.
4 and Table 3). All of the three maize have higher nitrogen accumulation under nitrogen
limitation, especially SY998 has the highest accumulation (Table 1). The expression levels
of ZmNRT2;1, ZmNRT2;2, ZmAMT1;1a and ZmAMT1;3were not correlative with nitrogen
content in maize. On the other hand, some other uptake systems might exist in maize for
nitrogen absorption. Therefore, the evaluation of nitrogen efficiency by these genes was
inappropriate, at least in maize seedlings.

Nitrate (NO3
−) and ammonium (NH4

+) taken up by plants must first be assimilated
into amino acids before it can be used for protein synthesis for plant growth. Hence
the nitrogen-assimilation enzyme is a feasible strategy for improving nitrogen efficiency.
NR is the first enzyme to reduce the NO3

− to NO2
−, and further reduce to NH4

+ by
nitrite reductase (Lea et al., 2006; Takahashi et al., 2001). The NH4

+ is assimilated into
amino acid by the GS-GOGAT cycle, which is a crucial step for converting inorganic
nitrogen into organic nitrogen in plants (Martin et al., 2006). The NR and GS activities of
JI846 decreased by over 80%, while the NR activities decreased by 20% and GS activities
decreased by 30% both in SY998 and GEMS42-II under low nitrogen conditions (Fig. 5).
Therefore, the potential low nitrogen tolerant maize varieties (SY998 and GEMS42-II) have
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greater enzyme activities as compared to potential nitrogen inefficient maize. The high
nitrogen efficient genotypes also had more enzyme activities than low nitrogen inefficient
genotypes in barley in response to nitrogen limitation (Shah et al., 2017). Also, the higher
nitrogen utilization efficiency rice has a higher nitrogen-assimilation enzyme activity (Yi
et al., 2019).

Therefore, according to the D value, low nitrogen tolerance evaluation was feasible.
In addition, the complicated traits were simplified to reflect the low nitrogen tolerance
information of maize by introducing the D value to evaluate stress tolerance. Based on the
D value, SY998 and GEMS42-II were potential low nitrogen tolerant maize and nitrogen
efficient genotypes, and Ji846 was potential low nitrogen sensitive maize and nitrogen
inefficient genotype. Further study should be conducted to verify the yield and heritability
effects of these genotypes in the field.

CONCLUSIONS
Low nitrogen tolerance of maize is a complex trait that is determined by both genetic
and environmental factors. Seventeen traits of six maize genotype related to nitrogen
were investigated and a D value was introduced to screen potential low nitrogen-tolerant
maize in the present study. The potential nitrogen-efficient maize (SY998, GEMS42-I and
GEMS42-II) that had a higher D value (above 0.7) showed better growth performance.
In contrast, the potential nitrogen inefficient maize (Ji846) had the lowest D value (0.27)
with significant growth inhibition in response to nitrogen limitation. Therefore, using the
D value to comprehensively evaluate low nitrogen tolerance can integrate the multiple
nitrogen-related traits, which can avoid the one-sidedness of a single parameter. Since the
D value was calculated based on the theory of fuzzy mathematics. This method may also
provide the benefit of development techniques to screen other potential stress-tolerant
traits.
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