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ABSTRACT
Transmission of Ross River virus (RRV) is influenced by climatic, environmental, and
socio-economic factors. Accurate and robust predictions based on these factors are
necessary for disease prevention and control. However, the complicated transmission
cycle and the characteristics of RRV notification data present challenges. Studies to
compare model performance are lacking. In this study, we used RRV notification data
and exposure data from 2001 to 2020 in Queensland, Australia, and compared ten
models (including generalised linear models, zero-inflated models, and generalised
additive models) to predict RRV incidence in different regions of Queensland. We
aimed to compare model performance and to evaluate the effect of statistical over-
dispersion and zero-inflation of RRV surveillance data, and non-linearity of predictors
on model fit. A variable selection strategy for screening important predictors was
developed and was found to be efficient and able to generate consistent and reasonable
numbers of predictors across regions and in all training sets. Negative binomial
models generally exhibited better model fit than Poisson models, suggesting that
over-dispersion in the data is the primary factor driving model fit compared to non-
linearity of predictors and excess zeros. All models predicted the peak periods well
but were unable to fit and predict the magnitude of peaks, especially when there
were high numbers of cases. Adding new variables including historical RRV cases
and mosquito abundance may improve model performance. The standard negative
binomial generalised linear model is stable, simple, and effective in prediction, and is
thus considered the best choice among all models.
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INTRODUCTION
Ross River virus (RRV) is a mosquito-transmitted Alphavirus that causes arthritis, rash,
and constitutional symptoms of fever, fatigue, and myalgia (Liu, Tharmarajah & Taylor,
2017; Harley, Sleigh & Ritchie, 2001). It is the most common human arboviral infection
in Australia. Between 1993 and 2020, almost half of the nationally notified cases (49.0%,
63,880/130,271) occurred in Queensland with a total of 43,699 cases reported from
2001 to 2020 (Qian et al., 2021; Australian Department of Health, 2021). Outbreaks of
RRV have occurred regularly in Queensland over the past two decades (Qian et al.,
2021). Timely prediction of outbreaks based on epidemiological models is necessary
for disease prevention and control. Transmission of RRV is influenced by mosquito
abundance, reservoir host populations, climate and weather, geographical exposures, and
socio-economic indices (Qian et al., 2020; Murphy et al., 2020; Tong et al., 2008). Weather
patterns may influence RRV transmission differently at different times and in different
parts of Queensland (Qian et al., 2020). The dominant vector and reservoir host species in
coastal and inland areas differ (e.g., Culex annulirostris breeds in freshwater habitats, Aedes
vigilax breeds in mangroves and salt marshes, and Aedes notoscriptus breeds in artificial
containers) (Stephenson et al., 2018; Harley et al., 2000). In Queensland, temperature,
rainfall, relative humidity, and high tide are possible predictors of RRV transmission in
coastal regions, while temperature, or relative humidity and rainfall are associated with
inland RRV activity (Tong & Hu, 2002; Bi & Parton, 2003). The number of exposures and
the complex relationships between these exposures (Ng et al., 2014; Gatton, Kay & Ryan,
2005) make RRV modelling challenging.

Many studies have applied epidemiological models to predict RRV cases, incidence,
or outbreaks, with exposures including mosquito abundance, rainfall, temperature,
tidal height, humidity, and river flow (Qian et al., 2020). Half of these studies employed
generalised linear models, which are straightforward and simple, and hence commonly
used in predicting infectious diseases. Other approaches such as time-series models, spatial
and temporal models, hurdle models, and Generalised Additive Models (GAMs) were
also used. A few studies have published data related to model performance. Performance
accuracies varied from 63.0% to 100.0%, sensitivities and specificities varied from 0.0 to
1.0, overall agreements varied from 75.8% to 88.5%, and true positives varied from 0.0%
to 100.0% (Hu et al., 2006; Woodruff et al., 2002; Woodruff et al., 2006; Jacups, Whelan &
Harley, 2011; Pelecanos, Ryan & Gatton, 2010; Gatton, Kay & Ryan, 2005; Koolhof, Bettiol
& Carver, 2017; Ng et al., 2014). Most weather and climatic exposures used in previous
studies (e.g., rainfall, temperature, vapour pressure, and evaporation) have been found to
have positive effects on disease transmission, which means that increases of these exposure
values are related to an increase in disease incidence. High relative humidity generally
reduces RRV incidence. Other factors include mosquito abundance, tidal height, and river
flow (Qian et al., 2020). Stepwise variable selection was often used in developing RRV
predictive models (Koolhof et al., 2021). Regional analysis was suggested but rarely used
in previous studies (Ng et al., 2014). Studies assessing predictive model comparison are
lacking.
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Selecting important predictors can improve our understanding of disease transmission.
A model building process with detailed considerations of lagged predictors, variable
selection, and validation, and a head-to-head comparison of the models will allow
assessment of suitable model frameworks for future prediction of RRV. We applied
10 models and compared their model fit and performance in predicting RRV incidence.
The Poisson and negative binomial generalised linear models were implemented to fit
the distribution of RRV cases. Zero-inflated Poisson and Zero-inflated negative binomial
models were developed due to the excess zeros caused by relatively small spatial and
temporal resolution. Generalised additive models with and without zero-inflated Poisson
or zero-inflated negative binomial models were also used. A variable selection strategy to
screen the most important variables for prediction was developed and regional analysis
was used.

By building and comparing these models, we aimed to (1) identify the most robust
approach for predicting RRV incidence with good model fit among generalised linear
models, zero-inflated models, and GAMs; and (2) develop a model building process
that includes an effective variable selection strategy to build models with both excellent
predictive performance and clear epidemiological logic in different regions. The results
and the strategy provide important guidance for mosquito-borne disease modelling.

MATERIALS & METHODS
Data and study design
This is an ecologically designed study involving modelling and predicting RRV incidence
using aggregated notifications, and climatic, geographical, and socio-economic exposures.
A confirmed RRV case is defined as virus isolation, virus detection by nucleic acid testing, or
IgG seroconversion or a significant increase in IgG antibody level (Australian Department
of Health, 2016). A probable RRV case requires detection of RRV IgM and IgG, except
when IgG has also been detected more than three months previously. Both confirmed cases
and probable cases are notified (Australian Department of Health, 2016).

Notified RRV cases at Statistical Area Level 3 (SA3) in Queensland between January 1,
2001, and December 31, 2020, were acquired from the Queensland Department of Health.
These SA3 areas generally have a population between 30,000 and 130,000 (Australian Bureau
of Statistics, 2016). The notification data were in the form of daily de-identified records
by date of report. The total numbers of historical cases at SA3 level from 1991 to 2000 in
Queensland were also acquired from the Queensland Department of Health, to estimate
the population immunity level. An annual human population estimate in each SA3 area
during the study period was obtained from the Australian Bureau of Statistics (Australian
Government, 2019c). The susceptible population was calculated as the total population
minus the historical RRV infected population. Incidence rates were calculated by dividing
the number of cases by the total population of a given area.

Daily weather data for the period were acquired from the Australian Bureau of
Meteorology for rainfall, temperature, relative humidity, evaporation, evapotranspiration,
and vapour pressure, including the maximum, minimum and average values. Extreme

Qian et al. (2022), PeerJ, DOI 10.7717/peerj.14213 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14213


events of flooding, bushfire, and long-term climatic indices such as La Niña episodes, El
Niño events, and Southern Oscillation Index (SOI) occurring during the study period were
sourced from the Australian Bureau of Meteorology (Australian Government, 2019b).

The Socio-economic Index forAreas (SEIFA)was collected from theAustralianBureau of
Statistics (Australian Government, 2019c). The Accessibility/Remoteness Index of Australia,
known as the ARIA score, was acquired from the Hugo Centre for Population and Housing
at the University of Adelaide (Hugo Centre for Population and Housing, 2020).

MonthlyNormalizedDifferenceVegetation Index (NDVI)was collected from theBureau
of Meteorology website. Other geographical exposures including lake areas, reservoirs,
wetlands, land use data and elevation were collected from the Queensland Spatial Catalogue
and Geoscience Australia website (Queensland Government, 2021; Australian Government,
2019a). Digital elevation data were obtained from the Geoscience Australia website and
were incorporated with other data at SA3 level through Geographical Information Systems.

Exposures were extracted and summarised as weekly data in SA3 areas. In this study,
the years start from January and the weeks start from Monday. When aggregating daily
data to weekly data, if not all the daily data in a week were available, the average values of
non-missing data were calculated for the week. Linear extrapolation was used to estimate
the human population before June 2001. When estimating weekly data by annual or
monthly data (e.g., human population and NDVI), data were converted to daily data by
linear interpolation, then were summarised as weekly data by calculating an average for
continuous or a median for ordinal data.

The spatial climatic and geographical data collected in map format were transformed
and aggregated in ArcGIS first. If data were missing in some SA3 areas, Nearest Neighbour
Interpolation was applied if adjacent grid points existed, otherwise Inverse Distance
Weighting was used for spatial interpolation (Li & Heap, 2014).

For ARIA and SEIFA indices, the survey data in 2011 were used to extrapolate data
before 2014, and survey data in 2016 were used to extrapolate data after 2015. Data only
available in Statistical Area Level 2 (SA2) areas were aggregated into SA3 areas by calculating
population-weighted averages (for SEIFA) or medians (for ARIA). If the median of the
ARIA score was not an integer, the ARIA score in the largest SA2 area was chosen.

To better predict RRV incidence based on varying climatic patterns of different areas, the
Statistical Area Level 3 (SA3) areas were grouped into three regions according to Thermal
Climate Zone Classification (Australian Government, 2022; Stewart & Oke, 2009) to build
additional models in these regions. More detail on the data sources and data collation
processes is provided in Text S1.

Variable selection
Before building the model, we developed a variable selection process based on the
purposeful selection of covariates strategy proposed by Hosmer, Lemeshow & May (1999)
to obtain a parsimonious variable set which fitted the hypotheses of the models and
had strong epidemiological and statistical correlations with RRV activity. In this study,
exposures were the potential influencing factors of RRV transmission regardless of lags.
The impact of exposures on RRV transmission may lag by several weeks. We referred to
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the exposures at specific lags, including lag zero which represents the current value of an
exposure, as predictors (or lagged variables). For example, temperature was an exposure,
and maximum weekly temperature at lag 5, which was at 5 weeks earlier, was a specific
model predictor.

Optimal weekly lags of temperature, range of temperature, relative humidity, rainfall,
vapour pressure, evaporation, evapotranspiration, SOI, El Niño events, La Niña events,
NDVI, bushfires and flood events were selected based on the maximum positive and
minimum negative values of the cross-correlation function, which showed the correlation
between RRV cases and exposures at different lags (Curriero, Shone & Glass, 2005). Due
to the possible time periods of mosquito breeding, transmission to reservoir hosts, the
incubation period in humans and lags for Ross River virus reporting, we considered that
lags greater than one year would not plausibly have meaning for associations of exposures
and RRV incidence.

Then, a univariable analysis was implemented to exclude predictors with p value
greater than 0.1 or standardised regression coefficients less than 0.1. These predictors were
considered as having a weak impact on RRV incidence. Spearman correlation evaluates the
monotonic relationship between two variables. Predictors with absolute value of Spearman
correlations greater than 0.9 were highly correlated with each other (Akoglu, 2018). One of
the two correlated predictors was considered as redundant and was excluded. The Variance
Inflation Factor (VIF) was used to calculate the inflation of coefficient variance and
address the magnitude of multicollinearity in models. Predictors with high VIF values were
removed to reduce redundancy and to avoid possible problem caused by multicollinearity
(e.g., distorted statistical significance or predictor coefficients which could misinterpret
the effect of predictors on RRV transmission). A repeated backward stepwise screen and
reassessment process was used to screen predictors improving model fit in predicting
RRV incidence with tolerable multicollinearity. Predictors with VIF greater than five were
removed (Menard, 2002). The predictor with lowest Bayesian Information Criterion (BIC)
increment was removed in each iteration until the total BIC increment reached 0.5%. The
predictors were then considered in the model one at a time, and those predictors with VIF
values less than ten andBIC decrements greater than 0.1%were included.We continued this
process until no predictor was excluded or included, two consecutive iterations returned
the same variable set, or it reached 11 iterations. Initially, this process was applied to the
climatic variable set, and to the geographical and socio-economic variable sets separately,
then, we applied to all variables selected from the two sets. Finally, predictors with VIF
greater than five were excluded. The remaining predictors were selected for model building.
Further details of this process are shown in Fig. 1.

Model building
We built models for longitudinal data involving exposures at different lags, which were
selected in different data sets. As such, cross-validation methods based on random re-
sampling (such as K-fold) were not appropriate as they may result in a look-ahead bias
where later data can be used to predict earlier data (Bergmeir & Benítez, 2012). Instead, a
method that furnishes contiguous blocks of data was required due to the lagged nature of
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Figure 1 Process of model building.
Full-size DOI: 10.7717/peerj.14213/fig-1

predictors in the model. Similarly, using data from some SA3 areas as training sets and the
others as validation sets could lead to bias because the RRV transmission cycle and disease
incidence varies in different areas. Instead, a time-series cross-validation approach was
applied (Ramos & Oliveira, 2016). Data between 2001–2008, 2001–2012, and 2001–2016
were used as the three training sets. The corresponding validation sets included data from
2009–2012, 2013–2016, and 2017–2020, respectively.

Ross River virus notifications were rare counts as the weekly SA3 area data used
were at relatively high spatial and temporal resolution. Poisson and negative binomial
distributions were appropriate for modelling these data. There are excess zeros according
to the distribution plots of RRV cases (Fig. S1). Some predictors may have complex
associations with each other and with RRV incidence; non-linear models were used to
address the possible non-linear effect of exposures on RRV activity. So, we conducted
negative binomial-based models which highlighted the effect of statistical over-dispersion
compared with Poisson-based models; zero-inflated models were applied to analyse the
effect of zero-inflation caused by excess zeros, and non-linear models were used to account
for non-linearity. Hurdle models were not used because zero data can only be generated
from the excess zero part of a hurdle model and positive count data is produced from the
non-zero part. One of the assumptions of zero-inflated models is that zero data can be
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structural zeros from the zero part or sampling zeros from the non-zero part of the model,
which is a better conceptual fit to RRV data than that of the hurdle models.

As the standard negative binomial generalised linear model was simple, stable, and
fitted the data well in preliminary analyses, it was used to select the final variable set for
all models. In preliminary analyses, the same model was used to select predictors and to
build models to access the possible impact of the method used for variable selection on
final model performance. These variable sets were then used in all models for comparison.
The ten models were: standard Poisson generalised linear model (Poisson), standard
Negative Binomial generalised linear model (NB), Zero-Inflated Poisson model with
constant in zero part (ZIP), Zero-Inflated Poisson model with exposure as a regressor
in zero part (ZIPe), Zero-Inflated Negative Binomial model with constant in zero part
(ZINB), Zero-Inflated Negative Binomial model with exposure as a regressor in zero part
(ZINBe), Poisson Generalised Additive Model (PGAM), Negative Binomial Generalised
AdditiveModel (NBGAM), Zero-Inflated Poisson Generalised AdditiveModel (ZIPGAM),
and Zero-Inflated Negative Binomial Generalised Additive Model (ZINBGAM). Details of
the models are provided in Text S1. To identify important predictors and test the model
building process in different regions, the model building process was conducted in each
region separately, and then in the full dataset (all Queensland) to address the overall model
performance.

Model performance
Model fit was assessed by Akaike information criterion (AIC) (Akaike, 1974), BIC, and
Hannan-Quinn Information Criterion (HQIC). The AIC does not take sample size into
consideration whereas BIC and HQIC use sample size as a penalty weight (Claeskens &
Hjort, 2008). Among BIC and HQIC, BIC is stricter in penalising sample size. Because a
large number of predictors were screened in this study, a parsimonious model having fewer
predictors was preferable. So, BIC was used to optimise the model, and to evaluate the
model fit if the information criteria were inconsistent.

The AIC is given by:

AIC=−2log(L)+2k

where L is themaximum likelihood of the data and k represents the number of the unknown
parameters in the model.

The BIC is given by:

BIC=−2log(L)+ log(n)∗k

where n is the sample size.
The HQIC is given by:

HQIC=−2log(L)+ log(log(n))∗k.

As the information criterion statistics could only be generated for the training sets,
measures to gauge model predictive performance in the validation sets were required.
Three measures of relative residuals were applied to assess the model accuracies in both
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training and validation sets: Mean Square Error (MSE), Root Mean Square Error (RMSE),
and Mean Absolute Error (MAE). The more robust MAE was used if the relative residuals
were inconsistent. The functional forms of these relative residuals are:

MSE=
∑n

i=1(Xi− X̂i)2

n

RMSE=

√∑n
i=1(Xi− X̂i)2

n

MAE=
∑n

i=1

∣∣Xi− X̂i
∣∣

n
where X is the predicted or real value of RRV cases and n is the sample size.
All analyses and figures were performed and produced with ‘‘MASS’’ (Ripley et al.,

2021), ‘‘pscl’’ (Jackman et al., 2020), ‘‘mgcv’’ (Wood, 2021), and ‘‘gamlss’’ (Stasinopoulos
et al., 2021) in R 4.1.0 (R Core Team, Vienna, Austria, 2021) (R Core Team, 2021) and
ArcMap 10.7.1 (Environmental Systems Research Institute, Redlands, CA, USA, 2019)
using GCS_GDA_1994 Geographic Coordinate Systems. R code of this study is provided
in Text S2. The study was approved and informed consent was waived by the University of
Queensland Human Research Ethics Committee A (2019/HE002772).

RESULTS
Regions of Queensland have different ecological and climatic patterns, vector species, and
host populations, which influence RRV transmission. As shown in Fig. 2, 14 SA3 areas have
a hot humid summer (abbreviated as ‘‘Hot’’ region); 61 have a warm humid summer, or
warm summer and cool winter (‘‘Warm’’ region); and the remaining seven areas have a
hot dry summer, and mild or cold winter (‘‘Dry’’ region; Fig. 2).
A total of 43,699 cases were reported in Queensland, Australia from 2001 to 2020. Among

these cases, 13,422 were recorded in the Hot region, 25,949 were recorded in the Warm
region, and 4,325 were reported in the Dry region. The mean incidence rate was five per
10,000 people per annum during the study period. Some SA3 areas on the coast and in
Western Queensland reported high cumulative incidence rates across the 20-year study
period (Fig. 2). The distribution of weekly RRV notifications in Queensland is shown in
Fig. S1.

Ross River virus cases had strong seasonal variations with annual peaks in late summer
and autumn (Fig. 3). Since 2006, RRV cases have increasingly been reported throughout
the year. The highest notification number and highest incidence rate were recorded in
2015, while the lowest were reported in 2002. The weekly average values for maximum
temperature, rainfall, and relative humidity at minimum temperatures are displayed in
Fig. 3.

For each training dataset in each region, predictors (exposures at different lags) were
selected to fit the standard negative binomial generalised linear model and then used in
the training and validation of all the other models using the same dataset of this region.
The coefficients and 95% confidence intervals of chosen predictors in the NB model using
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Figure 2 Classification of regions and distribution of Ross River virus cumulative incidence in
Queensland, Australia, 2001–2020.

Full-size DOI: 10.7717/peerj.14213/fig-2

the third training dataset for three regions are listed in Table 1. For each training dataset,
nine to thirteen predictors were selected. Disparity in the predictor sets selected for the
three regions indicates that regional analysis is necessary for detecting important predictors
influencing RRV transmission under different environmental and weather conditions. The
performance of models in preliminary analyses, which used the same model in selecting
predictors and building models, are provided in Table S1. The results show that the NB
model is appropriate for variable selection.

Evapotranspiration, NDVI, and vapour pressure with appropriate lags are selected for
modelling RRV incidence in all regions, and a lagged El Niño variable was selected in
three regions. Different lags for a single exposure may have both positive and negative
effects on RRV incidence. In the Dry region, maximum temperature, vapour pressure
and the index of education and occupation had positive effects on disease transmission,
while evapotranspiration, El Niño events, proportion of agriculture land and NDVI
were negatively related to RRV incidence. In the Hot region, rainfall, vapour pressure,
evaporation, evapotranspiration, elevation and NDVI were positively correlated with RRV
incidence. Temperature and types of land use were negatively associated with disease
activity in the Hot region. In the Warm region, high values of weather exposures (relative
humidity, vapour pressure and evapotranspiration) accelerated RRV transmission, while El
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Figure 3 Temporal trends of weekly total Ross River virus cases, weekly average maximum
temperature, weekly average relative humidity at minimum temperatures and weekly average rainfall
in Queensland, Australia, 2001–2020.

Full-size DOI: 10.7717/peerj.14213/fig-3

Niño events and high values of SOI and NDVI decreased RRV incidence. A high proportion
of nature land and scores indicating less access to service centres also indicated areas with
high disease activity.

The average AIC, BIC, and HQIC of the training datasets were calculated for each
region and the whole of Queensland. The NB-based models had lower BICs than the
Poisson-based counterparts, which indicated that over-dispersion exists in all datasets
(Fig. 4). A lower variation in BICs indicated NB-based models were more stable than
Poisson-based models. All NB-based models had similar BIC values regardless of model
complexity across all regions. So, in general, NB-based models are robust, stable, and
performed well in the epidemiological modelling of RRV surveillance data. The AIC and
HQIC of all models are in Figs. S2–S3.

Within the Poisson-based models, Zero-Inflated models (ZI models) fitted the data
better than the others, suggesting that the inclusion of zero-inflation in the model is
needed if data dispersion is not considered. Considering the linear and non-linear models
have similar BIC values, there is no evidence that non-linearmodels fit the data substantially
better. Over the three model components considered here, the over-dispersion effect is
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Table 1 Coefficients of selected predictors by standard negative binomial generalised linear model in each region and in Queensland.

Region Predictors selected by standard negative binomial
generalised linear modela

Coefficient (95% CI)b

Dry Maximum temperature 0.030 (0.014, 0.045)***

RHmin 0.004 (−0.003, 0.010)
RHmin, Lag 19 −0.002 (−0.006, 0.002)
VP at 3 pm 0.029 (0.014, 0.044)***

VP at 3 pm, Lag 6 0.080 (0.068, 0.093)***

Evapotranspiration, Lag 37 −0.095 (−0.150,−0.040)***

El Niño events, Lag 51 −0.471 (−0.589,−0.353)***

Proportion of agriculture land −0.013 (−0.018,−0.008)***

NDVI, Lag 14 −3.960 (−5.259,−2.661)***

Index of education and occupation 0.024 (0.020, 0.027)***

No El Niño events, Lag 51 Ref.
Hot Maximum temperature, Lag 37 −0.059 (−0.069,−0.049)***

Rainfall, Lag 6 0.010 (0.007, 0.013)***

VP at 9 am, Lag 8 0.044 (0.036, 0.052)***

Pan Evaporation, Lag 19 0.146 (0.125, 0.167)***

Evapotranspiration 0.157 (0.136, 0.178)***

Elevation 0.001 (0.001, 0.001)***

Proportion of agriculture land −0.028 (−0.033,−0.024)***

Proportion of water land −0.241 (−0.265,−0.216)***

NDVI, Lag 48 1.156 (0.609, 1.703)***

Warm RHmin 0.016 (0.012, 0.020)***

RHmin, Lag 2 0.016 (0.012, 0.020)***

RHmax, Lag 7 0.019 (0.016, 0.021)***

VP at 9 am, Lag 8 0.067 (0.061, 0.074)***

VP at 3 pm, Lag 11 0.061 (0.054, 0.068)***

Evapotranspiration 0.148 (0.135, 0.162)***

Southern Oscillation Index, Lag 12 −0.019 (−0.021,−0.017)***

El Niño events, Lag 6 −0.569 (−0.622,−0.516)***

Proportion of nature land 0.013 (0.011, 0.016)***

Proportion of tidal wetland −0.05 (−0.058,−0.041)***

NDVI, Lag 15 −2.824 (−3.137,−2.511)***

ARIA—Accessible 0.498 (0.452, 0.544)***

ARIA—Moderately accessible 0.136 (0.006, 0.267)*

Number of weeks 0.0005 (0.0004, 0.0006)***

ARIA—Highly accessible Ref.
No El Niño events, Lag 7 Ref.

Notes.
aRHmax, Relative humidity at the time of maximum temperature; RHmin, Relative humidity at the time of minimum temperature; VP, Vapour Pressure; NDVI, Normalized
Difference Vegetation Index; ARIA, Accessibility/Remoteness Index of Australia.

bSignificance: p valu e < 0.05*; p value < 0.01**; p value < 0.001***
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Figure 4 Average BIC values of all models in different regions of Queensland (ordered by BIC value,
with y-axis breakpoints).
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most important, followed by zero inflation, with non-linearity being the least important in
fitting these data.

The MSE, RMSE and MAE of the validation data in all regions are provided in Fig.
S7 and Table S2 to show the unpenalized relative residuals of the models. These relative
residuals were lower for the generalised linear models and ZI models. The GAM models
with zero-inflation tended to have the greatest relative residuals in the validation sets.

The predicted values of the NB and the NBGAM models, which were stable and had
lower BICs in general, together with real RRV cases in Queensland are displayed in Fig.
5. The results for the three regions are provided in Figs. S4–S6. These two methods were
considered as the representative linear and non-linear models for this study. Both models
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Figure 5 (A–B) Predicted value and actual value of NBmodel and NBGAMmodel for predicting RRV
disease in Queensland.
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fitted the seasonal patterns and timing of peaks well but were unable to fit the size of the
peaks, especially when the number of cases were high. Both models predicted one to two
years of data comparatively well but failed to predict the latter two years. The non-linear
models were less stable than linear models in prediction, especially in the final year, and
over-fitting may have occurred.

DISCUSSION
We modelled RRV incidence using climatic, geographical, and socio-economic exposures
in different regions of Queensland. Using a substantial amount of data in a wide
geographical area across 20 years with numerous exposures provided a reliable basis
for model comparison. A purposeful selection strategy was developed to identify important
predictors among numerous lagged variables. Ten models including generalised linear
models (Poisson and negative binomial models), zero-inflated models (ZIP, ZINB,
ZIPe, and ZINBe), and GAM models (PGAM, NBGAM, ZIPGAM, ZINBGAM) were
implemented, where ZI models were applied to RRV data for the first time. We first
compared model performance and evaluated the effects of over-dispersion, zero-inflation,
and non-linearity of the epidemiological surveillance data on model fit. The standard
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negative binomial generalised linear model fit the data well, and it is simple, robust, and
efficient. Over-dispersion is the most important effect to be considered when analysing
this type of data.

Most researchers applied a stepwise method for variable selection in developing RRV
prediction models (Koolhof et al., 2021; Gatton, Kay & Ryan, 2005; Bi et al., 2009; Ng et
al., 2014). Stepwise selection, an automated approach using either predictor significance
or overall fit, does not account for a complex setting involving the modelling using
correlated exposures at various lags. Limitations of stepwise selection include parameter
estimation bias, inconsistencies among model selection algorithms, and an inappropriate
focus or reliance on a single best model (Whittingham et al., 2006). Appropriate selection
methods for climatic, environmental, and socio-economic predictors with lagged effects,
taking account of complex correlations among predictors, have not been well studied.
To choose important predictors, our strategy screens exposures at different lags based
on both univariable and multivariable (adjusted) associations (the repeated backward
stepwise screen and reassessment process). The significance and standardised coefficients
of the predictors, correlations between predictors, and model fit are considered to select
predictors. The stepwise process followed by a reassessment could avoid removing
predictors based on a single criterion. The variable selection approach was able to
identify the most important predictors by considering statistical significance, standardised
regression coefficients, multicollinearity, overall fit and correlation between predictors
in a comprehensive way. It was found to be effective and able to generate consistent and
reasonable numbers of predictors across all datasets in this study, and we believe it has great
potential in many epidemiological predictive studies including surveillance data arising
from ecological designs. Different predictors were selected for each region and their effects
on RRV activity varied across regions. Regional analysis is beneficial for selecting important
predictors relevant to the transmission cycle in each region. However, adequate sample
size is required to ensure a robust model fit.

Several exposures are proved to play relatively important roles in predicting RRV
incidences, such as evapotranspiration, Normalized Difference Vegetation Index (NDVI),
vapour pressure, and El Niño events. We found vapour pressure has a positive association
with RRV transmission in all regions regardless of lags, as demonstrated in other studies
(Cutcher et al., 2017). Evapotranspiration has a positive effect on RRV incidence in the Hot
and Warm regions and a negative effect in the Dry region. As mentioned by Koolhof et al.
(2020), evapotranspirationmay be a stronger predictor than other climatic factors including
rainfall and temperature. The impact of El Niño events on RRV incidence has been less
studied. We found a negative association between El Niño events and RRV incidence
in the Warm and Dry regions. The decreased rainfall and higher temperature during El
Niño periods may lower RRV incidence (Australian Government, 2020). Vegetation cover
favours mosquito breeding and provide habitats for reservoir hosts. However, in forests
with dense vegetation, mosquitoes may be less likely to survive and breed because of the
low temperatures in the shade. The average NDVI value is high after rainy days in late
autumn and early winter in Queensland when the disease incidence is low (Australian
Government, 2019b). These might partly explain our findings that high NDVI at three
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months’ lag in Dry and Warm areas was associated with higher RRV activity, while high
NDVI in the Hot regions around 10months earlier may lead to vegetation growth in forests
and cause decreased RRV incidence (Ha et al., 2021). A high air temperature may prevent
mosquito breeding, thus may decrease disease transmission in the Hot region, whereas
high temperatures in the Dry region may help mosquitoes to survive through a cold winter
and subsequently increase RRV incidence (Jacups, Whelan & Harley, 2011; Werner et al.,
2012). Relative humidity lagged at 1–2 months may accelerate mosquito breeding and
vegetation growth, thus indirectly contribute to disease transmission (Ng et al., 2014; Tong
& Hu, 2002). The selected predictors, such as vapour pressure, NDVI, and El Niño events,
can provide information about conditions that could accelerate mosquito breeding or
indicate high-risk areas that require disease prevention. Targeted mosquito surveillance
and control programs (e.g., mosquito monitoring, reduction of breeding sites, and control
of larval and adult mosquitoes) can reduce transmission of the disease. Interaction between
exposures was not considered here due to the large number of exposures; however, there is
potential to develop models that capture all three regions simultaneously, with interaction
terms used to capture differences between regions.

Modelling RRV is challenging because of the complicated transmission cycle, the
characteristics of aggregated notification data, the wide geographical area of Queensland,
and the 20-years of data. To avoid the limitations of a single method, we considered
the effect of over-dispersion, zero-inflation, and non-linearity, and added corresponding
components into the models. Over-dispersion of the data may be due to excess zeros, due
to the distribution of RRV cases in SA3 areas, and models that incorporate consideration
of over-dispersion were found to fit the data better. Indeed, we found that the standard
negative binomial generalised linear model fit the data well suggesting that it’s ability to
model over-dispersion may have been sufficient to solve to problems of excess zeros, which
often manifests as over-dispersion. Non-linearity can be a good addition to NB models,
but the GAM models did little to improve model fit without considering dispersion or
zero-inflation of the data. Generalised linear models and ZI models performed better than
GAM models, with or without zero-inflation, based on relative residuals in the validation
sets. Our aim is to build and obtain models with excellent predictive performance and
clear epidemiological logic in different regions, which is to balance a good model fit in the
training set with selected explainable exposures and a good model predictive performance
in the validation set. Generally, among the models implemented in this study, NB-based
models were the best choice and are recommended for similar epidemiological studies that
consider vector-borne diseases at different temporal and spatial resolutions.

Two noteworthy peaks of RRV notifications were reported in 2015 and in 2020. The 2015
outbreak were possibly due to a combination of ecological factors including above-average
rainfall and consequent high mosquito abundance (Jansen et al., 2019). The high cases
reported in 2020 may be related to altered RRV transmission risk and reporting. Changed
behaviour due to COVID-19 may have resulted in more time gardening or exercising
outdoors, while awareness of symptoms of fever and fatigue may have affected healthcare
seeking (Webb, 2020; Jansen et al., 2021). The 2015 outbreak was included in our training
set and the 2020 peak was in the validation set, allowing a test of model performance when
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RRV incidence was extremely high. The predictors selected could explain the common
trends of RRV incidence but were unable to predict the rise of disease transmission in 2015
and in 2020. Historical RRV cases, modelled with an autoregressive term,may help to detect
incidence within a certain range and over a short period. Some important exposures, such
as mosquito abundance and host populations, have been suggested as greatly improving
model fit (Ng et al., 2014), but are not included in this study as they are not available across
Queensland for our study period. Adding autoregressive terms and using different formats
of variables (e.g., using the number of rainy days instead of average rainfall in a week) may
improve model fit and predictive performance.

Data quality has an impact on modelling performance. The definition of RRV was
revised in 2013 and 2016 to remove possible false-positive diagnostic test results (Selvey
et al., 2014; Knope et al., 2019). We are unable to evaluate the impact of these revisions
on predicting RRV incidence. As a passive surveillance system, RRV surveillance may be
biased for the following reasons: underestimation caused by asymptomatic infections,
false-positive diagnostic tests (Selvey et al., 2014), greater efforts consequent upon greater
awareness by doctors to ascertain cases during outbreak years (Werner et al., 2012), and
lags in reporting due to the incubation period (Queensland Government, 2017). Flooding
and bushfires were coded as binary in each SA3 area and do not capture areas influenced
by these events or the river height of related river catchments. The SEIFA and ARIA data
from censuses in 2011 and 2016 had to be extrapolated to the entire study period. Data on
land use and elevation were only available in one year, thus were considered as constant
values in this study, with spatial estimates of elevation interpolated to areas with missing
data. The weekly population data required linear interpolation and extrapolation when
converted from yearly data. Data available with adequate quality were considered and data
were processed with reliable procedures.

Potential methodological limitations might exist when we determined data units for
analysis and chosemodels for variable selection. The weekly SA3 area data used in this study
contain details but have many zeros. However, using data at a lower spatial or temporal
resolution (e.g., monthly data) have fewer zeros but may lose information, especially for
daily weather data. The standard negative binomial generalised linear model was used
for selecting predictors for all models which may have given it an advantage in model
fitting. However, using the same set of variables makes head-to-head model comparison
possible. We chose here to select the same set of predictors for all models to enable a
comparison of different models, rather than a comparison of the model building process,
with our additional analyses suggesting that any advantage to the negative binomial model
is relatively small.

CONCLUSIONS
This is the first head-to-head comparative modelling study of prediction of RRV incidence
in Queensland. We developed a comprehensive strategy to purposefully select variables
using multiple criteria followed by reassessments and to allow the choice of a stable and
valuable variable set for model fit. The comparison among different types of models

Qian et al. (2022), PeerJ, DOI 10.7717/peerj.14213 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14213


provides an example of determining the key element affecting model fit. We found the
standard negative binomial generalised linear model to be the best choice in predicting
RRV incidence and the statistical over-dispersion effect possibly caused by excess zeros is
a principal issue to be considered. We advocate a model selection algorithm, such as what
we developed, that accounts for some issues arising while modelling infectious disease
incidence including various exposures, lags, data distribution, multicollinearity, and model
fit. The model building process introduced is promising for epidemiological surveillance
studies of mosquito-borne disease with temporal and spatial data.
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