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ABSTRACT
Background. Clear cell renal clear cell carcinoma (ccRCC) is resistant to most
chemotherapeutic drugs and the molecular mechanisms have not been fully revealed.
Genomic instability and the abnormal activation of bypass DNA repair pathway
is the potential cause of tumor resistance to radiotherapy and chemotherapy. IQ-
motif GTPase activating protein 3 (IQGAP3) regulates cell migration and intercellular
adhesion. This study aims to analysis the effects of IQGAP3 expression on cell survival,
genome stability and clinical prognosis in ccRCC.
Methods. Multiple bioinformatics analysis based on TCGA database and IHC analysis
on clinical specimens were included. Quantitative real-time polymerase chain reaction
(qRT-PCR) and western blot (WB) were used to determine protein expression level.
MTT assay and 3D spheroid cell growth assay were used to assess cell proliferation and
drug resistance in RNAi transfected ccRCC cells. Cell invasion capacity was evaluated
by transwell assay. The influence of IQGAP3 on genome instability was revealed by
micronuclei number and γ H2AX recruitment test.
Results. The highly expressed IQGAP3 inmultiple subtypes of renal cell carcinomahas a
clear prognostic value.Deletion of IQGAP3 inhibits cell growth in 3DMatrigel. IQGAP3
depletion lso increases accumulated DNA damage, and improves cell sensitivity to
ionizing radiation and chemotherapeutic drugs. Therefore, targeting DNA damage
repair function of IQGAP3 in tumorigenesis can provide ideas for the development
of new targets for early diagnosis.

Subjects Bioinformatics, Cell Biology, Molecular Biology, Nephrology, Oncology
Keywords Clear cell renal clear cell carcinoma, IQGAP3, Drug resistance, Genomic stability,
DNA damage repair

INTRODUCTION
According to the pathological features, renal carcinoma can be divided into clear cell
renal cell carcinoma (ccRCC), papillary renal cell carcinoma (PRCC), chromophobe renal
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cell carcinoma (CRCC) and a few tumors found in the kidney (collecting duct carcinoma,
medullary renal cell carcinoma and urothelial carcinoma) (Jonasch, Gao & Rathmell, 2014).
The transparent or eosinophilic cytoplasm is a typical feature in ccRCC, which accounts for
about 70% of all renal cell carcinomas (Jonasch, Walker & Rathmell, 2021). Although early
local ccRCC can be treated by partial or radical nephrectomy, ablation or regular radiation
(Ljungberg et al., 2015; Pierorazio et al., 2015), up to one-third of patients develop into
metastatic renal cell carcinoma which is difficult to conventional chemotherapy (Ljungberg
et al., 2015; Hsieh et al., 2017).

Abnormal DNA damage response (DDR) causes genomic instability to promote
tumorigenesis. DNA mismatch repair (MMR) is suppressed in ccRCC by several ways:
(1) The regulation of histone deacetylase HDAC6 by VHL gene deletion and ubiquitin-
proteasome dependent MSH2 degradation (Dere et al., 2015; Zhang et al., 2014); (2) the
haploid dose deficiency of MLH1 caused by deletion of chromosome 3p fragment (Wang
et al., 2012); (3) the weakened MSH6 recruitment and transcriptional coupled repair by
H3K36me3 depletion, which acts as a recognition target (Jonasch, Walker & Rathmell, 2021;
Li et al., 2013). Homologous recombination (HR) repair is also suppressed in ccRCC due
to the loss of VHL protein or ubiquitination modification (Metcalf et al., 2014). Inhibition
of hyperactive DDR enhances the sensitivity of tumors to chemotherapy drugs causing
DNA double-strand break (DSB, such as ionizing radiation, bleomycin and cisplatin), and
minimize non targeted toxicity to normal tissues (Ferguson et al., 2015). The therapeutic
strategy is to target key repair signals and promote cell death by increasing the number of
DSBs (Pilie et al., 2019).

The IQ-motif GTPase activating protein (IQGAP) includes IQGAP1, IQGAP2 and
IQGAP3 in mammalian cells, which are closely related to intercellular adhesion, cell
division, cell movement and migration, endocytosis and exocytosis (Shannon, 2012;
Noritake et al., 2005; Brown & Sacks, 2006; White, Erdemir & Sacks, 2012). These isoforms
share similar domains and bind the Rho family member CDC42 in a GTP-dependent
manner to regulate the actin cytoskeleton (Mosaddeghzadeh et al., 2021; Briggs & Sacks,
2003). IQGAP2 and IQGAP3 have unique functions compared with IQGAP1. IQGAP2
contains all the domains of IQGAP1 with diverse interaction partners. Different from
IQGAP1, IQGAP2 binds CDC42 but not RhoA or RAS (Brill et al., 1996). The tissue
distribution and subcellular localization between the three isotypes showed significant
difference. IQGAP1 was expressed in almost all tissues and mainly distributed at the cell
contact sites at the cell edge, while IQGAP2 was significantly expressed in liver, stomach,
platelets, prostate, kidney, thyroid, stomach, testis and salivary gland, and showed strong
intranuclear localization (Briggs & Sacks, 2003; Yamashiro, Noguchi & Mabuchi, 2003;
White, Brown & Sacks, 2009). IQGAP3 is mainly expressed in brain, testis, small intestine,
lung and colon (White, Brown & Sacks, 2009).

The function of IQGAP3 involved in DNA damage repair has been gradually revealed.
In lung cancer, IQGAP3 directly bind repair protein Rad17 to regulate its expression and
localization at the DNA damage site, so as to promote DNA repair (Zeng et al., 2020).
In cervical cancer, IQGAP3 regulates cell cycle and promotes genome stability through
MMS19/XPD/CAK axis (Leone et al., 2021). Compared with the other two widely studied
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isoforms, only IQGAP3 showed increased expression in different subtypes of renal cancer
than normal tissue, indicating its general function in renal cancer. More studies are needed
to elucidate the interaction partners and biological roles of IQGAP3. The expression of
IQGAP3 in renal cell carcinoma, its correlation with prognosis or chemoradiotherapy
sensitivity, the molecular mechanism involved in tumor malignant progression will help
further biomarkers identification and combination therapy exploration.

MATERIALS & METHODS
Human myocardial tissue collection
Seven pairs of tumor and adjacent normal tissues were collected from the department of
urology, Henan Provincial People’s Hospital. The study was approved by the medical ethics
committee of Henan Provincial People’s Hospital (No. 2019074) following the Declaration
of Helsinki. The experiments were undertaken with the understanding and written consent
of each subject. The participants allowed the researchers to use their tissue during the
tumor resection and conduct the study accordingly. The patient information was listed in
Table 1.

Cell culture and RNAi transfection
Human clear cell adenocarcinoma cell lines 786-O and ACHNwere seeded at 37 ◦C and 5%
CO2 in RPMI-1640 and DMEM medium, respectively. All mediums were supplemented
with 10% FBS and 1% Penicillin/Streptomycin. The cell lines were obtained from Shanghai
Zhong Qiao Xin Zhou Biotechnology and were went through mycoplasma testing every
month. The Lipofectamine RNAiMAX reagent (Invitrogen) was used to transfect siRNAs
(50 nM) for 72 to 96 h. The siRNA sequences targeting IQGAP3 were as follows:
siIQGAP3-1#: 5′-CGUCCGAACUGGCCAAAUA-3′;
siIQGAP3-2#: 5′-GGGUGUGGCUGUCAUGAAA-3′.

Antibodies
The human IQGAP3 antibody was obtained from Proteintech (25930-1-AP, 1:1000).
Human GAPDH antibody was obtained from Proteintech (10494-1-AP, 1:1000). Human
Integrin Alpha 6 antibody was obtained from Proteintech (27189-1-AP, 1:1000). Human
Twist antibodywas obtained fromProteintech (11752-1-AP, 1:1000).Human Slug antibody
was obtained from Proteintech (12129-1-AP, 1:1000). Human Vimentin antibody was
obtained from Proteintech (10366-1-AP, 1:1000). Human Phospho-H2AX-S139 antibody
was obtained from Abclonal (AP0687, 1:1000).

Western blotting
The collected cells were centrifuged and lysed in RIPA buffer (150 mM NaCl, 50 mM
Tris–HCl (pH 7.4), 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) with 1% PMSF
for 30min. The supernatant was separated by 13,000 g centrifugation at 4 ◦C for 20min. The
protein samples were denatured at 100 ◦C for 10 min and loaded in SDS-PAGE gel. After
being transferred to a PVDF membrane, the blocking was performed with 5% skimmed
milk for at room temperature 1 h. The membrane was incubated overnight at 4 ◦C with
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Table 1 Patient information.

Patient Gender Age Capsule
infiltration

Histological
grade

TNM TNM
Stage

1 Male 37 No Grade 3 T1aN0M0 Stage I
2 Female 52 Yes Grade 2 T3N0M0 Stage III
3 Female 55 No Grade 1 T1aN0M0 Stage I
4 Female 60 Yes Grade 3 T1bN0M0 Stage I
5 Male 50 No Grade 3 T1aN0M0 Stage I
6 Male 48 No Grade 3 T1aN0M0 Stage I
7 Male 48 No Grade 1-2 T1aN0M0 Stage I

the primary antibodies and incubated at room temperature with the secondary antibody
for 1 h. Signal detection was performed by enhanced chemiluminescence (PerkinElmer).

Cell proliferation and survival assay
Cell proliferation was detected by MTT assay. Briefly, 2 × 103 cells were seeded in 96 well
plate for 1 to 6 days. MTT reagent (Sigma-Aldrich) was added at the concentration of 5
mg/ml, followed by 4 h incubation at 37 ◦C. The culture supernatant was discarded and 100
µl DMSO (Sigma-Aldrich) was added. After 10 min of oscillation, 490 nm wavelength was
selected on the enzyme-linked immunosorbent monitor to measure the light absorption
value.

For the ionizing radiation sensitivity test, 200 to 5000 cells were seeded in six well plate,
followed by several doses of X-ray irradiation. The number of clones was counted after 14
days of cell culture. For drug sensitivity test, 2000 cells were seeded in 96 well plate with
several dosed of cisplatin, camptothecin and doxorubicin (Selleck). The surviving cells
were measured by MTT method after 48 h of culture.

3D spheroid cell growth assay
For the 3D spheroid cell growth assay, 1 ×103 cells were seeded in 24 well plates with
ultra-low protein adsorption. The cell images were taken and recorded by light microscope
after 6 days, 12 days and 14 days.

Immunohistochemistry (IHC)
IHC staining was performed on renal cell carcinoma tissue. Tissue sections were dewaxed
in xylene and rehydrated in graded ethanol (100%, 95%, 80% and 70% ethanol for 10
min). The antigen was recovered by heat induced epitope recovery method. The slices were
treated by 10 mmol/l EDTA (pH 8.0) at 98 ◦C for 15 min. 3% hydrogen peroxide were used
in methanol at 37 ◦C for 15 min to quench the endogenous peroxidase activity, followed by
blocking with 5% bovine serum albumin. The incubation condition of primary antibody
was 4 ◦C overnight.

Immunofluorescence
The growing cells were inoculated on the sterilized coverslips and cultured at 37 ◦C and
5% CO2 for 24 h. The medium was removed when the cell grew to about 70% and washed
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with PBS. The cells were fixed at room temperature with 4% paraformaldehyde for 15 min.
After washing with PBS for three times, Triton was added at the final concentration of 0.3%
to treat the cell at room temperature for 20 min. After blocking in 5% BSA for 30 min, the
cells were stained with primary antibodies (diluted in 1% BSA) at room temperature for
2 h. Cells were washed with PBST (PBS with 0.1% Tween-20) three times and incubated
with fluorescence-conjugated secondary antibodies at room temperature for 1 h. After
being washed three times with PBST, cells were mounted with antifade mounting medium
with 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride (DAPI). The slides were
observed by confocal microscope, and the fluorescence intensity were calculated by ImageJ
software.

TCGA database analysis
The sequencing results (HTSeq FPKM data) were obtained and analyzed from TCGA
database (https://portal.gdc.cancer.gov/). IQGAP3 expression between normal and tumor
tissues was analyzed by UALCAN database (http://ualcan.path.uab.edu). Survival analysis
between patients with low and high IQGAP3 expression was performed by Kaplan Meier
database (https://kmplot.com/analysis/). Timer database (http://timer.cistrome.org/) was
used to explore the relationship between IQGAP3 expression and immune infiltration.
Student t -test and log rank test were used for data statistics.

Transcriptome sequencing and analysis
Total RNA isolation by Trizol, mRNA enrichment with oligo DT magnetic beads, mRNA
fragmentation and cDNA synthesis were all processed according to the manufacturer’s
protocol. The cDNA was complemented and repaired. After amplification, the RNA library
was sequenced by Illumina pe150 in Shenzhen Haplox company. The reference genome
used was GRCh37 (hg19). The FPKM (Fragments Per Kilobase of exon model per Million
mapped fragments) of each gene was calculated according to gene length. Differential
expression analysis was performed using the DESeq R package (Yu et al., 2012).

Statistical analysis
Each experiment was validated by three independent replicates. Unpaired two tailed
Student t -test was used to analyze the statistical significance. The experimental values are
expressed as the mean ± standard deviation (SD). Statistical significance was analyzed by
GraphPad Prism 6.0 software (ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001).

RESULTS
IQGAP3 was highly expressed in most cancer types compared with
normal tissues
The expression analysis of TCGA database showed that there was no significant difference
in the expression of IQGAP1 in the cancer and adjacent tissues of the three renal cancer
subtypes (data were not shown). IQGAP2 was downregulated in tumor tissues of kidney
renal clear cell carcinoma (KIRC) and kidney renal papillary cell carcinoma (KIRP), and
upregulated in tumor tissues of kidney chromophobe (KICH) (data were not shown). The
mRNA sequencing data of IQGAP3 from 730 adjacent normal tissues and 10,363 tumor
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tissues in TCGA pan cancer database were extracted. Comparing unpaired samples and
paired samples, IQGAP3 was highly expressed in most tumor types (Figs. 1A, 1B). All the
three subtypes of renal cell carcinoma showed significantly enhanced IQGAP3 expression
in tumor tissues than that in normal tissues (Fig. 1C). Due to the small number of samples
contained in KICH, the followed bioinformatics analysis mainly focused on the common
subtypes KIRC and KIRP. Gene expression profiles were obtained by high-throughput
gene array analysis in GEO database (https://www.ncbi.nlm.nih.gov/geoprofiles/). The
expression of IQGAP3 in 27 pair (Series: GSE66272) and 72 pair (Series: GSE53757) of
ccRCC tumor tissues and matched normal tissues at different disease stages were extracted
and analyzed. IQGAP3 increased significantly in tumor tissues at different stages (Figs.
1D, 1E). Interestingly, IQGAP3 was highly expressed in both cancer and adjacent paired
samples with (13 pairs of samples, Series: GSE66271, Fig. 1F) or withoutmetastasis (14 pairs
of samples, Series: GSE66270, Fig. 1G). In patients with metastatic ccRCC, the expression
is higher in tumor tissue than normal tissue. Immunohistochemistry also showed that the
expression of IQGAP3 was high in tumor tissues, which is consistent with the analysis of
the database (Fig. 1H).

Correlation between IQGAP3 expression and clinical features
According to clinical features in TCGA database, the higher the TNM (tumor-node-
metastasis) stage, histological grade and pathological stage, the higher IQGAP3 expression
in KIRC and KIRP (Figs. 2A, 2B). 265 ccRCC tumor samples from GEO database were
compared (Series: GSE73731). The expression of IQGAP3was higher in high-grade samples
(Fig. 2C). The diagnostic value of IQGAP3 mRNA level was evaluated by ROC (receiver
operating characteristic) curve and the area under the ROC curve (AUC). The AUC value
of IQGAP3 were 0.934 and 0.939 in KIRC (Fig. 2D) and KIRP (Fig. 2E) respectively, which
showed high diagnostic value. The mRNA expression of IQGAP3 have similar diagnostic
value in different stages and grades.

Correction between IQGAP3 expression with prognosis and immune
cell infiltration in two subtypes of renal cell carcinoma
Kaplan–Meier analysis showed that the high expression of IQGAP3 was correlated with low
OS (Overall Survival), DSS (Disease Specific Survival) and PFS (Progression Free Survival)
both in KIRC and KIRP (Figs. 3A, 3B). The ‘‘immune gene’’ module of Timer database was
used to explore the relationship between IQGAP3 expression and immune infiltration. In
KIRC, IQGAP3 expression was positively correlated with infiltrated Th2 cells, Treg cells,
NK (CD56+) cells, Th1 cells, aDC cells, T cells, macrophages and B cells, but negatively
correlated with iDC cells, NK cells, Tgd cells, pDC cells, Th17 cells and mast cells (Fig. 3C).
In KIRP, IQGAP3 expression was positively correlated with infiltrated Th2 cells, aDC cells,
pDC cells and T helper cells, as well as a negative correction with DC cells, cytotoxic cells,
neutrophils, Tem cells, CD8 T cells, mast cells, iDC cells, eosinophils and macrophages
(Fig. 3D).

Li et al. (2022), PeerJ, DOI 10.7717/peerj.14201 6/20

https://peerj.com
https://www.ncbi.nlm.nih.gov/geoprofiles/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66272
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53757
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66271
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE66270
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE73731
http://dx.doi.org/10.7717/peerj.14201


A

B

C

D

Normal-1

Tumor-1

Normal-2

Tumor-2

Normal-3

Tumor-3

H

**** E

****
**** *

**
***F **G

**** ns ****

Figure 1 IQGAP3 expression was increased in cancer than normal tissues. (A–B) The unpaired (A) and
paired (B) mRNA sequencing data of IQGAP3 in tumor and adjacent normal tissues in TCGA pan cancer
database. (C) Expression of IQGAP3 in TCGA (KIRC, KICH and KIRP)(continued on next page. . . )

Full-size DOI: 10.7717/peerj.14201/fig-1
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Figure 1 (. . .continued)
tumor and normal samples. (D) IQGAP3 expression in tumor and normal samples from GSE66272
dataset. (E) IQGAP3 expression in tumor and normal samples from GSE53757 dataset. (F) IQGAP3
expression in tumor and normal samples from GSE66271 dataset. (G) IQGAP3 expression in tumor and
normal samples from GSE66270 dataset. (H) Immunohistochemical staining of IQGAP3 expression in
ccRCC patient tissues.

The deletion of IQGAP3 in ccRCC inhibit cell proliferation
IQGAP3 depletion was performed by siRNA transfection in ccRCC cell lines 786-O and
ACHN (Fig. 4A). Cell proliferation was reduced after IQGAP3 depletion in both cell lines
(Fig. 4B). Cell clone formation and cell metastasis were not affected (data were not shown).
The cells present cell agglomerates in the 3D cell culture dish (Fig. 4C). At the early stage
of culture (day 6), IQGAP3 knockdown had no significant effect on the growth of cell
spheres. At the late stage of culture (day 12), deletion of IQGAP3 significantly inhibited the
growth of 3D cell spheres (Fig. 4D). Cell growth in 3D culture was significantly suppressed
after IQGAP3 depletion after 14 days both in 786-O and ACHN cells (Fig. 4E).

The depletion of IQGAP3 increased genomic instability
In the process of cell mitosis, some chromosome breaks will produce centromere-
free chromosome fragments, which are wrapped in the nuclear membrane to form a
micronucleus (MN) structure with a diameter less than 1/3 of the normal nucleus. In
order to determine the effect of IQGAP3 on genomic stability in ccRCC, the formation of
MNs was counted after 4 Gy ionizing radiation (IR) and recovery for 4 h (Fig. 5A). After
IQGAP3 knockdown, the number of MNs in cells increased regardless of IR treatment
(Fig. 5B). Phosphorylation of serine (Ser) at position 139 of histone H2AX (γ H2AX) is
considered to be a marker of DNA breakage (Fig. 5C). As the initial signal molecule of
damage induction, γ H2AX recruits a series of DNA damage repair proteins at the damage
site to start the DNA repair cascade. After IR irradiation, the intensity and quantity of
γH2AX were increased in 786-O and ACHN cells (Figs. 5D, 5E). With the increase of
recovery time after radiation, DNA damage in IQGAP3 knockdown cells accumulated
continuously (Fig. 5F). These results show that IQGAP3 can promote genome stability.

The depletion of IQGAP3 increases the sensitivity of ccRCC cells to
radiation and chemotherapy drugs
The cells were treated with different doses of IR, and the cell survival was counted.
After IQGAP3 knockdown, the cell survival rate decreased significantly and the cell
radiosensitivity increased (Fig. 6A). The three common chemotherapeutic drugs, cisplatin,
camptothecin and doxorubicin were selected to test IC50 value. The sensitivity of cells to
these drugs increased after IQGAP3 knockdown (Fig. 6B). The results show that IQGAP3
promotes genome stability, which may be the reason for chemoradiotherapy resistance of
ccRCC.
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Figure 2 Correlation between IQGAP3 expression and clinical features. (A) IQGAP3 expression in dif-
ferent TNM stages, histological grades and pathological stages of KIRC. (B) IQGAP3 expression in differ-
ent IQGAP3 expression in different clinical TNM stages, pathologic (continued on next page. . . )

Full-size DOI: 10.7717/peerj.14201/fig-2
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Figure 2 (. . .continued)
TNM stages, all clinical stages and all pathological stages of KIRP. (C) The expression of IQGAP3 in dif-
ferent grades from GSE73731 dataset. (D) ROC curve of IQGAP3 expression in different TNM stages and
histological grades of KIRC. (E) ROC curve of IQGAP3 expression in clinical TNM stages, pathologic
TNM stages, all clinical stages and all pathological stages of KIRP.

A

B

C D

Figure 3 Correction between IQGAP3 expression with prognosis and immune cell infiltration. (A)
The Kaplan–Meier plot with OS, DSS and PFS in KIRC. (B) The Kaplan–Meier plot with OS, DSS and PFS
in KIRP. (C) The correlation between IQGAP3 expression and infiltrated immune cells in KIRC. (D) The
correlation between IQGAP3 expression and infiltrated immune cells in KIRP.

Full-size DOI: 10.7717/peerj.14201/fig-3
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Figure 4 Depletion of IQGAP3 inhibit cell proliferation. (A) Effect of siRNA transfection on the expres-
sion of IQGAP3. (B) Cell proliferation after IQGAP3 depletion in 786-O and ACHN cells. (C) Schematic
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Full-size DOI: 10.7717/peerj.14201/fig-4

Enrichment of migration and drug metabolism related genes after
IQGAP3 depletion
In order to study the signal pathways of IQGAP3 stabilizing genome and then participating
in the inhibition of 3D growth in ccRCC, the IQGAP3 knockdown cells were sequenced
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to compare the global gene expression profile. In total of 462 differentially expressed
genes under the condition of fold change ≥ 2 and p< 0.05 were found, including 278
upregulated genes and 184 downregulated genes. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) was used for gene function research of these differentially expressed
genes. The bubble chart displayed the affected genes were enriched in extracellular matrix
(ECM)-receptor interaction, drug metabolism, regulation of actin cytoskeleton and cell
adhesin molecules after IQGAP3 depletion (Fig. 6C). These results provide potential
mechanistic insights into the promotion role of IQGAP3 in cell 3D growth and drug
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Figure 6 Effect of IQGAP3 on drug sensitivity. (A) Cell survival rate under different doses of ionizing
radiation. (B) Cell survival rate and IC50 value of cisplatin, camptothecin and doxorubicin. (C) Dot plot
ranking for the significant enrichment pathways according to KEGG analysis between control and IQ-
GAP3 depletion groups.

Full-size DOI: 10.7717/peerj.14201/fig-6

resistance in ccRCC. However, the interacting proteins and specific regulatory mechanisms
need to be further studied.

DISCUSSION
IQGAP scaffold protein is evolutionarily conservative in eukaryotes and contributes to the
regulation of cytoskeleton, intracellular signal transduction and intercellular interaction.
IQGAPs are usually used as scaffold proteins, which is related to different cytoskeleton
content. Single molecule imaging has confirmed that the combination of IQGAP1 and
its binding proteins with actin can promote cell migration and adhesion (Hoeprich et
al., 2022). Although the three proteins of IQGAP family have similar structure and high
sequence homology, the difference of their binding proteins lead to the regulation difference
of downstream signal in normal or disease state. The interaction of RHO-GTPase with
IQGAPs is selective. IQGAP1 and IQGAP2 bind CDC42 and RAC1, but not RIF, RHOD
or RHO-like proteins (Mosaddeghzadeh et al., 2021). Through the binding to E-cadherin
and β-catenin, IQGAP1 reduces the interaction between cadherin system and cytoskeleton
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to weaken the cell–cell attachment (Kuroda et al., 1998). Ca2+ enhances the affinity of
calmodulin and IQGAP1, reducing the transcriptional activity of β-catenin and E-cadherin
dependent adhesion (Briggs, Li & Sacks, 2002; Li et al., 1999). Based on the above targets,
IQGAP1 was found to promote invasion in tumors by attenuating E-cadherin-dependent
cell adhesion (Li et al., 1999). The core factors Raf, MEK and ERK1/2 in the mitogen
activated protein kinase (MAPK) pathway promote phosphorylation dependent signaling
cascades by directly binding IQGAP1 (Ren, Li & Sacks, 2007). Disruption the interaction
of IQGAP1 with ERK1/2 inhibits Ra s and RAF driven tumorigenesis (Jameson et al.,
2013). IQGAP1 enhances the nuclear localization of β-catenin through its interaction with
pathway proteins, thereby mediating the activation of cytoplasmic Wnt signaling (Goto
et al., 2013). IQGAP1 is involved in the construction of the whole PI (3) k-Akt pathway,
and the blocking of its interaction with PI (3) K inhibit tumor cell survival (Choi et al.,
2016). Therefore, IQGAP1 plays an important role in cancer development, and anti-tumor
therapy targeting IQGAP1 interacting proteins or related pathways may be beneficial for
tumor therapy. IQGAPs anchored on the lipid membrane stabilize a single actin filament
in a curved shape, helping to form a highly curved complete actin ring (Palani et al., 2021).
These fine structural and biophysical calculations seem to indicate that the regulation of the
actin cytoskeleton by IQGAP protein family takes place in the cytoplasm, and its molecular
mechanism in the nucleus remains to be explored.

The high expression of IQGAP3 promotes malignant processes such as tumor growth
and invasion with different downstream signal pathways in many types of tumors, and
recent studies have found that it is related to the treatment outcome. Unlike the oncogene
IQGAP1, IQGAP2 is considered to be a tumor suppressor (Smith, Hedman & Sacks,
2015). The disruption of IQGAP2 in mice promoted the occurrence of hepatocellular
carcinoma and was reversed by the deletion of both IQGAP1 and IQGAP2, indicating the
opposite biological effects of the two isoforms (Schmidt et al., 2008). Decreased expression
of IQGAP2 in prostate cancer promotes cell proliferation by activating Akt (Xie et al.,
2012). Loss of IQGAP2 expression in gastric cancer promotes invasion and is associated
with promoter methylation (Jin et al., 2008). The possible role of IQGAP3 in tumors is
related to tumor types, and the mechanism research is still in the initial stage. IQGAP3
has been shown to be upregulated in breast cancer, pancreatic cancer, gastric cancer,
hepatocellular carcinoma, colorectal cancer and bladder cancer, and is closely related to
clinicopathological features, suggesting that it may be involved in tumor development
(Hua et al., 2020; Xu et al., 2016; Shi et al., 2017; Huang et al., 2021; Cao et al., 2019; Xu et
al., 2019). Several studies have found that IQGAP3 promotes cell growth and proliferation,
cytoskeleton remodeling, cell migration and adhesion (Huang et al., 2021; Jinawath et al.,
2020; Liu et al., 2020; Lin et al., 2019; Nojima et al., 2008). The expression level of IQGAP3
in radiation resistant breast cancer was higher than that in radiosensitivity group, which
may be related to DNA repair and PI3K-Akt-mTOR signal pathway (Hua et al., 2020).
In lung cancer, the interaction of IQGAP3 with DNA repair protein Rad17 was essential
for Rad17 expression and foci formation, the Mre11-Nbs1-Rad50 complex formation,
and ATM/Chk2 and ATR/Chk1 pathways activation (Zeng et al., 2020). IQGAP3 was also
found to modulate cell cycle progression and genome stability through the interaction with
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MMS19 and regulation of MMS19/XPD/CAK axis (Leone et al., 2021).As the latest studied
protein in family members, the unique function of IQGAP3 in different tumors remains
to be verified. In our study, the deletion of IQGAP3 can significantly increase the genomic
instability and improve the sensitivity of cells to radiation and chemical drugs. Therefore,
looking for hyperactive DNA damage repair pathways and participating proteins is a new
idea to further elaborate the special metabolic reprogramming of renal cell carcinoma cells
and their resistance to traditional radiotherapy and chemotherapy.

CONCLUSIONS
In this work, IQGAP3 was overexpressed not only in many tumor types, but also in the
three common subtypes of renal cell carcinoma. The higher the expression of IQGAP3
in patients with TNM or later clinical stage, and the higher the protein expression has
a strong positive correlation with the poor survival rate. This suggests that IQGAP3 has
good prognostic value in renal cell carcinoma and inhibitors of IQGAP3 function may
prevent tumor invasion, proliferation and migration. It is a potential new biomarker and
therapeutic target.

IQGAP3 can not only regulate tumor 3D growth, but also cause drug resistance by
stabilizing the genome and reducing the accumulation of DNAdamage during radiotherapy
and chemotherapy. The further excavation of the function of IQGAP3 in DNA damage
repair is the embodiment of the application of the concept of synthetic lethality in tumor
treatment, which will help to guide the clinical practice of precise individual treatment.
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