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ABSTRACT
Previously we presented Swarm v1, a novel and open source amplicon clustering
program that produced fine-scale molecular operational taxonomic units (OTUs),
free of arbitrary global clustering thresholds and input-order dependency. Swarm v1
worked with an initial phase that used iterative single-linkage with a local clustering
threshold (d), followed by a phase that used the internal abundance structures of
clusters to break chained OTUs. Here we present Swarm v2, which has two important
novel features: (1) a new algorithm for d = 1 that allows the computation time of the
program to scale linearly with increasing amounts of data; and (2) the new fastidious
option that reduces under-grouping by grafting low abundant OTUs (e.g., singletons
and doubletons) onto larger ones. Swarm v2 also directly integrates the clustering
and breaking phases, dereplicates sequencing reads with d = 0, outputs OTU repre-
sentatives in fasta format, and plots individual OTUs as two-dimensional networks.

Subjects Biodiversity, Bioinformatics, Environmental Sciences, Microbiology, Molecular Biology
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INTRODUCTION
Traditional de novo amplicon clustering methods that can handle large high-throughput

sequencing datasets (e.g., Edgar, 2010; Ghodsi, Liu & Pop, 2011; Fu et al., 2012) suffer from

two fundamental problems. First, they rely on an arbitrary fixed global clustering threshold

to group amplicons into molecular operational taxonomic units (OTUs). Global clustering

thresholds have rarely been justified and are not applicable to all taxa and marker lengths

(e.g., Caron et al., 2009; Nebel et al., 2011; Dunthorn et al., 2012; Brown et al., 2015). Second,

there is variability in the clustering results due to amplicon input order (Koeppel & Wu,

2013; Mahé et al., 2014).

To solve these problems, we previously introduced the open source Swarm v1 program

that implemented an initial clustering phase written in C++, then a breaking phase

written in Python (Mahé et al., 2014). Swarm’s clustering phase (Fig. 1A) was novel in its

approach to single linkage clustering in that, instead of using a global clustering (e.g.,

Hartmann et al., 2012; Huse et al., 2010), amplicons were iteratively added together using a
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Figure 1 Schematic view of Swarm’s clustering and refinement approach. (A) Swarm clusters ampli-
cons iteratively by using a small user-chosen local threshold, d, allowing OTUs to grow to their natural
limits, where no other amplicons can be added. (B) Swarm takes into account the abundance of each
amplicon to produce higher resolution clusters, by not allowing the formation of amplicon chains. The
darker the red, the higher the abundance. (C) The fastidious option avoids under-grouping (e.g., the
production of small OTUs such as singletons and doubletons) by postulating the existence of virtual
linking amplicons to graft smaller OTUs onto larger ones.

small local clustering threshold (d) until no more amplicons could be added. Using d = 1

produced the highest resolution OTUs. Swarm’s breaking phase (Fig. 1B) was novel in that

it used the abundance of amplicons to reveal the internal structure of potentially chained

OTUs (i.e., a low abundant link between high abundant amplicons). These chained OTUs

were then refined by splitting them.

Since its introduction, Swarm v1 has been used in a variety of datasets (De Vargas et

al., 2015; Filker et al., 2015; Lima-Mendez et al., 2015; Mahé et al., 2015; Oikonomou et al.,

2015). However, since the breaking phase was written in Python, it lacked scalability and
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was cumbersome to use. Kopylova et al. (pers. comm., 2015) also found that in comparison

to other clustering methods, Swarm v1 tended to produce relatively more low abundant

OTUs; e.g., singletons and doubletons. And most importantly, Swarm v1 and other current

de novo algorithms could not cluster today’s largest high-throughout sequencing datasets

within a reasonable amount of time (Rideout et al., 2014). Here we introduce Swarm v2 to

help solve these problems, as well as to introduce new and useful features.

MATERIAL AND METHODS
Linear complexity de novo clustering approach
Today’s largest amplicon datasets contain hundreds of millions of amplicons and pose

a computational challenge to de novo clustering methods. Because of this scalability

problem, Rideout et al. (2014) proposed using a mixed clustering approach with an

initial closed-reference clustering that compares the amplicons to what is known in

taxonomic reference databases to capture most of the data, followed by a de novo clustering

with the remaining amplicons. We feel that using only de novo clustering is the most

powerful approach when working with amplicons from unexplored environments that

lack sufficient taxonomic reference databases, or with rare taxa that were previously missed

in already-sampled environments. We therefore worked to improve Swarm’s scalability.

Like other current de novo clustering approaches, Swarm v1 presented an apparent

quadratic behavior in that it needs to perform a number of comparisons that grows as the

square of the number of amplicons. In Swarm v2, we first reduced computational time by

improving the multithreading and making a better usage of multi-core CPUs. We further

reduced computational time by using a novel algorithmic approach. This linear complexity

approach only applies for d = 1, which is Swarm’s default and preferred parameter as it

produces the highest resolution clusters.

As background to this linear approach, let us consider a nucleic sequence S made of

As, Cs, Gs and Ts. A “microvariant” is a sequence with one difference (d = 1) to the

original sequence S. How many distinct microvariants can derive from S? In a sequence S

of length L, each position can be substituted with 3 different bases, so there are 3L possible

microvariants due to substitutions. Each position in S can be deleted once, so there are L

possible microvariants due to deletions. Insertions are more complicated. An insertion can

happen before or after each position in the sequence S, and four different nucleotides can

be inserted resulting in 4(L + 1) microvariants. However, some insertions will result in

the same microvariant: for example, inserting a “G” before or after a “G” will result in the

same sequence “GG.” As that situation arises for all positions in S but one, the maximum

number of distinct insertions is not 4(L + 1), but 3(L + 1) + 1 = 3L + 4. In total, the

maximum number of microvariants that can be obtained from a given sequence S of length

L is 3L + L + 3L + 4 = 7L + 4.

As stated above, different sequence modifications can produce the same microvariant.

The final number of distinct microvariants depends on the number of homopolymer

stretches in the sequence. In the extreme situation where the sequence is entirely made

of one type of nucleotide, the number of microvariants due to deletions drops from

L to 1. For example, if S is entirely made of “G,” all possible deletions yield the same
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microvariant. The total number of distinct microvariants then drops to its minimum value:

3L + 1 + 3(L + 1) + 1 = 6L + 5.

The number of distinct microvariants that can be obtained from a sequence S of length

L then varies from 6L + 5 to 7L + 4. In practice, it means that a typical high-throughput

sequencing 16S rRNA sequence of 130 nucleotides will yield at least 785 microvariants and

at most 914, and that the number of microvariants will increase linearly with the sequence

length. With current sequencing technologies read length increases at a slower rate than

read number, and is safe to assume it will continue to do so in the foreseeable future.

Based on these characteristics of microvariants, we switched from an approximate-

string comparison approach to an exact-string comparison approach. That is, for a given

amplicon, instead of doing an exact pairwise alignment comparison against all available

amplicons in the pool that have yet to be subsumed into an OTU, Swarm v2 generates all

possible microvariants of the amplicon and checks whether or not they are present in the

amplicon pool using a hash table. This exact-string search approach is extremely fast, and

does not depend on the number of available amplicons in the pool. Therefore, the apparent

computational complexity changes from n2 to n × L, where L is the average amplicon

length.

Reducing under-grouping
As observed by Kopylova et al. (pers. comm., 2015), Swarm v1 tended to produce relatively

more low abundant OTUs; e.g., singletons and doubletons. This problem is due to Swarm’s

approach that depends on the existence of a continuous path of linked amplicons. Linking

amplicons can be missing, especially when sequencing is shallow. When this occurs, there

can be under-grouping of closely related amplicons leading to small OTUs surrounding a

larger OTU.

To address this problem in Swarm v2, we introduced a new step—called the fastidious

option—to graft low abundant OTUs onto more abundant ones by postulating a linking

amplicon (Fig. 1C). A low abundant OTU is defined as an OTU with a total abundance

lower than 3, i.e., an abundance of one (singletons) or two (doubletons). That default

threshold value can be modified by users with the option -b. In practice, microvariants

(independent of the microvariants produced in the clustering phase) are produced

for all the amplicons belonging to low abundant OTUs and stored in a Bloom filter (a

probabilistic dictionary). Microvariants are then produced for high-abundant amplicons

and cross-checked against the Bloom filter. The fastidious option can consume a large

amount of memory, but is apparently linear in terms of computation time (see Results).

The user does have control over memory usage and can exchange memory space for

computation time. As of now, the fastidious option can only be used with d = 1, which

is Swarm’s default and recommended d value. With higher d values, the time and space

complexity of our fastidious algorithm grows too fast to be practical.

The fastidious option can be viewed as a way to reduce data loss, as many researchers

conservatively consider low abundant OTUs as spurious errors and remove them from

downstream analyses (Behnke et al., 2011; Kunin et al., 2010). With the fastidious

option, though, one can retain many of these amplicons by attaching them to more
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abundant OTUs. In contrast with an increase of d, the fastidious option does not slow

down computation and does not degrade the clustering resolution; i.e., it reduces

the under-grouping of amplicons without inducing much over-grouping (see section

“Statistics on mock-communities” in File S1).

Other new and useful features
In Swarm v2 we introduce a number of options improving both speed and usability.

First, there is a simpler user command line interface. For example, the breaking phase

is now written in C++ and is performed directly during the growth phase, which

further significantly reduces computation time. We chose to implement a strict, simple,

non-parametric breaking model that prevents any increase in abundance along a

continuous amplicon path (Fig. 1B). Breaking of linked chains can be deactivated.

Second, Swarm v2 extends the notion of clustering by allowing the option d = 0. Users

can now dereplicate their sequencing reads into strictly identical amplicons (sensu Mahé et

al., 2015; i.e., reads that have exactly the same sequences with no substitutions, insertions,

or deletions). This fast dereplication approach uses the same algorithm as in VSEARCH

(https://github.com/torognes/vsearch).

Third, Swarm v2 can output OTU representative amplicons in fasta format. A

representative is the most abundant amplicon of an OTU, and its abundance is updated to

reflect the total OTU abundance. OTU representatives are normally used for downstream

community-comparative, novel-diversity, and ecosystem-functioning questions.

Fourth, Swarm v2 offers the possibility to visualize the internal structure of OTUs,

which allows the user to gain further knowledge of its underlying genetic and ecological

diversity (Figs. 2 and 3). These plots are in the form of a network projected in two-

dimensions. Edges in these networks only represent the parameter d used; the length of

the edges carries no information. The nodes in the networks represent amplicons. The

abundance information of these amplicons is represented in three ways: the size of the

node, the color of the node, and text when its abundance value is 10 or more.

Analyses
To demonstrate the apparent linear complexity of Swarm v2, we analyzed 16S rRNA

reads from the Earth Microbiome Project (Gilbert, Jansson & Knight, 2014), which is

the largest amplicon dataset currently available. The following swarm commands were

used: swarm -d 1 in.fasta, and swarm -d 1 -f in.fasta. To illustrate over- and

under-grouping of amplicons, the importance of the breaking phase, high-resolution

clustering, and Swarm’s ability to visualize OTUs’ internal structures, we used 18S

rRNA amplicon data from the BioMarKs consortium (Logares et al., 2014) that sampled

European near-shore marine sites. The PR2 v203 reference database was used for

taxonomic assignment (Guillou et al., 2013). The full methods can be found online in

html format (File S1).
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Figure 2 Graphical representation of an OTU produced by Swarm (breaking and grafting phases
deactivated) when clustering the BioMarKs 18S rRNA V9 dataset (amplicons are appr. 129 bp in
length). Nodes represent amplicons. Node size, color and text annotations represent the abundance of
each amplicon. Edges represent one difference (substitution, deletion or insertion); the length of the
edges carries no information. The red-colored edge indicates where Swarm’s breaking phase cuts when
it is not deactivated, resulting into two high abundant OTUs, each being assigned to a different genus of
Collodaria (Radiolaria).
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Figure 3 Graphical representation of an OTU produced by Swarm (breaking and grafting phases
deactivated) when clustering the BioMarKs 18S rRNA V4 dataset (amplicons are appr. 380 bp in
length). Nodes represent amplicons. Node size, color and text annotations represent the abundance of
each amplicon. Edges represent one difference (substitution, deletion or insertion); the length of the edges
carries no information. The red-colored edges indicate where Swarm’s breaking phase cuts when it is not
deactivated, resulting into three high abundant OTUs, each being assigned to a different taxa of Cnidaria
(Metazoa).
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RESULTS AND DISCUSSION
Time and space benchmarks
For d = 1, Swarm’s default parameter, using the full- and sub-datasets of the Earth Mi-

crobiome Project we were able to evaluate Swarm v2’s clustering time and memory usage.

These timing experiments were obtained with Swarm v2.1.1 on a machine with 1,024 GB

of RAM running Red Hat CentOS v6.6 and Linux kernel v3.9.1 on four Intel Xeon E5-4620

processors (2.2 GHz) having a total of 32 physical cores. Swarm was run with 8 threads (op-

tion “-t 8”), breaking activated (default behaviour), and memory limited to 240 GB (“-c

245760”). The times indicated below are the averages of four runs. With the sub-dataset of

154,896,650 strictly identical amplicons (representing 1,277,640,415 reads), Swarm with-

out the fastidious option took 1 h and 45 min ± 1 min. With the full-dataset of 314,871,149

strictly identical amplicons (representing 2,254,207,945 reads), Swarm without the

fastidious option took 3 h and 41 min ± 1 min. Doubling of dataset size approximately

doubles the run time, confirming the apparent linear time complexity. Therefore, if the size

of the Earth Microbiome Project were to increase ten times, it should take about ten times

longer to cluster it (less than two days). These fast times of Swarm v2 contrast with the

estimated computational time of UCLUST v6.1 as inferred by Rideout et al. (2014). Using

a smaller partial-dataset of the Earth Microbiome Project consisting of only 660,000,000

reads (that dereplicate into a unspecified number of strictly identical amplicons), Rideout

et al. (2014) estimated UCLUST’s runtime to 150 days on a 8-core computer.

With the sub-dataset representing 24 GB of input data, the memory usage of Swarm v2

with d = 1 was 41 GB. With the full-dataset representing 49 GB of input data, the memory

usage was 86 GB. Memory requirements can therefore be estimated to be approximately

equal to the size of the input dataset plus 2/3.

When clustering at d = 1 and using the fastidious option, the total computational time

of the sub-dataset was 4 h and 59 min ± 1 min, which resulted in 40.0% fewer OTUs in

total. The total computational time of the full-dataset took 11 h and 28 min ± 5 min,

which resulted in 38.3% fewer OTUs in total. This considerable reduction in the number of

singletons and doubletons in both datasets helps solve the problem found by Kopylova et

al. (pers. comm., 2015). The computation time is about three times longer when using the

fastidious option than without it.

The total memory usage of d = 1 with the fastidious option for the sub-dataset was

114 GB, while it was 239 GB (capped) for the full-dataset. This amount of memory might

not be available to all users. Therefore we have implemented two options to control and cap

memory usage of the fastidious option: by defining the maximum memory footprint, and

by adjusting the size of the Bloom filter entries. Both of these options allow users to trade

computational time for memory space.

OTU visualizations
We provide examples of Swarm v2’s graphical representation of the internal structure of its

high-resolution OTUs by using V4 and V9 18S rRNA amplicons. In both cases the breaking

phase and fastidious option were turned off. With the V9 data (about 129 bp in length), the

graph shows two high abundant OTUs linked by one lower abundant amplicon (Fig. 2).
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The number of nucleotide differences between these two linked OTUs is only two, or about

98.4% similarity. If the breaking phase and fastidious option were applied to these V9

amplicons, nine separate OTUs would have been formed: two high abundant, and seven

low abundant. These two high abundant OTUs are taxonomically assigned to different

genera of Collodaria (Radiolaria). On the same V9 amplicons, UCLUST v6 (as well as v7

and v8) using a global clustering threshold of 97% similarity produced 37 OTUs (one high

abundant, and 36 low abundant). The one high abundant OTU from UCLUST lumped the

two Collodaria genera, thus masking meaningful biological data.

With the V4 amplicons (about 380 bp in length), the graph shows three high abundant

OTUs linked by one to three low abundant amplicons (Fig. 3). The number of nucleotide

differences between these three linked OTUs is only two and four, or about at least

98.9% similarity. If the breaking phase and fastidious option were applied to these V4

amplicons, seven separate OTUs would have been formed: three high abundant, and

four low abundant. These three high abundant OTUs are assigned to different taxa of

Cnidaria. On the same V4 amplicons, UCLUST v6 (as well as v7 and v8) produced only

one OTU with the widely used global clustering threshold of 97% similarity, again masking

meaningful biological data.

These amplicon data show that, compared to UCLUST, Swarm v2 can distinguish

higher-resolution clusters and reduces both over-grouping and under-grouping on a range

of marker lengths. In both of these amplicon examples, Swarm v2 is able to distinguish

different taxa, while UCLUST conceals them.

Outlook
We are currently working on a number of fronts to continue making Swarm harder, better,

faster, stronger. For example, preliminary experiments indicate that with a novel multi-

threading approach for d ≥ 2 a ten-fold increase in speed could be obtained (although d ≥

2 will still be quadratic in behavior). Internally encoding nucleotides on two bits instead

of eight bits may help reduce both memory consumption and computational time. Addi-

tional computation time can be saved by merging the fastidious option with the initial clus-

tering phase. To facilitate its usage, Swarm v2 can be included in QIIME (Caporaso et al.,

2010), which already offers Swarm v1.2, and in Galaxy (Goecks, Nekrutenko & Taylor, 2010).

In summary, Swarm v2 is a highly-scalable approach that uses a local clustering

threshold to produce high-resolution de novo OTUs and reduces low abundant OTUs.

Swarm v2 is an optimized C++ program able to handle many hundreds of millions

of amplicons. It is open source and freely available at https://github.com/torognes/

swarm under the GNU Affero General Public License version 3.
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Filker S, Gimmler A, Dunthorn M, Mahé F, Stoeck T. 2015. Deep sequencing uncovers protistan
plankton diversity in the Portuguese Ria Formosa solar saltern ponds. Extremophiles
19(2):283–295 DOI 10.1007/s00792-014-0713-2.

Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation
sequencing data. Bioinformatics 28(23):3150–3152 DOI 10.1093/bioinformatics/bts565.

Ghodsi M, Liu B, Pop M. 2011. DNACLUST: accurate and efficient clustering of phylogenetic
marker genes. BMC Bioinformatics 12(1):271 DOI 10.1186/1471-2105-12-271.

Gilbert J, Jansson J, Knight R. 2014. The Earth Microbiome project: successes and aspirations.
BMC Biology 12(1):69 DOI 10.1186/s12915-014-0069-1.

Goecks J, Nekrutenko A, Taylor J, The Galaxy Team. 2010. Galaxy: a comprehensive approach for
supporting accessible, reproducible, and transparent computational research in the life sciences.
Genome Biology 11(8):Article R86 DOI 10.1186/gb-2010-11-8-r86.

Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, De Vargas C,
Decelle J, Del Campo J, Dolan J, Dunthorn M, Edvardsen B, Holzmann M, Kooistra W,
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