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ABSTRACT

Background. Over 50 Taiwanese firefly species have been discovered, but scientists lack
information regarding most of their genetics, bioluminescent features, and cohabitating
phenomena. In this study, we focus on morphological species identification and
phylogeny reconstructed by COI barcoding, as well as luminescent characteristics of
cohabited Taiwanese firefly species to determine the key factors that influenced how
distinct bioluminescent species evolved to coexist and proliferate within the same
habitat.

Methods. In this study, 366 specimens from nine species were collected in northern
Taiwan from April to August, 2016-2019. First, the species and sex of the specimens
were morphologically and genetically identified. Then, their luminescent spectra and
intensities were recorded using a spectrometer and a power meter, respectively. The
habitat temperature, relative humidity, and environmental light intensity were also
measured. The cytochrome oxidase I (COI) gene sequence was used as a DNA barcode
to reveal the phylogenetic relationships of cohabitated species.

Results. Nine species—eight adult species (Abscondita chinensis, Abscondita cerata,
Aquatica ficta, Luciola curtithorax, Luciola kagiana, Luciola filiformis, Curtos sauteri,
and Curtos costipennis) and one larval Pyrocoelia praetexta—were morphologically
identified. The nine species could be found in April-August. Six of the eight adult
species shared an overlap occurrence period in May. Luminescent spectra analysis
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Publighed 28 Ocliober 2022 revealed that the Amax of studied species ranged from 552-572 nm (yellow—green to

orange—yellow). The average luminescent intensity range of these species was about
1.2-14 lux (182.1-2,048 nW/cm?) for males and 0.8-5.8 lux (122.8—-850 nW/cm?) for
females, and the maximum luminescent intensity of males was 1.01-7.26-fold higher
than that of females. Compared with previous studies, this study demonstrates that
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This study renews the idea that fireflies’ luminescence color originated from the green
color of a Lampyridae ancestor, then red-shifted to yellow-green in Luciolinae, and
further changed to orange—yellow color in some derived species.

Subjects Conservation Biology, Ecology, Entomology, Taxonomy, Zoology

Keywords Molecular phylogeny, COI, Luciola, Aquatica, Abscondita, Wavelength, Pyrocoelia,
Curtos, Firefly

INTRODUCTION

Among terrestrial bioluminescent insects, fireflies (Lampyridae) have the most charismatic
shine, which they use for mating or aposematic signals at night (Oba, Branham ¢ Fukatsu,
2011). Fireflies in Coleoptera are the most diverse terrestrial group of bioluminescent
organisms. Over 2,100 firefly species have been reported in temperate and tropical
regions, including Eurasia, America, New Zealand, and Australia. Firefly life history and
bioluminescence have been studied for over a century and have offered bioinspiration for
many inventions and methods, such as a method for detecting gene expression (biomedical),
improvements in LED technology (industrial), and algorithms (mathematical) (Kaskova,
Tsarkova & Yampolsky, 20165 Kim et al., 2016; Yang, 2009). Fireflies are also considered
to be an environmental indicator species for assessing light, water, and soil pollution.
Moreover, some of their larvae—such as Pyrocoelia pectoralis, which eat invasive snails
(Fu ¢ Meyer-Rochow, 2013)—are used as biological controls in some species. Firefly
population sizes are dramatically affected by changes in land-use, as habitat deterioration
and artificial night lighting decrease their populations (Firebaugh ¢ Haynes, 2016; Owens,
Meyer-Rochow & Yang, 2018).

The phylogeny of Lampyridae (fireflies) has been reassessed several times (Ballantyne et
al., 2013; Ballantyne ¢ Lambkin, 2013; Ballantyne et al., 2019; Chen et al., 2019; Martin
et al., 2017; Martin et al., 2015; Martin et al., 2019; Stanger-Hall, Lloyd ¢ Hillis, 2007;
Wang, Wu & Wang, 2021). These studies identified the following subfamilies: Ototretinae,
Cyphonocerinae, Luciolinae (incl. Pristolycus), Pterotinae, Lamprohizinae, Psiocladinae,
Amydetinae, Photurinae, and Lampyrinae. The most comprehensive study used 436
genomic loci to reconstruct a consensus phylogeny of fireflies with paraphyletic subfamilies,
except Ototretinae with Drilaster and Stenocladius (Martin et al., 2019). For example,
this study reassessed Luciolinae as paraphyletic with Lamprigera, and the higher-level
classification of Lampyridae was revised accordingly. However, only few Asian species were
included. In addition, the reassessed phylogeny might influence the hypothesis of previous
bioluminescent evolution (Martin et al., 2017; Oba et al., 2020).

Previous phylogeny of fireflies reveals the evolution of their bioluminescence (Martin
etal., 2017; Oba et al., 2020). Studies show that luminescence appeared in the common
ancestor of Lampyridae about 100-200 million years ago (Oba et al., 2020; Zhang et al.,
2020). In the forests of the mid-Cretaceous, the first luciferase gene evolved from acyl-
CoA synthetase (acyl-CoA synthetase) to produce yellow luminescence that may be due
to nocturnal predation. The ancestral Lampyrinae fireflies later evolved to have green
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luminescence, while the ancestral Luciolinae fireflies evolved a red-shifted yellow-green
luminescence; more species need to be studied to confirm this evolutionary distinction.

Most fireflies glow during the larval stage (1-2 years), but bioluminescent courtship
behavior only occurs during the short adult stage (2—4 weeks) (Buck, 1948; Riley, Rosa
¢ Lima da Silveira, 2021). All known luminous signals of adult fireflies can be roughly
divided into flashing and continuous glowing (Lloyd, 1966; Seliger et al., 1964). Research
suggests that each species has its own specific flash pattern, determined by differences in
flash duration, flash frequency, and flash color (Lewis ¢ Cratsley, 2008; Lloyd, 1966; Seliger
et al., 1964). The wavelength (Anyay) of most fireflies’ flash color range from yellow-green
(538 nm) to orange-red (622 nm) (He et al., 2021).

The mitochondrial Cox1 (COI') barcode is a powerful biomarker for estimating large-
scale species richness, determining the potential for beta-diversity studies, and setting
conservation priorities. However, error rates can be high for some individual genera,
especially when very recent species form nonmonophyletic clusters (Bergsten et al., 2012;
Hendrich et al., 2015; Pentinsaari et al., 2016). The comprehensive COI barcode databases
and the Barcode Index Number (BIN) system are well-established and regularly updated
(Adamowicz, 2015; Adamowicz et al., 2017; Hendrich et al., 2015; Ratnasingham & Hebert,
2013; Roslin et al., 2022; Rulik et al., 2017). In insects such as beetles, the mitochondrial COI
barcode has proven an effective molecular marker for species identification (Hendrich et al.,
2015; Pentinsaari, Hebert & Mutanen, 2014; Raupach et al., 2020; Roslin et al., 2022). The
COI barcode can also be used to establish firefly phylogeny, biogeography, and population
genetics, as well as to identify cryptic species (Choi et al., 2003; Dong et al., 2021; Han et
al., 2020; Jusoh et al., 2014; Kim et al., 2001; Lee et al., 2003; Muraji, Arakaki & Tanizaki,
2012; Stanger-Hall, Lloyd & Hillis, 2007; Usener ¢» Cognato, 2005). Thus, the COI barcode
is a cheaper and more convenient biomarker for firefly identification. However, until the
past two years, only a few Asian species had been sequenced (Choi et al., 2003; Dong et
al., 2021; Han et al., 2020; Kim et al., 2001; Lee et al., 2003; Liu ¢ Fu, 2020; Sriboonlert ¢
Wonnapinij, 2019).

Fifty-six species have been described from Taiwan to date (Jeng, Lai ¢ Yang, 2003; Jeng,
Yang & Engel, 2007; Jeng et al., 1998), but few reports have been made on their biodiversity,
ecological habitats, comparative morphology, life cycle, or behavior (Ballantyne et al., 2013;
Ballantyne et al., 2015; Ballantyne ¢ Lambkin, 2013; Ballantyne et al., 2019; Goh, Lee &
Wang, 2022; Goh ¢ Li, 2011; Ho ef al., 2010; South et al., 2008). Taiwan has Luciola; Curtos;
the reassessed Aquatica (Fu, Ballantyne & Lambkin, 2010), Abscondita (Ballantyne et al.,
20135 Ballantyne et al., 2019), and Sclerotia (Ballantyne et al., 2016) species of Luciolinae;
and some Lampyrinae species (Ballantyne et al., 2013; Goh, Lee ¢» Wang, 2022; Jeng, Lai ¢
Yang, 1999; Jeng, Yang & Engel, 2007; Jeng et al., 1998; Ohba & Yang, 2003; Wang, Wu &
Wang, 2021). The endemic Abscondita cerata (formerly known as Luciola cerata) is the most
abundant species, widely distributed from low altitude to medium-high altitude (1,500 m)
in Taiwan. During its breeding season, several sympatric fireflies could be found (Goh, Lee
& Wang, 2022; Jeng, Lai & Yang, 1999; Ohba ¢ Yang, 2003). A recent study revealed that
LED light intensity can influence the flash pattern of Aquatica ficta (Owens, Meyer-Rochow
¢ Yang, 2018). These are the only two species of Taiwanese firefly for which systematic
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Table 1 Luminescent spectrum (A,,) and intensity (nW/cm?) of nine cohabitated species from two
habitats in northern Taiwan.

Species Sex Individuals Amax Luminescent intensity °,°
(n) (nm) (nW/cm?)
Mean Maximum
Abscondita cerata Female 17 562.2 £ 0.4 122.8+19.3 282.2
Male 28 563.6 £ 0.3 406.6 = 96.5 2,048
Abscondita chinensis Female 3 571.3 £ 0.3 245.7 £ 83.9 329.7
Male 2 572.0 £ 0.0 332.1 332.1
Aquatica ficta Female 5 564.0 + 0.5 569.4 + 101.1 850
Male 17 564.4 + 0.3 525.7 +71.1 1,102
Curtos costipennis Female 1 554 462 ND
Male - - - -
Curtos sauteri Female 5 554.0£0.3 187.7 £ 55.7 349.3
Male 3 552.7 £ 0.9 347.3 +95.9 536.7
Luciola curtithorax Female 12 566.3 £ 0.4 157.9 +30.4 301.3
Male 26 572.54+0.2 356.1 + 48.0 814.1
Luciola filiformis Female - - - -
Male 12 567.3 £ 0.2 182.1 +31.2 323.8
Luciola kagiana Female 3 574.3 £0.3 ND ND
Male 3 574.0 £ 1.0 54148 10.2
Pyrocoelia praetexta Larva® 3 552.7 £ 0.9 ND ND
Notes.

?Luminescent spectra were only successfully recorded from larvae.
YMean and maximum values were obtained as described in Methods and materials.
€“-": no sample; “ND”: not detectable.

studies have been conducted based on luminescence spectrum and DNA barcoding.
Therefore, this study investigated nine cohabitated species in northern Taiwan for species
identification by COI barcode, flash color and luminescent intensity to determine the key
factors through which distinct bioluminescent species evolved to coexist and proliferate
within the same habitat.

MATERIALS & METHODS

Specimen collection and habitat
366 specimens of eight adult and one larval species were randomly collected in flight or
from vegetation using hand dip nets from two habitats in the suburbs of Taipei, Taiwan—
Nankang (25°01'40.4”N 121°38'02.6"E) and Miaoli County, Nanzhuang (24°37'53.5"N
121°01'37.0”E)—at 18:30-19:30 from April to August 2016-2019 (Table 1). After the
bioluminescent spectrum/intensity measurement, the specimens were deposited in a
laboratory freezer. For DNA extraction, several specimens were then stored at —80 °C. The
remaining specimens were stored at —20 °C for species identification.

The environmental conditions before and after the fireflies began flashing and/or flying
were investigated to understand what environmental factors may trigger their nocturnal
activity. The temperature, relative humidity, and light intensity (lux) of the firefly habitat
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were recorded during the period before flashing/flying (18:20~18:40) and the period after
the fireflies began flashing/flying (18:30~18:50) using HOBO U12-012 data loggers (Onset
Computer Corp., Bourne, MA, USA) at 10-sec intervals.

Species identification and morphological measurements

The specimens were collected as previously described in Goh, Lee & Wang (2022). The
material collected in this study was identified by L] Wang on the species level through the
use of available references (Ballantyne et al., 2013; Chen, 2003; Jeng, Lai ¢ Yang, 2003; Jeng,
Yang & Lai, 2003; Jeng et al., 1998). Five morphological characteristics of the specimens
(body length, pronotum length, pronotum width, front wing length, and front wing
width) were measured (see Table S3) using a dissecting microscope and photographed
with a digital video camera as previously described in Goh, Lee ¢ Wang (2022). During the
survey, the specimens were chilled on ice. All surveys were completed within two days of
the collection. One to five identified specimens were sacrificed and stored at —20 °C in the
Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (contact person: TY Wang,

tziyuan@gmail.com).

Bioluminescence spectrum/intensity measurement

The wavelength (Amax) and luminescent intensity (nW/cm?) of the light flashes produced
by the living samples were measured by a USB2000+ spectrometer (Ocean Optics) and a
PD300 power meter (Ophir), respectively. All surveys were completed within two days of
the collection. The wavelength and luminescent intensity measurements were performed
in a dark room by directly attaching the detector of the USB2000+ spectrometer or PD300
to the light organ of a trapped firefly (Fig. 1 modified from Goh, Lee ¢ Wang (2022)). The
average wavelength peak and A;,x were obtained from an average of 3—5 measurements
in complete darkness at 25 °C with 75% humidity. The luminescent intensity of the flash
was obtained by averaging each flash from 3-10 min of recording data with a PD300
power meter. To compare the luminescent intensity data from PD300 and HOBO U12-012
using the same units, all data in the energy unit nW/cm? were converted into lux via the
conversion 1 lux = 1.464E—07 W/c m? = 146.41 nW/cm? (at 555 nm).

Statistics
The differences in bioluminescence spectrum among the specimens were determined by
the Chi-square test between two species.

DNA barcode sequencing

Crude DNA was extracted from thoracic muscles via the ZR Tissue & In-

sect DNA MicroPrep™ kit (D6015). Two beetle-specific primers (ClepFolF 5'-
ATTCAACCAATCATAAAGATATTGG-3" and ClepFolR 5-TAAACTTCTGGA
TGTCCAAAAAATCA-3") were designed based on the comprehensive DNA barcode
database of beetles (Hendrich et al., 2015) to amplify a 620-bp segment including the
cytochrome oxidase I (COI) gene. Polymerase chain reactions (PCRs) in 50-pL volumes
were performed with a ANTP concentration of 200 uM and a primer concentration of 0.3
M, with 50 ng of genomic DNA, one unit of TaKaRa TaqTM DNA Polymerase, and the
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Figure 1 A homemade firefly holder for measuring flash wavelength and intensity adopted from Goh,
Lee & Wang (2022). The measurements were performed by immobilizing individual fireflies in the hol-
low chamber (1 x 1.5 x 0.4 cm®) of a homemade holder. The holder consists of an upper steel insect net
(mesh pore size 0.1 cm), middle corrugated paper (5 x 5 x 0.4 cm?), and a lower cover glass (2.2 x 2.2
x 0.017 cm?). The coreless endcap of the optical fiber connecting to the spectrometry or power-meter is
placed below the light organ for collecting the wavelength and intensity. Figure 1 was adapted from Goh,
Lee & Wang (2022).

Full-size Gl DOI: 10.7717/peer;j.14195/fig-1

buffer supplied by the manufacturer. The PCR was run for 35-40 cycles under the following
conditions: denaturation at 95 °C for 30 s, annealing at 50~55 °C for 40 s, extension at 72
°C for 1 min, and a final extension at 72 °C for 10 min. The product mixture was used as a
template for DNA sequencing (Genomics Ltd., Taipei, Taiwan). Haplotype sequences were
deposited into GenBank under accession numbers MT534191-MT534201, ON209457
(Table 2).

Molecular phylogeny

The COI sequences of closely-related species and/or species with known Apax of
luminescence were downloaded from GenBank based on previous studies (Adamowicz,
2015; Arnoldi, Neto & Viviani, 2010; Cassata, 2020; Dong et al., 2021; Han et al., 2020; He
et al.,, 2021; Hendrich et al., 2015; Jusoh et al., 2021; Jusoh et al., 2018; Jusoh et al., 2014;
Kim et al., 2001; Li, Yang & Fu, 2022; Liu et al., 2017; Liu & Fu, 2020; Martin et al., 2017,
Martin et al., 2015; Muraji, Arakaki & Tanizaki, 2012; Oba, Branham & Fukatsu, 2011; Oba
et al., 2020; Osozawa et al., 2015; Roslin et al., 2022; Rulik et al., 2017; Stanger-Hall, Lloyd
¢ Hillis, 2007; Usener ¢ Cognato, 2005; Wilcox, 20215 Zhang et al., 2018). Sequences were
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Table 2 DNA barcodes (COI) of studied fireflies. Only haplotype sequences were submitted to GenBank
for the same species.

Species Accession number of haplotype Reference
(individual number)

Luciolinae:
Abscondita cerata MT534192 (6), MT534199 (3) present study
Abscondita chinensis MT534196 (3), ON209457 (1) Present study
Aquatica ficta MT534197 (2) Present study
Curtos sauteri MT534198 (1) Present study
Luciola curtithorax MT534191 (1), MT534193 (1), MT534195 (1) Present study
Luciola filiformis MT534201 (1) Present study
Luciola kagiana MT534200 (1) Present study

Lampyrinae:
Pyrocoelia praetexta MT534194 (1) Present study

then aligned using the ClustalX program (Thompson, Gibson ¢ Higgins, 2002) with the
default setting in MEGA X (Kumar, Stecher ¢ Tamura, 2016), followed by length trimming
due to different amplicons. After trimming, the short-length sequences were removed.
At most, three representative sequences were kept for each species to simplify the tree
topology. There were a total of 520 positions and 161 nucleotide sequences in the final
dataset (Table S1). Neighbor-joining (NJ) (Saitou ¢ Nei, 1987) and maximum-likelihood
(ML) trees were constructed using GTR+G+I distances in MEGA X with 500 bootstrap
replications (Felsenstein, 1985). The substitution model (parameter) used to calculate
GTR+GHI distances (Nei ¢ Kumar, 2000) was selected using Modeltest v3.7 (Posada ¢
Crandall, 1998). The differences in the composition bias among sequences were considered
in the evolutionary comparisons (Tamura ¢ Kumar, 2002).

RESULTS

Cohabitated species composition at Nanzhuang and Nankang

From April to August 2016-2019, we collected 366 flying specimens from two firefly habitats
(Nanzhuang and Nankang) in northern Taiwan (Table 1 & S2 Fig. 2), and morphologically
identified them to the species level (Table S3). These specimens comprised nine different
species, including adult males and/or females of Aquatica ficta, Luciola filiformis, Abscondita
cerata, Luciola kagiana, Luciola curtithorax, Abscondita chinensis, Curtos sauteri, and Curtos
costipennis. Only Pyrocoelia praetexta was observed as larvae from April to August. Five of
the species—Agq. ficta, L. filiformis, Abs. cerata, L. kagiana and P. praetexta—were found
in both habitats. Luciola curtithorax was collected only in Nankang, and Abs. chinensis, C.
sauteri, and C. costipennis were collected only in Nanzhuang (Table 52). To simplify the
results, Table 1 combined all specimens from the two habitats for further analysis.

Occurrence periods of the cohabitated species

Figure 3 shows the estimated occurrence periods of the eight adult species in Nankang
and Nanzhuang based on the collection dates of the specimens. Abscondita cerata and L.
kagiana occurred in April-May, while C. sauteri and Aq. ficta occurred in May—August.
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(a) Abscondita cerata

(b} Abscond ita chinensis

(c) Aquallca ficta
(d) Curtos costipennis

(f) Luciola curtithorax (g) Luciola filiformis (h) Luciola kagiana

QrHTIyY

(i) Pyrocoelia praetexta
Figure 2 Representative females and males of collected firefly species. (A) Abscondita cerata (B) Ab-
scondita chinensis (C) Aquatica ficta (D) Curtos costipennis (E) Curtos sauteri (F) Luciola curtithorax (G)
Luciola filiformis (H) Luciola kagiana (I) Pyrocoelia praetexta. The standard scale bar is one mm, except for
Pyrocoelia praetexta, which uses a five mm scale bar.

Full-size Gl DOI: 10.7717/peerj.14195/fig-2

L. curtithorax occurred in May-July while L. filiformis occurred in May—June. Abscondita
chinensis was found only in June, while C. costipennis was found only in August. Six of the
eight studied species shared an overlap occurrence period in May: C. sauteri, Aq. ficta, Abs.
cerata, L. kagiana, L. filiformis, and L. curtithorax. The occurrence periods of this study
overlapped with the occurrence periods of previous studies based in other habitats in
Taiwan (Chen, 2003; Chen ¢ Jeng, 2012).

Differences in the luminescence spectrum between the cohabitated
species

The average Amay from the luminescent spectra of nine studied species (eight adult species
and larval P. praetexta) ranged from about 552 nm (green-yellow) to 575 nm (yellow-
orange) (Table 1, Fig. S1). Excluding insufficient data on three species, the average Amax of
five species showed no significant difference between intraspecific males and females. The
average Amax of L. curtithorax was significant different between female and male. Ignoring
the sexual differences, the pairwise comparison of interspecific Amax (Table 3) showed that
the studied species commonly displayed significant difference (p-values <0.05) in Amay to
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Figure 3 The estimated occurrence periods of each adult species based on the collection dates of the
specimens in the two studied sites (April-August) and previous literature (Chen, 2003; Chen ¢ Jeng,

2012).

Full-size & DOI: 10.7717/peerj.14195/fig-3

Table 3 Differences in pairwise L. (p-value) between species. The statistics were calculated using combined A« from females and males.
Numbers in boldface are not significantly different.

Abs. cerata Abs. chinensis Aq. ficta C. sauteri L. filiformis L. curtithorax L. kagiana

Abs. cerata

Abs. chinensis 0.0000

Aq. ficta 0.0012 0.0000

C. sauteri 0.0000 0.0000 0.0000

L. filiformis® 0.0000 0.0000 0.0000 0.0000

L. curtithorax 0.0000 0.0604 0.0000 0.0000 0.0000

L. kagiana 0.0000 0.0018 0.0000 0.0000 0.0000 0.0000

P. pmetextal’ 0.0000 0.0000 0.0000 0.1610 0.0000 0.0000 0.0000
Notes.

2Only adult male.
®Only larva could be detectable.

most other studied species. No significant difference was found between Abs. chinensis and
L. curtithorax (p-value = 0.0604) or between C. sauteri and P. praetexta (p-value = 0.161).

To determine the courtship behaviors of cohabited fireflies based on sex, we further

compared the A,y between six interspecific adult females (Table 4) and males (Table 5).

Most studied species revealed significant differences in A, between interspecific females.

However, no significant difference has found between females of Aq. ficta and Abs. cerata

(p-value = 0.0742). In contrast, the An,,x comparison between interspecific adult males

(Table 5) showed no significant difference between Agq. ficta and Abs. cerata (p-value =

0.672), between L. curtithorax and Abs. chinensis (p-value = 0.626), between L. kagiana
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Table 4 Differences in pairwise A ,.x (p-value) of adult female between species. The statistics were calculated using A,y of adult females. Num-
bers in boldface are not significantly different.

Abs. cerata Abs. chinensis Agq. ficta C. sauteri L. filiformis L. curtithorax L. kagiana
Abs. cerata
Abs. chinensis 0.0000
Aq. ficta 0.0742 0.0000
C. sauteri 0.0000 0.0000 0.0000
L. filiformis® NA® NA NA NA
L. curtithorax 0.0000 0.0000 0.0095 0.0000 NA
L. kagiana 0.0000 0.0000 0.0000 0.0000 NA 0.0000
Notes.
*Without adult female.

Y“NA”: not analysis due to lack of female.

Table 5 Differences in pairwise A, (p-value) of adult males between species. The statistics were calculated using A, of males. Numbers in
boldface are not significantly different.

Abs. cerata Abs. chinensis Aq. ficta C. sauteri L. filiformis L. curtithorax L. kagiana
Abs. cerata
Abs. chinensis 0.0000
Aq. ficta 0.0672 0.0000
C. sauteri 0.0028 0.0021 0.0031
L. filiformis® 0.0000 0.0000 0.0000 0.0022
L. curtithorax 0.0000 0.0626 0.0000 0.0010 0.0000
L. kagiana 0.0052 0.1835 0.0075 0.0001 0.0177 0.2606

and Abs. chinensis (p-value = 0.1835), and between L. kagiana and L. curtithorax (p-value
=0.2606).

Correlation between firefly luminescent intensity and environmental
photic intensity

This study was performed during an Abs. cerata massive occurrence (April to May) in
Nankang and Nanzhuang. During the studied periods, it was estimated that the average
environmental light intensity during twilight, the ten-minute period before the fireflies
started flashing or flying in the habitats, was in a range of 35.7-136.5 lux (Table 6). The
suitable environmental light intensity for fireflies flashing and/or flying was in a range of
6.49-28.1 lux.

With the exception of L. kagiana and P. praetexta due to abnormal behavior (no glowing
or glowing in extremely low light intensity), the luminescent intensity of seven adult
species was about 1.2—-14 lux (182.1-2,048 nW/cm?) in male fireflies and nearly 0.8-5.8
lux (122.8-850 nW/cm?) in female fireflies (Table 1). The results showed that the male
fireflies have higher luminescent intensity than the females, which might be related to their
courtship behaviors.

Herein, we argue that firefly luminescent intensity is correlated with environmental
photic intensity. For examples, among the studied male species, male A. cerata produced
the brightest flashes, measuring up to 14 lux (or 2,048 nW/cm?). In contrast, female A.
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Table 6 The environmental temperature, relative humidity, and environmental light intensity of the habitats around twilight and when Abs.
cerata starts flashing/flying.

Date Nocturnal activity time Temp RH Environmental light
(°C) (%) intensity (lux)

A. Nankang, Taipei:

4/20/2017 Twilight" (18:20-18:30) 24.9 +0.68 84.3 +3.32 56.1 & 26.8
Start flashing/flying (18:30-18:40) 23.8 £ 0.12 90.7 £ 0.76 10.5 £ 4.55

4/29/2017 Twilight (18:16-18:26) 18.7 £0.31 81.0 £ 1.28 136.5 £ 66.2
Start flashing/flying (18:26-18:36) 17.7 £0.21 85.2 +1.03 6.49 + 3.74

5/1/2017 Twilight (18:22-18:30)" 23.2£0.36 81.8 +1.83 68.1 £21.0
Start flashing/flying (18:30-18:40) 22.1 £0.28 87.5 £ 1.46 19.4 £ 8.65

5/18/2017 Twilight (18:31-18:41) 22.7 £0.07 90.3 £ 0.40 41.7 £ 15.97
Start flashing/flying (18:41-18:51) 22.5+0.04 91.5+£0.35 12.6 £5.34

B. Nanzhuang, Miaoli:

4/28/2017 Twilight (18:26-18:30)" 20.3 + 0.46 71.2+£1.85 122.5 £26.3
Start flashing/flying (18:30-18:40) 19.0 + 0.46 77.2 4 2.52 28.1 4242

5/7/2017 Twilight (18:30-18:40) 23.2 +0.07 92.8 +0.44 40.52 £ 18.2
Start flashing/flying (18:40-18:50) 23.0 £ 0.07 93.6 £ 0.20 8.69 £ 4.15

5/8/2017 Twilight (18:27-18:37) 22.7 £ 0.06 93.35 £ 0.18 35.7 £ 14.0
Start flashing/flying (18:37-18:47) 22.5 +0.05 93.8 £0.12 9.21 +4.01

Notes.

2For comparison, the environmental light intensity of twilight was estimated with ten minutes before fireflies flashing or flying in habitats. The recording interval is 10 s per time

(n=60).

YRecording time postponed due to unexpected schedule in field trip.

ficta emitted the brightest flashes among the studied female species, measuring up to 5.8
lux (or 850 nW/cm?). In addition, the maximum luminescent intensity emitted from the
five kinds of adult males was 2.3—14 lux (332.1-2,048 nW/cm?), which is 1.01-7.26-fold
higher than that of conspecific females (1.9-5.8 lux or 282.2-850 nW/cm?). Thus, this
result clearly shows that the range of the environmental light intensity (6.49-28.1 lux)
when fireflies begin to flash partially overlaps with the luminescent intensity of fireflies.
In addition, during 18:00-19:30, the change in average environmental temperature and
relative humidity were in a range of 17.1-25.0 °C and 71.2-95.8%, respectively.

Molecular phylogeny of Lampyridae inferred by COIl barcodes
To reveal how bioluminescence evolved, it is important to compare the luminescence
spectrum and molecular phylogeny. The COI barcodes of eight studied species (except C.
costipennis) were successfully sequenced for phylogenetic analysis (Table 2). All are new
COI barcodes of Taiwanese fireflies sequenced in this study. Their haplotype sequences
were deposited in GenBank under accession numbers MT534191-MT534201, ON209457.
The NJ tree (Fig. 52) and ML tree (Fig. S3) indicate that the studied genera Abscondita,
Curtos, Aquatica, and Luciola belong to Luciolinae, while the genus Pyrocoelia belongs to
Lampyrinae, a monophyly supported by previous mitogenomic phylogeny (Wang, Wu &
Wang, 2021). However, the short COI sequences showed incongruence grouping among
subfamilies in the high-level phylogeny. For example, Rhagophthalmus (Rhagophthalmidae)
was placed close to the Luciolinae with a low bootstrap value; Stenocladius did not form a
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Figure 4 Neighbor-Joining tree using the COI gene (520 bp) with bootstrap test results (500 replicates)
at the nodes. The optimal tree with the sum of branch length = 5.58552373 is shown. The evolutionary
distances were computed using the Maximum Composite Likelihood method (Tamura, Nei & Kumar,
2004) with number of base substitutions per site. The rate variation among sites was modeled with gamma
distribution (shape parameter = 1.079137891). All positions with less than 95% site coverage were elimi-
nated. See Fig. S2 for a detailed NJ tree.

Full-size Gal DOI: 10.7717/peerj.14195/fig-4

clade with Drilaster as Ototretinae. Nevertheless, most studied species are placed correctly
with congeners (Figs. 4 and 5).

There are several monophyletic clades supported by medium or high bootstrap values.
Lampyrinae was a monophyletic clade with Pyrocoelia, Diaphanes, Lampyris, Microphotus,
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Figure 5 Maximum Likelihood tree using the COI gene (520 bp) with bootstrap test results (500 repli-
cates) at the nodes. The evolutionary history was inferred using the Maximum Likelihood method based
on the General Time Reversible model. The tree with the highest log likelihood (—11653.0821) is shown.
Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and BioN]J
algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL)
approach, and then selecting the topology with the superior log likelihood value. A discrete gamma dis-
tribution was used to model differences in evolutionary rates across sites (four categories (+G, parameter
= 0.5737)). The rate variation model allowed some sites to be evolutionarily invariable ((4+1), 37.4868%
sites). The tree is drawn to scale, with branch length measurements based on the number of substitutions
per site. All positions with less than 95% site coverage were eliminated. See Fig. S3 for a detailed ML tree.
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Aspisoma, Photinus, Pleotomodes, Ellychnia, Lucidina, Phosphaenus, Pyractomena, and
Pyropyga, although these genera did not form stable sister groups with each other. Photuris
and Bicellonycha (as Photurinae) formed a clade with Pyropyga nigricans.

A previous study indicated that Luciolinae is not monophyletic, even when 436 gene
loci were used (Martin et al., 2019). Thus, it is reasonable to see polyphyletic Luciolinae
in the COI gene tree. The Luciolinae complex included the monophyletic genera Luciola,
Aquatica, Pterophyx, Sclerotia, Abscondita, Pygoluciola, Curtos, and Lamprigera, which
comprises Pristolycus, Vesta, and Emeia pseudosauteri. There are still several monophyletic
clades with medium bootstrapping values. Excluding L. cruciata, the COI barcode grouped
12 Luciola species as a monophyly supported by a medium bootstrapping value (61/54),
including the type species (L. italica). Luciola cruciata formed a stable clade with five
Aquatica species. In addition, Pygoluciola clustered with Abscondita while Curtos clustered
with Lampyrigera supported only with a low bootstrapping value.

Large COI sequence variations can be found between and/or within geographically
distinct species. For example, two COI sequences of Chinese Emeia pseudosauteri were
separated into distinct clades. Emeia pseudosauteri is restricted to central China and isolated
among mountains. Such habitat isolation caused great mitochondrial DNA variation (Liu
¢ Fu, 2020). Accordingly, there might be cryptic species and a need to reclassify some other
species. A detailed analysis of Taiwanese fireflies will be discussed later.

DISCUSSION

We identified five cohabitated species from Nankang and eight from Nanzhuang (Table
52). The evenings after sunny days with high humidity and cool temperature are the most
suitable for firefly nocturnal activity (Table 6). Along with their morphological and genetic
identification, we also measured the luminescence spectrum and luminescent intensity
of firefly flashes, which might be related to the recognition of cohabitated fireflies. The
biology of communication with flash patterns in fireflies is well outlined (Lewis, Cratsley ¢
Deiner, 2004; Stanger-Hall ¢ Lloyd, 2015). More than 10 cohabitated species can search for
a conspecific mate at the same time via specific flash patterns (Lloyd, 1969). The males use
this conspecific flash delay signaling for a particular female while females respond to male
flashes with a species-specific response delay (Lewis, Cratsley ¢» Deiner, 2004; Lloyd, 1966
Lloyd, 1968). A recent study (Goh, Lee & Wang, 2022) also recorded the species-specific
flash patterns of three sympatric male fireflies (Abs. cerata, L. kagiana, and L. curtithorax).
At least one previous study (Ohba & Yang, 2003) showed that the communication system of
abundant Abs. cerata is classified as an HP system in which the female responses to the flying
male flashes lasted about 0.24 s. Previous studies already revealed that flash patterns play an
important role in conspecific fireflies’ mating behavior. However, recording flash patterns
in the field is not easy, especially when there is a short nocturnal activity period with a high
population density of different cohabitated fireflies. This study further focuses on the flash
color, luminescent intensity, and habitat environments to reveal other important factors
that were previously lacking due to limited records of male—female communication signals.
In addition, the COI phylogeny of the studied species revealed large genetic variation
within known species in Taiwan and/or between adjacent regions.
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Differences in luminescence spectra among cohabitated fireflies

The Amax values of the luminescence spectra were similar within the same species, but
different between species (Table 3). The pairwise comparison also showed significantly
different interspecific Amay, except between adult Abs. chinensis and adult L. curtithorax
and between adult C. sauteri and larval P. praetexta. A recent study (Goh, Lee & Wang,
2022) recorded species-specific flash patterns of three sympatric male fireflies (Abs. cerata,
L. kagiana, and L. curtithorax); both that study and the present study (Table 5) showed
that males of L. kagiana and L. curtithorax have similar A,y values but still retain their
own unique flash patterns. Thus, the four studied species with similar A, might also have
species-specific flash patterns, which need further study in the future. The above results
might imply that most cohabitating fireflies distinguish between each other based on
different luminescence spectra and/or specific flash patterns. This implication is important
to consider when previous literature (Chen, 2003; Chen ¢ Jeng, 2012) and our findings
indicate that all studied adult fireflies appear simultaneously from April to June (Fig. 3).
Thus, various cohabitated species may have evolved species-specific recognition to improve
male—female searching within such a densely populated area over such a short nocturnal
activity time.

Most fireflies have significantly different Ap,,x between interspecific females (Table 4).
Only those of Aq. ficta and terrestrial Abs. cerata females were not significantly different.
However, the microhabitat of Aq. ficta and Abs. cerata was in the aquatic habitat and moist
forest, respectively (Chen, 2003; Jeng, Yang ¢» Lai, 2003). The flying males could still have
better chance to find the conspecific females in their specific microhabitat.

In contrast, similar A, were found in males of L. curtithorax, Abs. chinensis, and L.
kagiana (Table 5), but males of L. curtithorax and L. kagiana have their own flash patterns
(Goh, Lee & Wang, 2022). Thus, flash pattern is another key for cohabited female fireflies
to recognize conspecific males (Lewis ¢» Cratsley, 2008; Lower, Stanger-Hall ¢» Hall, 2018).
In addition, Abs. cerata and L. kagiana have different nocturnal activity time, while L.
curtithorax is restricted to the dark ground layer of forest (Goh, Lee ¢ Wang, 2022).

Based on the above phenomena, different Ay, species-specific flash patterns,
microhabitat choices, nocturnal activity time, and/or isolated mating seasons are key
factors that may lead to the species-specific courtship of cohabitated fireflies.

Luminescent intensity of flashes implies sensing distance

Fireflies seem to be very sensitive to the photic environment in the evening. Artificial
light pollution is a major force influencing firefly proliferation, mating, and growth
(Costin & Boulton, 2016; Firebaugh ¢ Haynes, 2016; Haynes ¢ Firebaugh, 2019; Owens,
Meyer-Rochow & Yang, 2018). The environmental light intensity and the light sensitivity of
the fireflies influence whether the fireflies will flash. Therefore, the luminescent intensity
of flashes emitted by fireflies could be an ecological indicator for evaluating light pollution
to fireflies. This study further investigated this issue based on the first flash time of
abundant Abs. cerata (Table 6). Fireflies start flashing or flying (nocturnal activity) when
the environmental light intensity decreases to 6.49-28.1 lux (~950—4,114 nW/cm?). The
luminescent intensity of male Abs. cerata ranges from the average (2.1-3.4 lux or 406.6
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+ 96.5 nW/cm?) to the maximum (14 lux or 2,048 nW/cm?), which overlaps with the
environmental light intensity suitable for their nocturnal activity (Table 1). A previous study
also showed that the abundant Abs. cerata begins flashing when the photic environment
decreases to 0.04-1.38 lux (Ohba ¢ Yang, 2003). All imply that Abs. cerata could tolerate
environmental light intensity around 28.1 lux but wait until 6.49 lux to start nocturnal
activity in the evening at twilight. Another study also revealed that most male Abs. cerata
start to fly in the evening at twilight while L. kagiana starts its nocturnal activity later
(Goh, Lee & Wang, 2022), which Table 1 indeed showed lower luminescent intensity of L.
kagiana. In addition, another study (Owens, Meyer-Rochow & Yang, 2018) revealed that
half of the Aq. ficta specimens stopped flashing under bright exposure (~20 and 200 lux).
Table 1 further shows that the luminescent intensity of male Agq. ficta ranged from the
average (3.1-4.1 lux or 525.7 &= 71.1 nW/cm?) to the maximum (7.5 lux or 1102 nW/cm?),
which we also observed the Agq. ficta appeared with Abs. cerata during the same period of
nocturnal activity in Nanzhuang. Such differences in luminescent intensity of the three
species might imply another adaptation factor for the different nocturnal activity time
among species.

Next, we measured the putative sensing distance between males and females. During
a typical courtship, the flying males flash to attract perched females. Then, the female
responds and flashes to the flying male. The male fireflies close and lands near the female;
each displays different flash patterns for communication. As they court each other, the
paired fireflies stop flashing on perch. Communication between female and male fireflies
relies on the illumination of their light organ in the dark. Usually, the average luminescent
intensity emitted by most females (the light organ from single tagma) is around half that
of males (the light organ from double tagmata). The differences in luminescent intensity
between sex could be due to their courtship behavior for sensing each other. The male
needs a higher intensity exposure for females to find him while the female needs to save
energy for later proliferation and only responds to male signals with detectable intensity.

The sensing distance between a female and male could be relative to their bioluminescent
intensity. So, using the luminescent intensities of male and female, we could estimate the
sensing distance. The assumption is the females have higher sensitivity while males have
higher luminescent intensity. So, the luminescent intensity difference between male and
female could be the sensing ability for a female to detect a male or vice versa. Thus, the
maximum luminescent intensity might represent the maximum sensing distance between
females and males, assuming that the minimum sensing distance (r, meter) is around the
same luminescent intensity between females and males.

We can estimate the sensing distance using the example of the Abs. cerata. The males
have a maximum luminescent intensity of 2,048 nW/cm? (14 lux) and the females have
a maximum luminescent intensity of 282.2 nW/cm? (~1.93 lux). Using the formula 14
/ (r*) = 1.93, we can estimate the maximum sensing distance (r) for this species to be
around 2.7 m. Using the same formula calculation with average luminescent intensities,
we estimated the average sensing distance to be around 1.8 m. In other words, the putative
sensing distance for female Abs. cerata could range from 1.8 to 2.7 m, which may also be
the sensing distance for a flying male searching for a female. That said, it is important to
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note that most females prefer to perch as males fly to approach them (Goh, Lee & Wang,
2022), since perched females should flash less than what we measured. Thus, the sensing
distance between males and females may actually be shorter. Nevertheless, the luminescent
intensity could be an indicator of the sensing distance between flying males and perched
females. After all, a previous study revealed that male Photinus carolinus use a 15-30 cm
landing distance when approaching perched females (Copeland, Moiseff ¢ Faust, 2008),
which is a reasonable sensing distance in our estimation. Further behavior experiments
should investigate these issues.

Monophyly of Luciola sensu stricto

Both the mitogenome (Jusoh et al., 2021) and COI barcode (this study) revealed that
each of the studied L. species form a clade, except for L. cruciata. Luciola cruciata and
genus Aquatica were grouped together. The other genera of Luciolinae (Curtos, Pteroptyx,
Sclerotia, Abscondita, Pygoluciola) are distinct.

Lamprigera is not within Lampyrinae

Both the mitogenome (Wang, Wu & Wang, 2021) and 436 nuclear loci (Martin et al.,
2019) indicated genus Lamprigera groups within Luciolinae instead of Lampyrinae. The
COlI phylogeny (Figs. 4 and 5) also showed that Lamprigera is a sister group to Curtos and
separate from Lampyrinae. In addition, the morphology and COI sequences of eight native
species (Dong et al., 2021) further revealed that Lamprigera should be closer to Luciolinae.

Cryptic species implied by mitochondrial COIl barcode variation

The mitochondrial genetic variation of fireflies within a population or adjacent regions has
fewer genetic differences—e.g., the desert-based Microphotus octarthrus (Usener ¢» Cognato,
2005), the widespread Photinus pyralis (Lower, Stanger-Hall ¢ Hall, 2018), and the Korean
Aquatica lateralis (Kim et al., 2001; Suzuki et al., 2004). Previous biogeographical study
revealed that the two studied sites in Northern Taiwan are within the same geographical
regions; thus, we sequenced 1-3 individuals, except the abundant Abs. cerata, in which only
one SNP site between two haplotypes could be found from nine Abs. cerata individuals
of two habitats. Herein, the COI barcode showed a genus-level resolution for species
identification in Figs. 4 and 5, although COI phylogenies in higher-level topologies are not
consistent with those of previous morphological studies (Ballantyne et al., 2013; Ballantyne
et al., 2015; Ballantyne & Lambkin, 2013; Martin et al., 2017; Stanger-Hall, Lloyd ¢ Hillis,
2007) and molecular phylogeny (Chen et al., 2019; Martin et al., 2017; Martin et al., 2019;
Wang, Wu & Wang, 2021). Nevertheless, the COI barcode could successfully identify most
species at the genera-to-species level (Figs. 4 and 5). The COI phylogeny showed that
the studied genera Abscondita, Curtos, Aquatica, and Luciola belong to Luciolinae, while
Pyrocoelia belongs to Lampyrinae as expected.

The COI sequence variations revealed several cryptic species in Taiwan. For example,
62 SNP sites (~11.9% variation) were found in the COI sequences between Taiwanese
and northern Chinese Abs. chinensis. Sixty-four SNP sites (~12.3% variation) were found
in the COI sequences between Abs. terminalis and Chinese (Taiwanese) Abs. chinensis,
respectively. Building on a previous study (Ballantyne et al., 2013), this study further
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showed that the A, of the Abs. chinensis lantern spectrum (flash color) is different
between Taiwanese (572 nm) and northern Chinese (565 nm) individuals, though there
might be unknown environmental effects that cause the flash color variation in widespread
species, like with the North American firefly, Photinus pyralis (Lower, Stanger-Hall ¢» Hall,
2018). Thus, the new evidence reveals that Taiwanese Abs. chinensis may be a distinct
species to Chinese Abs. chinensis (Figs. 4D and 5D).

Large COI variation was also found in six Asian species: P. praetexta (Figs. 4A and
5A), C. costipennis (Figs. 4E and 5E), Aq. ficta and Agq. lateralis (Figs. 4C and 5C), and L.
curtithorax and L. filiformis (Figs. 4B and 5B). The COI barcode also indicated 17 SNP sites
(~3.27% variation) between Taiwanese and northern Chinese Aq. ficta (Figs. 4C and 5C).
One study indicated that the characterization of the Chinese Aq. ficta differed slightly from
the Taiwanese Aq. ficta (Ballantyne ¢ Lambkin, 2009). In addition, Aq. leii was considered
as a different species to the Chinese Aq. ficta (Fu, Ballantyne ¢ Lambkin, 2010). However,
there are only two SNP sites (~0.39% variation) between Chinese Aq. ficta and Aq. leii.
The Taiwanese Aq. ficta may be a cryptic species with a large variation (17 SNP sites).
In contrast, the COI barcode indicated a large variation of 10% (52 SNP sites) between
Korean and Japanese Agq. lateralis (Figs. 4C and 5C). There are 58 SNP sites (~11.2%
variation) between Taiwanese and northern Chinese L. curtithorax (Figs. 4B and 5B). The
COI barcode indicated 58 SNP sites (~11.2% variation) between Taiwanese L. filiformis
and Japanese L. filiformis yayeyamana (Figs. 4B and 5B). The COI barcode indicated 57
SNP sites (~11% variation) between Taiwanese and southwestern Chinese P. praetexta
(Figs. 4A and 5A). The COI barcode indicated 33 SNP sites (~6.35% variation) between
southern Japan and eastern Chinese C. costipennis (AB608764 and MK609965 in Figs. 4E
and 5E). All these examples indicate large COI variations between two geographical isolates.
Further investigations are needed to reclassify these geographically isolated species.

Bioluminescent evolution inferred from mitochondrial COI barcodes
and known phylogeny of Lampyridae

The contracted high-level phylogeny (Chen et al., 2019; Martin et al., 2019) and Luciolinae
grouping (Jusoh et al., 2021) correspond well with our bioluminescent evolution phylogeny
(Fig. 6). Another study revealed the bioluminescent evolution via recombinant luciferases
and suggested the origin of beetle bioluminescence (Oba et al., 2020). Accordingly, this
study gives a detailed summary on the evolution of bioluminescence in Lampyridae based
on the A« of its luminescence spectrum (Arnoldi, Neto & Viviani, 2010; Goh, Lee ¢ Wang,
20225 He et al., 2021; Oba et al., 2020; Wilcox, 2021). Our studied species further revealed
that the fireflies’ luminescence color was originally a green color in a Lampyridae ancestor,
then red-shifted to a yellow-green in Luciolinae and is now an orange-yellow color in some
derived species (Fig. 6).

CONCLUSION

This study establishes the bioluminescent spectrum and intensity of nine cohabitated
fireflies and can be referenced to ensure that light pollution in habitats does not become high
enough to disrupt firefly mating. The mitochondrial COI barcode revealed a genus-level
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resolution for species identification and six cryptic species that need to be further studied.
Combined with previous literature, this study supports the argument that bioluminescent
evolution has red-shifted to yellow-green in Luciolinae and specified to orange-yellow

color in some derived species.
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