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ABSTRACT
Icariside II, as a favonoid compound derived from epimedium, has been proved to
involed in a variety of biological and pharmacological effects such as anti-inflammatory,
anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer but its mechanism
is unclear, especially in terms of its effect on post-transcriptional modification of
endothelial nitric oxide synthase (eNOS). Phosphorylation of eNOS plays an important
role in the synthesis of nitric oxide in endothelial cells, which is closely related to
erectile dysfunction, atherosclerosis, Alzheimer’s disease, and other diseases. Our
study aims to investigate the effect and mechanism of Icariside II on the rapid
phosphorylation of eNOS. In this study, human umbilical vein endothelial cells
(HUVECs) were stimulated with Icariside II in the presence or absence of multiple
inhibitors (1 µM), including LY294002 (PI3K-inhibitor), MK-2206 (AKT-inhibitor),
Bisindolylmaleimide X (AMPK-inhibitor), H-89 (CaMKII-inhibitor), KN-62 (PKA-
inhibitor), Dorsomorphin (PKC-inhibitor). The proliferation of HUVECs was assessed
using cell counting kit-8 (CCK-8). The release of nitric oxide (NO) within HUVECs
was detected via fluorescence probe (DAF-FM). Western blot was used to examine
the effect of Icariside II on the expression of eNOS, phosphorylation of eNOS, and
common signaling pathways proteins. In this study, Icariside II was found to promote
the cell proliferation and rapid NO release in HUVECs. The phosphorylation of eNOS-
Ser1177 was significantly increased after Icariside II stimulation and reached a peak at
10 min (p< 0.05). Meanwhile, the phosphorylation of eNOS-Thr495 was significantly
decreased after 45 min of stimulation (p < 0.05). Following the intervention with
multiple inhibitors, it was found that MK-2206 (AKT inhibitor), LY294002 (PI3K
inhibitor), KN-62 (AMPK inhibitor), and Bisindolylmaleimide X (PKC inhibitor)
could significantly inhibit the phosphorylation of eNOS-Ser1177 caused by Icariside
II (p < 0.05), while MK-2206, LY294002, and Bisindolylmaleimide X reversed the
alleviated phosphorylation of eNOS-Thr495. We concluded that Icariside can regulate
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rapid phosphorylation of eNOS- Ser1177 and eNOS-Thr495 via multiple signaling
pathways, resulting in the up-regulation of eNOS and the increased release of NO.

Subjects Biochemistry, Cell Biology, Molecular Biology
Keywords Phosphorylation, Icariside II, Nitric oxide, Endothelial nitric oxide synthase,
Flavonoids

INTRODUCTION
The endothelium consists of a single layer of specialized cells (endothelial cells) that
form the interface between the vascular lumen and smooth muscle cells (Cyr, Huckaby
& Zuckerbraun, 2020). In the past, the vascular endothelium was thought to function
only as a mechanical barrier. However, it has been determined that the endothelium is a
tissue that regulates vascular tone, cell growth, and interactions between blood cells and
vessel walls (Bhang et al., 2018; Godo et al., 2016). It also synthesizes various growth factors
and vasoactive substances, and responds to the physical and chemical signals (Signorello
et al., 2011; Cheng et al., 2019; Garcia et al., 2017; Busse & Fleming, 1998). Endothelial
cells are remarkably plastic according to their environment, which regulates specific
organ development and maintains normal organ homeostasis by producing tissue-specific
secretions (Song et al., 2021;Rafii et al., 1995;Raynaud et al., 2013).Meanwhile, endothelial
cells, in turn, share a common set of functions, including hemostasis, maintenance of
vascular permeability, mediation of acute and chronic immune responses to various
injuries, and control of vascular tone (Cyr, Huckaby & Zuckerbraun, 2020). Endothelial
dysfunction is characterized by reduced nitric oxide (NO) synthesis andNO sensitivity since
NO produced by endothelial cells is a pivotal regulator of endothelial function in balance
(Donato et al., 2011). NO is a strong vasodilator and anti-inflammatory signaling molecule,
which plays a key role in maintaining vasodilator and vasoconstriction, inhibiting smooth
muscle cell migration and proliferation, holding the balance between fibrinolysis and
thrombosis, and regulating adhesion and aggregation of platelet (Shi & Vanhoutte, 2017;
Popyhova et al., 2020; Konukoglu & Uzun, 2017; Heeringa et al., 2000; Jones et al., 1999).
NO is also able to promote angiogenesis by up-regulating the levels of vascular endothelial
growth factor (VEGF) and vascular endothelial growth factor receptor-2 (VEGFR-2) in
vivo and in vitro (Milkiewicz et al., 2005; Hebert, Siavash & Sauk, 2005).

In vivo, endothelial cells can regulate NO synthesis by activating endothelial nitric
oxide synthase (eNOS). eNOS is mainly regulated by protein interaction and multi-
site phosphorylation, in which the phosphorylation state of the enzyme-specific serine,
threonine, and tyrosine residues significantly affects eNOS activity (Kolluru, Siamwala
& Chatterjee, 2010). So far, several phosphorylation residues have been proved to be
related to eNOS activity, including Ser113, Thr495, Ser615, Ser633, and Ser1177. The
most thoroughly studied residues are activation of eNOS-Ser1177 and inhibition of
eNOS-Thr495 (Chen et al., 1999; Heiss & Dirsch, 2014). Although a large number of
studies on eNOS phosphorylation have been published in recent decades, the specific
molecular mechanisms have not been fully understood. Multiple protein kinases, including

Song et al. (2022), PeerJ, DOI 10.7717/peerj.14192 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14192


AMPK, CaMKII, PKA, PKC, PI3K, ERK, CHK1, and CDK5, have been indicated to
constitute the complex regulatory network of eNOS phosphorylation (Heiss & Dirsch,
2014; Wu et al., 2022; Lee et al., 2021; Lee et al., 2018; Xing et al., 2015). Changes in the
phosphorylation status of eNOS have an impact on a large number of disease processes
including atherosclerosis, hyperhomocysteine, myocardial infarction, reperfusion injury,
cerebral ischemia, and erectile dysfunction (Kolluru, Siamwala & Chatterjee, 2010). Overall,
the regulation of eNOS phosphorylation is of great significance for the understanding of
endothelial dysfunction.

Epimedium is traditional herbal medicine and functional food commonly used in
Asia, which can be used to treat and prevent various diseases such as erectile dysfunction,
osteoporosis, and depression (He, Wang & Shi, 2020). Icariin and Icariside II derived from
epimediumbelong to flavonoids and have a variety of biological and pharmacological effects
such as anti-inflammatory, anti-osteoporosis, anti-oxidation, anti-aging, and anti-cancer
(Xu et al., 2021; Liu et al., 2011; Khan et al., 2015). Liu et al. (2011) found that Icariside II
can up-regulate eNOS expression and improve vascular endothelial function by activating
EGF/EGFR signaling pathway in porcine arterial endothelial cells. This positive effect of
Icariside II was also found in the human umbilical vein endothelial cells (HUVECs) (Tan
et al., 2021). Another study indicated that Icariside II is able to promote the proliferation of
cavernous endothelial cells and eNOS-Ser1177 phosphorylation by up-regulating ERK1/2
and AKT signaling pathways, alleviating the endothelial cell damage caused by high glucose
conditions (Li et al., 2015). However, the effect of Icariside II on rapid phosphorylation
of eNOS in endothelial cells has not been fully investigated. In this study, we investigated
the rapid regulation of Icariside II on common phosphorylation residues of eNOS and
explored its potential mechanisms.

MATERIALS & METHODS
Cells culture
HUVECs (Catalog #8000; Sciencell, Carlsbad, CA, USA) were purchased from ScienCell
Research Laboratories and cultured in endothelial cell medium (ECM, Catalog #1001;
Sciencell, Carlsbad, CA, USA), supplemented with 5% fetal bovine serum (FBS, Catalog
#0025; Sciencell, Carlsbad, CA, USA), 1% endothelial cell growth supplement (Catalog #
1052; Sciencell, Carlsbad, CA, USA), 100 U/ml of penicillin and 100 ug/ml streptomycin
solution (Catalog #0503; Sciencell, Carlsbad, CA, USA). HUVECs were incubated at 37 ◦C
with an atmosphere of 5% CO2 in the humidified incubator (Forma 3110; ThermoFisher
Scientific, Lincoln, NE, USA) and passages 3–5 were served for subsequent experiments.

HUVECs were serum-starved in ECM without fetal bovine serum for 4 h before
treatment of Icariside II and inhibitors were added. Cells were treated for 0.5, 1, 3, 5, 10, 15,
30, 45 or 60min with 10−5, 10−6, 10−7, 10−8 or 10−9 MIcariside II with or without addition
of the PI3K inhibitor LY294002 (1 mM; Catalog #HY-10108; MedChemExpress, NJ, USA),
AKT inhibitor MK-2206 (1 mM; Catalog #HY-10358; MedChemExpress), AMPK inhibitor
Dorsomorphin (1 mM; Catalog #HY-13418; MedChemExpress), CaMKII inhibitor KN-62
(1 mM; Catalog #HY-13290; MedChemExpress), PKA inhibitor H-89 (1 mM; Catalog #
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Table 1 Inhibitors applied in this study.

Target kinases Inhibitors

AKT MK-2206
PI3K LY294002
AMPK Dorsomorphin
CaMKII KN-62
PKA H-89
PKC Bisindolylmaleimide X

Notes.
AKT, Protein kinase B; PI3K, Phosphatidylinositol-3-kinase; AMPK, AMP-activated protein kinase; CaMKII, Calcium-
CaM-dependent protein kinase II; PKA, Protein kinase A; PKC, Protein kinase C.

HY-15979A; MedChemExpress) or PKC inhibitor Bisindolylmaleimide X (1 mM; Catalog
#HY-108136A, MedChemExpress) (Table 1).

Western blot
After being stimulated with Icariside II and inhibitors, HUVECs were washed with cold
PBS (Catalog #SH30256.01; Hyclone, UT, USA). Total protein was extracted from the cells
using lysis buffer containing RIPA (Strong) (#KGP702; Keygen Biotech, Nanjing, China),
1 mM Phenylmethylsulfonyl fluoride (Catalog #KGP610; Keygen Biotech), 1X protease
inhibitor (Catalog #KGP603; Keygen Biotech) and 1X Phosphatase inhibitor (Catalog #
KGP602; Keygen Biotech). Then the lysates were boiled with 5X SDS-PAGE loading buffer
(Catalog #P1040, Solarbio, Beijing, China) for 8 min.

The samples containing 20 µg of protein were electrophoresed in 10% polyacrylamide
gel and transferred to a polyvinylidene fluoride membrane. After being blocked for 1 h
at room temperature, the membrane was incubated at 4 ◦C overnight with primary
antibodies to p-eNOSSer1177 (1:300; Catalog #9571; Cell Signaling Technology, Danvers,
USA), p-eNOSThr495 (1:300; Catalog #9574; Cell Signaling Technology), p-eNOSSer113

(1:300; Catalog #9575; Cell Signaling Technology), p-PI3 Kinase p85Tyr458/p55Tyr199

(1:300; Catalog #17366; Cell Signaling Technology), p-AKTser473(1:1000; Catalog #4060;
Cell Signaling Technology), p-PKCα/βIIThr638/641 (1:300; Catalog #9375; Cell Signaling
Technology), p-AMPK αThr172 (1:300; Catalog #2535; Cell Signaling Technology), eNOS
(1:300; Catalog #A1548; ABclonal, Woburn, MA, USA) and β-Actin (1:20000; Catalog #
10205-2-AP; Proteintech, Rosemont, IL, USA).

After incubated with secondary antibodies, the images of membranes’ signals were
obtained by using the Syngene G-Box imaging system (Syngene, Cambridge, UK) via ECL
Plus Western Blotting Substrate (Catalog #32132; ThermoFisher Scientific).

Nitric oxide release measurement
According to the manufacturer’s protocol, HUVECs were seeded into 96-well plates. At the
confluence of 80%, cells were treated with 5 µMNO diacetate 3-Amino,4-aminomethyl-2′,
7′-difluorescein (DAF-FM DA; Catalog #s0019; Beyotime Biotech, Shanghai, China) for
30 min in serum-free medium, followed by drug stimulating with Icariside II for 0–60 min
at 37 ◦C. Control groups were added with an equal volume of serum-free medium.
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After washing 3 times with PBS, the fluorescence images were collected by fluorescence
microscope with excitation at 495 nM and emission at 515 nM (DMI 6000B, Leica
Microsystems, Nussloch, Germany). Fluorescence images were analyzed with ImagePro
Plus software (version 6.0, Media Cybernetics Inc, Bethesda, MD, USA) for calculating the
mean density.

Cell proliferation and cytotoxicity assay
Cell Counting Kit-8 (Catalog #CK04; DojindoMolecular Technologies, Kumamoto, Japan)
and the manufacturer’s protocol were applied for cell proliferation and cytotoxicity assay.
After being dispensed in 96-well plates for 12 h, HUVECs were treated with Icariside II
in various concentrations (0, 10−5, 10−6, and 10−7 M) for 24 and 48 h. After two washes
with ECM, 10 µL CCK-8 solution was added to each well and incubated for 1 h in the
incubator. Then, the microplate reader (Catalog #51118170; Thermo Fisher Scientific) was
performed to measure the absorbance of each well at 450 nm.

Statistical analysis
All experiments were repeated at least three times. All data were analyzed using
GraphPad Prism, version 9.0 (GraphPad Software, San Diego, CA, USA) and shown
as mean ± standard error of the mean (SEM). One-way ANOVA analysis was used for
comparison between different groups. Statistical significance was considered when P-values
were less than 0.05.

RESULTS
Icariside II promoted the proliferation of HUVECs
To study the effect of Icariside II on the proliferation of HUVECs, a stimulation of Icariside
II for 24 and 48 h was used, showing that the proliferation of HUVECs was significantly
promoted at the concentration of 10−6 and 10−7 M. In contrast, 10−5 M of Icariside
II showed a significant detraction effect (Figs. 1A, 1B). Therefore, Icariside II with a
concentration below 10−5 was used for subsequent assays.

Icariside II rapidly increased NO release
In this study, the NO probe (DAF-FM DA) was adopted to detect the effect of Icariside
II (10−6M) on NO release. NO release of HUVECs significantly increased after Icariside
II was stimulated for 5 min. Within one hour, the mean signals increased gradually with
the stimulation time, which indicated that Icariside II could up-regulate NO release of
HUVECs rapidly (Figs. 2A, 2B).

Icariside II stimulation did not alter total eNOS expression
To investigate the effect of Icariside II on the expression of total eNOS, Icariside II (10−6 M)
was used to stimulate HUVECs for 0, 5, 10, 15, 30, and 60 min. No significant changes were
identified in Icariside II-treated groups compared with controls, suggesting that Icariside
II did not affect the total eNOS expression of HUVECs within 60 min. (Figs. 3A, 3B).
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Figure 1 Effect of Icariside II on the proliferation of HUVECs. CCK8 kit was used to detect the prolifer-
ation of HUVECs at different concentrations of Icariside II (10−5M, 10−6M, 10−7M). (One-way ANOVA:∗

p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001, Icariside II treated for 24 h vs NC, # p < 0.05, ## p < 0.01, ### p <
0.001, Icariside II treated for 48 h vs NC). Results are expressed as the mean±SEM analyzed from three
independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-1

Figure 2 Effect of Icariside II stimulation on NO release. (A) HUVECs were stimulated with Icariside
II (1*10−6M) for 5, 15, 30, 45, and 60 min and loaded with DAF-FM DA. Fluorescence imaging was per-
formed to detect intracellular NO release. (B) Quantitative analysis of NO release. (One-way ANOVA: ∗

p < 0.05,∗∗ p < 0.01, ∗∗∗ p < 0.001, experimental groups vs NC). Results are shown as one representative
image and as the mean± SEM of quantified data from three independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-2
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Figure 3 Effect of Icariside II on total eNOS expression.HUVECs were stimulated with Icariside II (1
µM) for 5, 15, 30, 45, and 60 min. (A) Western blot analysis of the expression of total eNOS. (B) Quanti-
tative analysis of total eNOS expression. (One-way ANOVA:∗ p < 0.05, ∗∗ p < 0.01,∗∗∗ p < 0.001, experi-
mental groups vs NC). Results are shown as one representative blot and as the mean± SEM of quantified
data from three independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-3

Icariside II rapidly induced eNOS-Ser1177 phosphorylation of HUVECs
via PI3K/AKT, AMPK, and PKC signaling pathway
To further clarify the experimental concentration of Icariside II in subsequent experiments,
HUVECs were treated with different concentrations of Icariside II (10−5 M, 10−6 M, 10−7

M, 10−8 M, 10−9 M). It showed that Icariside II increased the phosphorylation of eNOS-
Ser1177 in a dose-dependent manner, and reached the peak at the concentration of 10−6

M. On the other hand, the level of p-eNOSSer1177 in 10−8 M and 10−9 M Icariside II-treated
groups were not significantly different from that in the normal control group (Figs. 4A, 4C).
Combined with the results of CCK-8, 10−6 M Icariside II was selected as the experimental
concentration for subsequent experiments in this study.
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Figure 4 Effect of Icariside II on the dose- and time-dependent expression of p-eNOSSer1177. HUVECs
were stimulated with Icariside II (10−5M, 10−6M, 10−7M, 10−8M, 10−9M) for 1, 3, 5, 10, 15 min. (A)
Western blot analysis of the expression of p-eNOSSer1177 stimulated by different concentrations and time.
(B) Quantitative analysis of total eNOS expression. (One-way ANOVA:∗ p < 0.05, ∗∗ p < 0.01,∗∗∗

p < 0.001, experimental groups vs NC). Results are shown as one representative blot and as the
mean± SEM of quantified data from three independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-4

To determine the optimal time-point for eNOS-Ser1177 phosphorylation, 0, 1, 3, 5,
10, and 15 min were selected as the stimulation time of Icariside II. The results showed
that the phosphorylation of eNOS- Ser1177 was significantly increased only 5 min after
the treatment of Icariside II. Furthermore, the phosphorylation level of eNOS-Ser1177
gradually increased and reached a peak at 10 min (Figs. 4B, 4D). Therefore, 10 min was
selected as the experimental time-point for subsequent experiments in this study.

To clarify the specific mechanism of eNOS-Ser1177 phosphorylation regualted via
Icariside II, we explored the upstream signaling pathways such as PI3K/AKT/eNOS.
The p-eNOS Ser1177 and p-eNOSThr495 expression were significantly increased after
Icariside II stimulation for 10 min, which was reversed by the use of PI3K inhibitor
(LY294002) and AKT inhibitor (MK-2206) (Figs. 5A–5C). After stimulation of HUVECs
with Icariside II (0, 1, 3, 5, 10, and 15 min), the expression of p-PI3K and p-AKTSer473

were significantly upregulated and peaked at 10 min (Figs. 5D–5F). Then, AMPK, CaMKII,
PKA, and PKC signaling pathways were also explored. The expression of p-eNOSSer1177

was significantly increased in HUVECs treated with Icariside II for 10 min. The up-
regulation was yet alleviated when treated with AMPK inhibitor (Dorsomorphin) and PKC
inhibitor (Bisindolylmaleimide X). The phosphorylation of eNOS-Ser1177 in the Icariside
II+CaMKII inhibitor (KN-62) group and the Icariside II+PKA inhibitor (H-89) group
had no significant differences from Icariside II group (Figs. 6A, 6B). After treated with
Icariside II alone (0, 1, 3, 5, 10, and 15 min), the expression of p-AMPK and p-PKC were
significantly increased, in which p-AMPKpeaked at 3min and p-PKCpeaked at 5min (Figs.
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Figure 5 Icariside II regulate the expression of p-eNOSSer1177 via PI3K/AKT signaling pathway. (A)
Icariside II-induced eNOS-Ser1177 and AKT-Ser473 phosphorylation were abrogated by PI3K and
AKT inhibitors (LY294002 and MK-2206) at 10 min. (B, C) Quantitative analysis of p-eNOSSer1177 and
p-AKTSer473 expression. (One-way ANOVA:∗∗ p < 0.01,∗∗∗ p < 0.001, experimental groups vs NC, ##
p < 0.01, ### p < 0.001, experimental groups vs Icariside II group). (D) Western blot analysis of the
expression of p-PI3K and p-AKTSer473 stimulated by Icariside II. (D, E) Quantitative analysis of p-PI3K
and p-AKTSer473 expression. (One-way ANOVA:∗ p < 0.05,∗∗ p < 0.01, experimental groups vs NC).
Results are shown as one representative blot and as the mean± SEM of quantified data from three
independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-5

6C–6E). These results suggested that Icariside II rapidly regulated the phosphorylation of
eNOS-Ser1177 by activating PI3K/AKT, AMPK, and PKC signaling pathways.

Icariside II rapidly induced eNOS-Thr495 dephosphorylation of
HUVECs via PI3K/AKT and PKC signaling pathway
To study the effect of Icariside II on the phosphorylation of NOS-Thr495, HUVECs
were stimulated with Icariside II (10−6 M) for 0, 1, 3, 5, 10, and 15 min. The expression
level of p-eNOSThr495 was higher in Icariside II treated group compared with the normal
control group and peaked at 10 min (Figs. 7A, 7B). As a negative regulatory residue, the
up-regulation of eNOS-Thr495 phosphorylation was often associated with the decrease of
NO release which was not in accordance with the results above. To investigate whether
Icariside II can impact the rapid dephosphorylation of eNOS-Thr495, Icariside II was
applied for stimulating HUVECs for multiple durations (0, 0.5, 1, 1.5, 15, 30, 45, and
60 min). The results showed that the phosphorylation of eNOS-Thr495 was significantly
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Figure 6 Icariside II regulate the expression of p-eNOSSer1177 via AMPK and PKC signaling pathway.
(A) Icariside II-induced eNOS-Ser1177 phosphorylation was abrogated by AMPK and PKC inhibitors
(Bisindolylmaleimide X and Dorsomorphin), while CaMKII and PKA inhibitors (H-89 and KN-62) were
not affected. (B) Quantitative analysis of p-eNOSSer1177 expression. (One-way ANOVA:∗ p < 0.05,∗∗ p <
0.01, experimental groups vs NC, # p< 0.05, ## p< 0.01, experimental groups vs Icariside II group). (C)
Western blot analysis of the expression of p-PI3K and p-AKTSer473 stimulated by Icariside II. (D, E) Quan-
titative analysis of p-AMPK and p-PKC expression. (One-way ANOVA:∗ p < 0.05,∗∗∗ p < 0.001, experi-
mental groups vs NC). Results are shown as one representative blot and as the mean± SEM of quantified
data from three independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-6

increased only 0.5 min after Icariside II stimulation, and lasted to 30 min (Figs. 7C–
7F). Icariside II showed a significant decrease on the expression of p-eNOSThr495 after
45-minutes stimulation, which was not found at the time-point of 60 min (Figs. 7E, 7F).

To clarify the specific mechanism involved in eNOS-Thr495 dephosphorylation, 45 min
was selected as the stimulation time of Icariside II. The results showed that PI3K inhibitor
(LY294002), AKT inhibitor (MK-2206), and PKC inhibitor (Bisindolylmaleimide X)
significantly increased the expression level of p-eNOSThr495 down-regulated by Icariside
II. In contrast, AMPK inhibitor (Dorsomorphin), CaMKII inhibitor (KN-62), and PKA
inhibitor (H-89) did not show similar effects on eNOS-Thr495 (Figs. 7G, 7H). It suggested
that Icariside II could rapidly regulate the dephosphorylation of eNOS-Thr495 via activating
PI3K/AKT and PKC signaling pathways.

Icariside II did not influence eNOS-Ser113 phosphorylation
To research the effect of Icariside II on eNOS-Ser113 phosphorylation, time-points of
Icariside II were chosen as the same as before (0, 1, 3, 5, 10, and 15 min). No significant
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Figure 7 Effect of Icariside II on the expression of p-eNOSSer1177 via PI3K/AKT, AMPK, and PKC sig-
naling pathways. (A, D, E) HUVECs were stimulated with Icariside II for 0.5. 1, 1.5, 3, 5, 10, 15, 30, 45
and 60 min. Western blot was used to analyze the expression of p-eNOSThr495. (B, C, F) Quantitative anal-
ysis of p-eNOSThr495 expression. (One-way ANOVA:∗∗ p< 0.01,∗∗∗ p< 0.001, experimental groups vs NC).
(G) Icariside II-induced eNOS-Thr495 dephosphorylation was abrogated by PI3K, AKT, and PKC in-
hibitors (LY-294002, MK-2206, and Dorsomorphin), while other inhibitors were not affected. (H) Quan-
titative analysis of p-eNOSThr495 expression. (One-way ANOVA: ∗ p< 0.05, experimental groups vs NC, #
p< 0.05, ## p< 0.01, experimental groups vs Icariside II group). Results are shown as one representative
blot and as the mean± SEM of quantified data from three independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-7
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Figure 8 Effect of Icariside II on the expression of p-eNOSSer113. HUVECs were stimulated with Icari-
side II for 1, 3, 5, 10, and 15 min. Quantitative analysis of p-eNOSSer113 expression. (One-way ANOVA:∗

p< 0.05,∗∗ p< 0.01,∗∗∗ p< 0.001, experimental groups vs NC). Results are shown as the mean± SEM of
quantified data from three independent experiments.

Full-size DOI: 10.7717/peerj.14192/fig-8

differences in the expression of p-eNOSSer113 between Icariside II stimulated groups and
the normal control groups (Fig. 8) In brief, the NO release of HUVECs might be affected
by Icariside II via regulating the phosphorylation of eNOS-Ser1177 and eNOS-Thr495, not
eNOS-Ser113.
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Figure 9 The mechanism of increased NO production affected by Icariside II. Icariside II is able to pro-
mote rapid eNOS-Ser1177 phosphorylation by activating PI3K/AKT, AMPK, and PKC signaling pathways,
while regulating rapid eNOS-Thr495 dephosphorylation/phosphorylation by activating PI3K/AKT and
PKC signaling pathways, thereby up-regulating eNOS activity, and in turn increase NO release. Abbrevia-
tion: AKT, Protein kinase B; PI3K, Phosphatidylinositol-3-kinase; AMPK, AMP-activated protein kinase;
CaMKII, Calcium-CaM-dependent protein kinase II; PKA, Protein kinase A; PKC, Protein kinase C.

Full-size DOI: 10.7717/peerj.14192/fig-9

DISCUSSION
It is well known that the NO released by eNOS is essential for endothelial cell function,
which can be regulated by eNOS phosphorylation (Goshi, Zhou & He, 2019; Mount, Kemp
& Power, 2007). Endothelial function is closely related to cardiovascular diseases, andrology
diseases, kidney diseases, etc (Rajendran et al., 2013; Jourde-Chiche et al., 2019). In this
paper, we found that Icariside II rapidly induced the phosphorylation of eNOS-Ser1177
and eNOS-Thr495 via multiple signaling pathways, and rapidly increased NO release in
HUVECs, demonstrating the great potential of Icariside II in the treatment of multiple
diseases (Fig. 9).

In this study, Icariside II was found to promote the eNOS-Ser1177 phosphorylation of
HUVECs in 15min. The phosphorylation of eNOS-Ser1177may disrupt the autoinhibitory
function of the eNOS carboxy-terminus, thereby rendering the activation of eNOS (Mount,
Kemp & Power, 2007; Lane & Gross, 2002). In short, most stimulations that activate eNOS
promote phosphorylation of the eNOS-Ser1177, including drugs (such as shenfu injection
and atorvastatin) (Zhu et al., 2020; Manickavasagam et al., 2007), compounds (such as
betulinic acid and Propionyl-l-carnitine) (Jin et al., 2016; Ning & Zhao, 2013), mechanical
factors (Ghimire et al., 2019; Balligand, Feron & Dessy, 2009), and humoral factors (Pooja
et al., 2018), and ultimately lead to increase NO synthesis. Li et al. (2015) indicated that
Icariside II could increase p-eNOSSer1177 expression of human cavernous endothelial cells
down-regulated by high-glucose conditions in 4 days. Few studies researched the effect
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of Icariside II on eNOS-Ser1177 phosphorylation within a short time (less than 1 h). The
phosphorylation of eNOS-Thr495 in the Ca2+/CaM binding domain could reduce the
activity of eNOS and decrease the NO release of HUVECs (Mount, Kemp & Power, 2007).
We found that Icariside II was able to increase the expression of p-eNOSThr495 within 30min
and decrease it at 45 min. Evidence suggested that dephosphorylation of eNOS-Thr495
was coordinated with the activation of eNOS-Ser1177 phosphorylation (Harris et al., 2001;
Michell et al., 2001; Fleming et al., 2001; Peluso et al., 2018), while it had also been reports
of the opposite result (Schmitt et al., 2009).

Notably, a significant increase in NO release of HUVECs was found after Icariside
II stimulation for less than 60 min, which may be associated with rapidly up-regulated
eNOS-Ser1177 phosphorylation. However, the increased eNOS-Thr495 phosphorylation
was also observed during the same period of Icariside II stimulation (less than 30 min),
which was inconsistent with the result of up-regulated NO release. It might be caused
by the fact that the up-regulated phosphorylation of eNOS-Ser1177 played a dominant
role and may override the negative effect of eNOS-Thr495 phosphorylation. In addition,
although eNOS-Thr495 was indicated to be the negative regulatory residue, after mutation
of eNOS-Thr495 to alanine and mimicking the dephosphorylation of eNOS-Thr495, Lin
et al. (2003) found the occurrence of ‘‘uncoupling’’ eNOS, which was often associated with
the down-regulation of the NO release. However, more research is needed to give more
powerful evidence for these hypotheses, such as the measurement of ROS. Even so, we
found significant dephosphorylation of eNOS-Thr495 at 45 min, which makes it easier to
explain why the NO release in HUVECs was increased after Icariside II stimulation.

Different from eNOS-Ser1177 and eNOS-Thr495, only a handful of studies focused on
eNOS-Ser113, phosphorylation of which was usually considered to inhibit the activation of
eNOS. It was reported that cyclin-dependent kinase 5 was able to up-regulate eNOS-Ser113
phosphorylation, decrease eNOS dimer stability, and reduce NO release (Lee et al., 2010).
However,Urano et al. (2008) found that angiopoietin-related growth factors could activate
the ERK1/2 signaling pathway in HUVECs and increase the phosphorylation of eNOS-1177
and eNOS-Ser113, so as to up-regulate the production of NO. However, results in this
study did not indicate a significant effect of Icariside II on eNOS-Ser113 phosphorylation.
In short, the effect of Icariside II on eNOS phosphorylation is complex which promotes
the NO release of HUVECs and demonstrates the potential of Icariside II to regulate
endothelial function.

Although Icariside II stimulation was reported to increase the expression of total eNOS
in endothelial cells at a late time (48 or 96 h) (Liu et al., 2011; Li et al., 2015), no changes
in total eNOS were observed at an early time (less than 1 h in this study) which may be
related to the insufficient time for eNOS transcription and translation.

In this study, the common upstream signaling pathways of eNOS phosphorylation
were detected by western blot, including PI3K, AKT, AMPK, CaMKII, PKA, and
PKC[21-25]. The results indicated that Icariside II was able to activate the eNOS-Ser1177
phosphorylation via P13K/AKT, AMPK, and PKC significant pathways, and the eNOS-
Thr495 dephosphorylation by P13K/AKT, and PKC signaling pathways. PI3K/AKT and
AMPK signaling pathways may be the positive regulator of eNOS which play an important
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role in endothelial cell survival, mobilization, migration and homing (Chu et al., 2017;
Rodríguez et al., 2021). It was reported that the activation of AMPK/PI3K/AKT signaling
pathway could increase eNOS-Ser1177 phosphorylation and decrease eNOS-Thr495
phosphorylation (Xing et al., 2015). In this study, the activation of AMPK signaling pathway
was not associated with the eNOS-Thr495 dephosphorylation. Signorello et al. (2009)
suggested that homocysteine was able to stimulated the eNOS-Thr495 phosphorylation
and the dephosphorylation of eNOS-Ser1177 by PKC activation which was inconsistent
with the results in this study.

It was worth noting that the effect of Icariside II on eNOS phosphorylation was only
researched in less than 1 h, the effect over a longer period needs to be explored in more
experiments. It was reported that compound 21 and quercetin were also able to regulate
the eNOS phosphorylation rapidly (Peluso et al., 2018; Li et al., 2012). Because of the short
stimulation time (less than 15 min), the total signaling pathway proteins (Such as PI3K,
AKT, AMPK, and PKC)were not detected in this study. Several signaling pathway inhibitors
were applied in this study, some of which (such as dorsomorphin and LY294002) were
often limited by off-target effects (Hao et al., 2010; Kumar et al., 2008). Further lines of
research would be necessary to complete the data on the expression of the total signaling
pathway proteins and to solve the problem of off-target effects of inhibitors. Flavonoids
are widely distributed by plants and have multiple potential biological benefits, including
regulating endothelial function, anti-inflammatory, anti-cancer, anti-fungal, etc (Zakaryan
et al., 2017). As one of the active flavonoids, Icariside II can regulate eNOS phosphorylation
rapidly which suggests that Icariside II may assist in the treatment of acute diseases (such
as myocardial infarction and cerebral ischemia) and erectile dysfunction which has been
preliminary explored in other in vivo and in vitro studies (Hu et al., 2020; Gao et al., 2020;
Liu et al., 2020; Gu et al., 2021; Xu et al., 2015). Although this study provides important
knowledge to the field of eNOS phosphorylation and the physiological and pharmacological
effect of Icariside II, whether the results of our in vitro study are consistent with the in vivo
situation still needs to be verified.

CONCLUSIONS
Our study found that Icariside II could regulate rapid phosphorylation of eNOS-Ser1177
and eNOS-Thr495 viamultiple signaling pathways andpromote theNOrelease ofHUVECs,
regulating endothelial function in a short time. It may provide a novel pharmacologic
molecule to assist in the treatment of several diseases. More investigations are required to
explore the therapeutic potential of Icariside II.
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