
Submitted 25 July 2022
Accepted 14 September 2022
Published 14 October 2022

Corresponding author
Gangman Yi,
gangman@mme.dongguk.edu

Academic editor
Vladimir Uversky

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj.14186

Copyright
2022 Midekso and Yi

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

RFfiller: a robust and fast statistical
algorithm for gap filling in draft
genomes
Firaol Dida Midekso and Gangman Yi
Department of Multimedia Engineering, Dongguk University, Seoul, South Korea

ABSTRACT
Numerous published genomes contain gaps or unknown sequences. Gap filling is
a critical final step in de novo genome assembly, particularly for large genomes.
While certain computational approaches partially address the problem, others have
shortcomings regarding the draft genome’s dependability and correctness (high rates
ofmis-assembly at gap-closing sites and high error rates).While it is well established that
genomic repeats result in gaps, many sequence reads originating from repeat-related
gaps are typically missed by existing approaches. A fast and reliable statistical algorithm
for closing gaps in a draft genome is presented in this paper. It utilizes the alignment
statistics between scaffolds, contigs, and paired-end reads to generate a Markov chain
that appropriately assigns contigs or long reads to scaffold gap regions (only corrects
candidate regions), resulting in accurate and efficient gap closure. To reconstruct the
missing component between the two ends of the same insert, the RFfiller meticulously
searches for valid overlaps (in repeat regions) and generates transition tables for similar
reads, allowing it to make a statistical guess at the missing sequence. Finally, in our
experiments, we show that the RFfiller’s gap-closing accuracy is better than that of
other publicly available tools when sequence data from various organisms are used.
Assembly benchmarks were used to validate RFfiller. Our findings show that RFfiller
efficiently fills gaps and that it is especially effective when the gap length is longer. We
also show that the RFfiller outperforms other gap closing tools currently on the market.

Subjects Bioinformatics, Genomics, Molecular Biology, Computational Science
Keywords Gap filling, DNA sequencing, Read extension, De novo assembly

INTRODUCTION
Rapid DNA sequencing methods have substantially aided research and discoveries in the
biological and medical sciences. Basic biological research and a wide range of applications,
such as medical diagnostics, biotechnology, forensic biology, virology, and biological
systematics, have becomemore dependent onDNA sequence knowledge (Behjati & Tarpey,
2013). A comparison of healthy and alteredDNA sequences can be used to diagnose a variety
of disorders, including malignancies, and to describe antibody repertoires and to guide
patient treatment (Pekin et al., 2011; Chmielecki & Meyerson, 2014). Having a quick way to
sequence DNA enables the identification and cataloging of a greater number of species, in
addition to enabling more efficient and more specialized medical care.

How to cite this article Midekso FD, Yi G. 2022. RFfiller: a robust and fast statistical algorithm for gap filling in draft genomes. PeerJ
10:e14186 http://doi.org/10.7717/peerj.14186

https://peerj.com
mailto:\unskip \penalty -\@M gangman@mme.dongguk.edu
mailto:\unskip \penalty -\@M gangman@mme.dongguk.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.14186
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.14186

Modern DNA sequencing technology has aided in the sequencing of whole DNA
sequences or genomes of different types of organisms and species, including the
human genome and other DNA sequences of animals, plants, and microbes (Abate
et al., 2013; Vega, 2019; Collins, Morgan & Patrinos, 2003). Genome assembly is the
bioinformatics process of reassembling a huge number of short DNA sequences to
recreate the chromosomes from which the DNA originated (Dida & Yi, 2021). Next-
generation sequencing, such as PacBio SMRT sequencing or Nanopore sequencing, is
one of the first steps in sequence assembly. PacBio’s SMRT sequencing technology and
Oxford’s single-molecule nanopore sequencing technology are two examples of third-
generation sequencing technologies that have recently been applied to biological genome
sequencing. Third-generation sequencing read lengths are hundreds of times longer than
next-generation sequencing and may exceed 10 kbp. Databases such as the European
Nucleotide Archive (Leinonen et al., 2010), NCBI Assembly (Coordinators, 2016), and
Ensembl Genomes (Hubbard et al., 2009) can be used to store the completed genome
assembly. Computer programs typically use single and paired reads to assemble a genome
using next-generation sequencing platforms. Depending on the sequencing platform, the
length of these reads can range from 20 to 1,000 bp. Paired reads are preferred over single
reads because they help link contigs into scaffolds and reveal the size of repetitive regions.

Repetitive sequences, variations, missing data, and errors can all make genome
assembly more difficult. The reconstruction of a contiguous genome is made possible
by long-read technologies that bridge repetitive regions. Pacific Biosciences(PacBio)
and Oxford Nanopore Technologies (ONT) (Reuter, Spacek & Snyder, 2015) are pushing
single-molecule real-time (SMRT) and nanopore sequencing for this new generation to
increase the number of matches. Assembled draft genomes generally feature many gaps;
important biological data, like genes, can be stored within these gaps. For this reason,
filling in the gaps may lead to the discovery of unknown information that improves the
gene sequence integrity. At present, gaps are filled in five ways: assembly by multiple types
of software, use of reference genomes from closely related species, assembly using different
types of data, use of polymerase chain reaction amplification at the ends of gaps, and
adoption of improved assembly methods based on the de Bruijn graph. This study focuses
on assembly using different types of data.

One of the final stages of genome assembly, especially in large genomes, is gap-filling.
First, assembly algorithms create contigs, which are contiguous sequences of overlapping
sequencing reads. A contig is a contiguous DNA sequence, having no ambiguities or
unknown bases, that is denoted by the letter N. Second, scaffolding connects the contigs
into longer fragments using specialized sequencing read data. Mate-pair reads were the
primary source of scaffolding data until the development of long-read technologies.
Mate-pair libraries, also known as jumping libraries, are DNA fragments of sizes ranging
from thousands to millions of base pairs that have been size-selected. The fragments’
ends are then sequenced, and the resulting reads link the contigs together. Scaffolds are
linked sequences, whereas N-characters represent the unknown sequence between contigs.
Long continuous reads, such as those generated by Pacific Biosciences’ RS II or Sequel
third-generation sequencing platforms, are frequently used in scaffolding. PacBio is the

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

only sequencing technology that can produceHiFi reads with a precision of> 99.9%, which
is comparable to short reads and Sanger sequencing. HiFi reads allow you to detect all
types of variants with high precision and recall, including single nucleotide and structural
variants, as well as phase haplotypes, even in difficult-to-sequence portions of the genome.
(Accurate circular consensus long-read sequencing improves variant detection in and
the assembly of a human genome.) The scaffolding process connects and arranges the
contigs, although the result typically comprises many unknown sequences. Gaps are the
unidentified sequences. Finally, with or without further sequencing data, the gap-filling
stage seeks to resolve these unknown sequences. Even after the gap-filling procedure, many
published genomes still contain significant gaps.

Hence, several tools have been designed to close the gapped regions using sequence
reads, including TGS-GapCloser (Xu et al., 2020), SOAPdenovo GapCloser (Luo et al.,
2012), and Sealer (Paulino et al., 2015). TGS-GapCloser closes gaps in large genomes more
efficiently and accurately than other gap-closing tools by using low-coverage, error-prone
long reads (Xu et al., 2020). TGS-GapCloser takes any type of TGS long read or other pre-
assembled contig as input and fills gaps in a draft assembly in four steps: gap detection in the
draft assembly, candidate acquisition from long-read alignments against gaps, base-level
error correction of alternative sub-long reads, and gap closure using the highest-scoring
error-corrected candidates for each gap or linkage of neighboring scaftigs with overlaps.

Using the ample pair relationships of short reads, the GapCloser (Luo et al., 2012)
was designed to close the gaps discovered by SOAPdenovo or other assemblers during
the scaffolding process. Scaffolds were built in the original SOAPdenovo (Li et al., 2010)
using PE reads, beginning with small insert sizes (200 bp) and progressing iteratively to
large insert sizes (10 kbp), which resulted in lower scaffold quality and shorter scaffold
length. SOAPdenovo improved the original GapCloser module in SOAPdenovo2, which
iteratively assembled sequences in the gaps to fill large gaps. The previous GapCloser
only considered the reads that could be aligned within the current iterative cycle at each
iteration. SOAPdenovo developed a new approach for SOAPdenovo2 that considered all
reads aligned during previous cycles, which allowed for better resolution of conflicting
bases and thus improved gap closure accuracy.

Lastly, Sealer (Paulino et al., 2015) is an automated finishing application that closes gaps
in draft assemblies, including those of very large genomes, using a succinct Bloom filter
representation of the de Bruijn graph. The sealer has three distinct functions. First, regions
with Ns (from an input scaffold file) are identified, and the nucleotides flanking each gap
are extracted. To connect the flanking sequences, the Konnector utility (Vandervalk et al.,
2014) is used with a variety of K -mer lengths. Finally, successfully connected sequences
are inserted into the gaps of the original scaffolds, resulting in the generation of a new
gap-filled scaffold file.

In this article, we introduce RFfiller, a hybrid genome gap filler that, unlike most gap
fillers, avoids the consensus procedure entirely, does not follow the overlap layout consensus
or de Bruijn graph paradigms, and uses long reads in the early stages of gap filling to further
analyze the gap regions. Standard assembly benchmarks were used to validate RFfiller. Our
findings show that RFfiller efficiently fills gaps, and that it is especially effective when the

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

B. Long-read Alignment

E. Generate Scaffold D. Generate Sequence C. Sequence Extention

Enter scaffold, long-
read and number of

thread
Check scaffold contains

gap? Extract gap
flank
>=

overlap?
BLASTN

Filter blast
result

Generate
scaffold

Next sequence
last

sequence
?

Store extracted
gap

Store blast
result

Yes Yes

No

No

Yes

No

Start

filtered
result
> 0?

probability
 == 1?

Extend
sequence

Store extended
sequences

Construct
transition table

Generate
sequence

generated
sequence > gap

length?

Append to list

Store generated
sequenceStop No

Yes

No No

Yes

Yes

long-read

database

Filled sequence

A. Gap Extraction

Figure 1 Detailed flowchart of RFfiller. (A) The input scaffold will be checked for gaps. Gaps will be ex-
tracted and stored in a separate file if they exist. (B) Once the gaps are stored, the extracted gaps and long
reads will be used to perform long read alignment. (C) The aligned sequence will be extended to cover the
entire region of the gap they represent based on the results of the long read alignment. (D) After analyzing
the extended sequence pattern, a transition table will be generated. The transition table is used to generate
missing gap sequences based on the pattern extracted from the extended sequences using Markov Chains.
(E) A new scaffold will be generated with the newly generated sequence replacing the missing sequences.

Full-size DOI: 10.7717/peerj.14186/fig-1

gap length is long. We also show that RFfiller outperforms other gap-closing tools that are
currently on the market.

METHODS
Gap detection, long read alignment, read extension, transition table construction, Markov
chain construction, and gap-filling are the five stages of RFfiller. This section summarizes
the procedures that comprise the RFfiller algorithm. Figure 1 illustrates the process in
detail.

Gap detection
The algorithm iterates across the scaffold in this stage to look for gaps or an unknown
sequence (i.e., the letter N). When a gap is discovered, the surrounding sequences are
retrieved based on an overlap threshold. There are three scenarios involved in the
extraction, as illustrated in Fig. 2. The first scenario determines if there are enough
neighboring sequences to extract from both ends of a gap, which results in an equal
number of overlapping sequences surrounding the gap. The second scenario determines
whether there are sufficient sequences on the gap’s left side, which results in the extraction
of as many sequences as possible from the left side. The third scenario is identical to the
second but for the right side of the gap. The second and third scenarios also evaluate
whether both ends of the gap contain an adequate sequence for extraction. The remaining
sequence from both sides is retrieved in this case.

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 4/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-1
http://dx.doi.org/10.7717/peerj.14186

gap length of
Nbp

left flank right flank left flank

gap length of
Nbp

left flank

gap length of
Nbp

right flank right flank

(A, C, G, T) (A, C, G, T)

where x = z

(N) (A, C, G, T) (A, C, G, T)

where x < z

(N) (A, C, G, T) (A, C, G, T)
where x > z

(N)

Figure 2 Gap extraction from an input file.Where x, y and z represents sequence length. N represents
gaps or unknown sequence.

Full-size DOI: 10.7717/peerj.14186/fig-2

When a gap is discovered and its neighboring sequence is extracted, it is stored in a file
with the ID of the sequence in which the gap was discovered.

Long-read alignment on the gap region
The gap files that are stored are the focus of this stage. The gap files goes through each
saved file one by one, searching for a matching sequence by using a long-read alignment
on the gap region.

Long-read alignment can be accomplished using a variety of bioinformatics methods.
The Basic Local Alignment Search Tool (BLAST) (McGinnis & Madden, 2004) is a well-
known aligner. BLAST searches for sequences that share local similarities. Comparing
nucleotide or protein sequences to databases and calculating the statistical significance of
matches are the primary functions of this program. With the use of BLAST, it is possible to
infer functional and evolutionary links between sequences, as well as to identify members
of gene families.

BLAST uses a heuristic method to find short matches between two sequences, so it does
not consider the entire sequence space when doing its work. The long-read and the gap
regions are input sequences. To find sequence information quickly, we create an index of
the long-read. Then, we create a BLAST database to search against the long-read sequences.
The long read is compared with the gap region, and any matches found are recorded.
BLAST tries to attempts to begin local alignments from the initial matches after the first
match.

To reduce the number of similar reads, we limit the length of the gap region; if all
of the gap regions were allowed to align with the long read, the likelihood of having
thousands of similar matches for a specific location would be high. We also set a limit on
the percentage of aligned sequences that are identical. Percentage identity is a number that
expresses how similar the query and target sequences are (how many characters in each
sequence are indistinguishable). The more significant the match, the higher the percentage
identity. Based on this premise, we set the percentage identity to 97% to fill the gap with a
proper sequence, and any sequence having a match of 98 percent or greater is considered

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 5/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-2
http://dx.doi.org/10.7717/peerj.14186

a high-quality match. This later helps the Markov chain to infer accurate reads. The more
accurate the reads generated by the blast, the more accurately the Markov chain infers.

The length and location of the match are also restricted. Even if a short-length match
were found far away from the gap, it would not be considered a match, regardless of its
percentage identity. Due to its alignment length and location, such a sequence does not
provide valuable information about the gap; if the aligned sequence were similar to the gap
and gap region, it would have longer matches that span the entire gap region or at least one
end. Any aligned sequence that fails to meet this constraint is removed from the alignment.
The alignment statistics generated by BLAST are stored in a separate directory for use after
the alignment process is completed.

Read extension on aligned sequences
At this stage, we go through each gap’s stored filtered alignment files one by one. Our
confidence in the sequence alignment allows us to filter the alignment so that it only
contains the information we require (i.e., subject and query id, subject and query start, and
subject and query end).

We hypothesize that if there is an aligned sequence with sufficient information that
meets the constraint set at stage two, then by extending that sequence within the gap’s
range, we have a good chance of filling the gap.We then perform the left and right extension
procedures for all match sequences based on this hypothesis, as illustrated in Fig. 3.

Before the extension procedure, we perform a sequence directionality check on the
alignment statistics file. Sequence directionality (Lodish et al., 2008) is the end-to-end
chemical orientation of a single strand of nucleic acid. In a single strand of DNA, the
chemistry convention of naming carbon atoms in the nucleotide pentose-sugar-ring means
that there will be a 5′-end, which frequently contains a phosphate group that is attached
to the 5′ carbon of the ribose ring, and a 3′-end, which is typically unmodified from the
ribose -OH substituent. In a DNA double helix, the strands run in opposite directions
to permit base pairing between them. A gene is read in the 3′ to 5′ direction (forward
sequence), and so its REVERSE complementary strand is read in the 5′ to 3′ direction
(reverse sequence). Based on sequence directionality, we split the filtered alignment into
the forward and reverse sequence directions. We do this by checking if the query start is
larger than the query end. If the query start is greater, the directionality of the sequence is
reversed.

After we determine the sequence directionality, we pass it on to the left and right
extension procedures.

Left extension
This procedure is only applicable to sequences that are aligned with the gap’s right end
(right flank). It extends the aligned sequence from the aligned sequence’s start index to the
gap’s start index.
This procedure first determines whether the given sequence is moving in the correct
direction. If the sequence is moving in the forward direction, subject start—(gap length
+ (query start - gap end))—is used to create a new start index. RFfiller then checks if the

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

candidate
sequences

left flank gap length of
N bp

right flank

Gapstart Gapendleft extension

right extension

Lestart Leend

Restart Reend

long read
Lrstart Lrend

Figure 3 General flow of right and left sequence extension on the aligned reads.
Full-size DOI: 10.7717/peerj.14186/fig-3

newly generated start index is contained within the subject sequence’s length. We must
check if the extension index is within the sequence because we are extracting the gap-filling
sequence from the subject sequence (long-read alignment). If the new start index is not
within the range of the subject length, it means that the extended read resides at the
beginning of the subject length. If this is the case, we set the new start index to zero. After
confirming that the index can be used, the new extension end index is created by simply
adding the gap length to the newly created start index.

If the sequence directionality is reversed, we check if the newly generated end index
is less than the sequence length. Because the query start is greater than the query end,
the extension of the gap length usually extends the limit of the subject sequence. In this
case, we set the new end index to the subject length, and the new start index becomes the
difference between the new start index and the gap length. Now that we have the final left
extended sequence index, we write the subject id, new start index, new end index, and its
directionality to a file.

Right extension
This procedure is almost the same as the left extension but works on sequences that are
aligned to the left end of the gap (left flank). It extends the aligned sequence starting from
the aligned sequence end index to the end index of the gap. The rest of the process is the
same except when it computes the new start index, it uses subject end + (gap start - query

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 7/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-3
http://dx.doi.org/10.7717/peerj.14186

end) for forward sequence directionality and subject end - (gap length + (query start -
query end)) for reverse sequence directionality.

The Browser ExtensibleData (BED) file format is used to save the files. The BED (Quinlan
& Hall, 2010) format is a text file format for storing genomic regions as coordinates and
annotations. The information is organized into columns that are separated by spaces or
tabs. One advantage of this format is that it compares genomes using coordinates rather
than nucleotide sequences, which improves power and computation time.

Construction of a transition table
At this stage, we access the stored BED files. The BED files contain candidate sequence
indexes to fill all of the scaffold’s gaps. We use BEDTools, a specialized tool for parsing
BED files, to convert the index to a sequence. We pass the BED files and the long-read
sequence as input parameters. The BEDTools look for indexes in the long-read sequence
and then check the sequence’s directionality. If the sequence directionality is forward,
the tool searches the index on the long-read sequence directly and outputs the found
sequence. However, if the directionality is reversed, it applies the reverse complement to
the discovered sequence by searching the index.

We now have enough information about the sequences to fill the gap after converting the
indexes into reads. RFfiller generates a transition table for each of the candidate sequences
for further analysis. The transition table is a table that shows how the transition function
works. It takes two inputs (a state and a symbol) and outputs a state (the ‘‘next state’’). A
transition table is represented by columns corresponding to input symbols.

RFfiller builds a transition table by counting the frequency of each nucleotide in the
candidate sequence. To calculate the frequency, we must first convert the sequences into
numerical representations: A= 0, C = 1, G= 2, and T = 3. We then count the frequency
of each nucleotide pair (how many times a nucleotide follows another nucleotide). We
perform this operation for all the candidate sequences, as illustrated in Fig. 4.

After constructing the frequency table, we use probability to convert it to a transition
table. In a frequency table, the total sum of a row is used as a divider for the columns
within the row. To prevent a division-by-zero error, the sum should always be greater than
zero. In some cases, however, we allow the sum to be zero; when a candidate sequence is
only one nucleotide long. In this case, we set the rest of the rows to zero to maintain the
integrity of the transition table dimension. The final transition matrix is indexed with A,
C, G, and T to complete this step.

Markov chain
This stage takes the transition matrix, gap length, and last character before the gap stars
(last character) as input parameters. RFfiller generates the final sequence based on the
transition matrix, as illustrated in Fig. 5. It first converts the last character to uppercase.
This is because some scaffolds are of mixed-case nucleotides (lower- and uppercase), and
it disrupts the transition matrix because it is indexed on the uppercase of the nucleotides.
It then tries to guess, given the last character, only one nucleotide. This is one of the
most crucial steps in this stage. Providing the last character base assures the sequence to

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

s1 s1

s3

s14

sn

Candidate
sequences

sn

Final transition
table

Figure 4 Construction of transition table from candidate sequences.
Full-size DOI: 10.7717/peerj.14186/fig-4

be generated is following a pattern from the gap region. RFfiller also guarantees that the
Markov chain does not start at a random location. This means that there will always be
prior knowledge of the gap before sequences that fill it are generated.

The Markov chain generates the same number of nucleotides as the number of gaps
present. We repeat this stage 5–10 times for a single gap because it is a statistical procedure.
Now that we have multiple sequences, the next step is to calculate the probability of each
newly generated sequence and to select the one with the highest probability. The transition
matrix is used to calculate the sequence probability. It checks the probability of the first
nucleotide to its preceding nucleotide and records the transition cost, given one of the final
sequences. There are n-1 transition costs for an n-length sequence. The sequence rank is
determined by the average transition cost of a sequence.

Gap filling
The algorithm creates an output file similar to the scaffold sequence now that we have
gathered the sequences to fill the gap. If there are gaps in the scaffold, the algorithm searches
for the sequence ID within the newly generated sequences before creating the output file.
If the sequence ID exists, the newly generated sequence fills the gap. After that, it is saved
to the output file. RFfiller does not affect the rest of the sequence, even if a newly created
sequence is not found. It only replaces unknown sequences (labeled by the letter ‘N’).

RESULTS
RFfiller algorithm
Long reads are used to generate a sequence based on a statistical outcome, followed
by sequence assembly using a Markov chain-based gap-filling technique. By providing
sufficient information about the gap region, RFfiller can forecast the next nucleotide given
the current state using the Markov chain concept.

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 9/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-4
http://dx.doi.org/10.7717/peerj.14186

new sequence

left flank right flank

new sequence

final transition table

Figure 5 Gap filling usingMarkov chain with 16 candidate sequences.
Full-size DOI: 10.7717/peerj.14186/fig-5

The RFfiller algorithm fills gaps using both a scaffold and a long-read sequence from
the same organism. When the scaffold contains unknown sequences or gaps, as in this
case, the algorithm is efficient. The algorithm attempts to identify gaps by examining the
neighborhood sequence in which they occur. Due to the presence of duplicates in the
gap region, it is necessary to inspect the gap region itself. In the gap region, a pattern is
determined. This pattern serves as a starting point for evaluating the newly discovered
sequence.

The long read may generate read fragments that are identical to those found in the gap
region, indicating that the long read may contain the same sequence as the gap region.
When the algorithm discovers similar reads, it replaces the unknown sequence with
read fragments from those candidates using a Markov chain. The output of the Markov
chains is used to close the gap. As illustrated in Fig. 6, RFfiller consists of five stages: gap
detection, long-read alignment, read extension, transition table construction, Markov
chain construction, and gap filling. Each stage is discussed in detail in the Methods section.

Experiment
To assess accuracy, assemblies were compared with finished sequences derived from
independent sequencing experiments. Assemblies were created using popular assembly
programs with default parameters as a way to compare the naively generated assemblies.

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 10/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-5
http://dx.doi.org/10.7717/peerj.14186

G1 G2 G3

new sequence3new sequence2

left flank G1 right flank

new sequence1

A

B

C

D

E

Scaffold

Long read

Long read alignment

Long read alignment filteration

Read extenstion

Transition table construction

Gap filling

left flank right flank

left flank right flank

right flankleft flank

left flank G2 right flank

left flank G2 right flank

right flankleft flank G2

right flankleft flank G2

left flank G3 right flank

left flank G3 right flank

left flank G3 right flank

left flank G3 right flank

s1

s5

s2

s3 & s4

s1 s2s3 s4s5 s6

s1

s2s3 s4

Gapstart Gapend Gapstart Gapend Gapstart Gapend

FTM1 = FTM2 = FTM3 =

G1

G1

G1

Figure 6 The RFfiller algorithm. RFfiller workflow consists of first detecting and extracting gaps from
the input scaffold. (A) The long-read alignment is used to find sequences that are similar to the gap re-
gion. (B) Once similar reads are found, based on their percentage identity and location, similar reads are
filtered out. (C) The remaining reads will be extended based on their directionality to cover the gap length.
These reads are called candidate reads. (D) Based on the candidate reads, a pattern will be determined by
counting the frequency of the nucleotides by constructing a transition table. The aggregated result of each
candidate reads transition table will generate the final transition table, which will be applied to the Markov
chain. (E) The output of the Markov chain will be used to fill the gaps.

Full-size DOI: 10.7717/peerj.14186/fig-6

Some gap fillers used short reads while others used long reads. We intended to compare
how well a gap filler fills a gap given the same input. In total, there were 36 assemblies
from six assembly programs and six datasets. Using the output of the assemblers, we
performed 144 gap-filling experiments using four gap-filling algorithms. All experiments
were performed on the same server (two Intel Xeon E5-2695 v4 processors with a memory
limit of 128 GB). All the parameters used to conduct this experiment can be found in the
supplementary material. To keep the article concise, we have chosen to present only the
key metrics from each gap filler result in the subsequent evaluations.

Dataset
In this experiment, we used three bacteria, a mammal, a plant, and a fungus. This
included Arabidopsis thaliana, Bacillus cereus, Escherichia coli,Homo sapiens, Saccharomyces
cerevisiae, and Staphylococcus aureus WGS data. All the species we incorporated had
previously been sequenced and completed using one of the assemblers mentioned in the

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 11/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-6
http://dx.doi.org/10.7717/peerj.14186

Table 1 Dataset information.

Dataset Read
type

Technology Accession
number

Refseq # bases Coverage

Short Illumina ERR3485043 304.3M 2.3Arabidopsis
thaliana Long PacBio ERR3415827

GCF_000001735.4
1.9G 8.7

Short Illumina ERR3338758 443.6M 3.0Bacillus
cereus Long PacBio SRR9641613

GCF_000007825.1
1.2G 25.6

Short Illumina SRR12573761 326.7M 62.9Escherichia
coli Long PacBio SRR10538960

GCF_000005845.2
3.3G 488.9

Short Illumina SRR005721 860.9M N/AHomo
sapiens Long PacBio SRR13684281

GCF_000001405.39
6.8G 2.3

Short Illumina SRR12596359 3.0G 225.0Saccharomyces
cerevisiae Long PacBio ERR4467305

GCF_000146045.2
5.3G 288.7

Short Illumina SRR12560295 480.7M 167.8Staphylococcus
aureus Long PacBio SRR10807892

GCF_000013425.1
2.5G 715.5

manuscript to a very high level. The correctness of each assembler was rigorously evaluated
and compared using the reference genome.

The six genomes represent a wide range of genome sizes, from bacteria to the human
genome. Because some of the assemblers would require several weeks to assemble the entire
genome, and others would eventually fail, a sample having a wide range of read length and
coverage was chosen. Table 1 summarizes the details of the reads used for the experiment.

Assemblers
We chose six de novo assemblers for this experiment. Of the six, three are short-read
assemblers (ABySS, SPAdes, and SOAPdenovo2), and the remaining three are long-read
assemblers (A5-MiSeq, Flye, and SGA).

SPAdes (Bankevich et al., 2012), SOAPdenovo2 (Luo et al., 2012), and ABySS (Simpson
et al., 2009) are short-read assemblers. SPAdes is a single-cell, standard A-Bruijn assembler
(Pevzner, Tang & Tesler, 2004). It alters the graph topology, coverage, and length of
sequences rather than the sequences themselves. It uses only K -mers to build the de
Bruijn graph. The final stage restores the DNA consensus sequence. For the large genome,
SOAPdenovo2 is designed to solve a greater number of repeated contiguous areas, which
increases scaffolding coverage and length. Lastly, ABySS (Assembly By Short Sequences)
is a distributed representation of a de Bruijn graph, which allows the assembly algorithm
to be parallelized across a network of commodity computers. The ABySS algorithm is
split into two parts. The sequence reads are first used to generate all possible substrings of
length k (known as K -mers). Read errors are then removed from the K -mer dataset, and
the initial contigs are created. Mate-pair information is used in the second stage to extend
contigs by resolving ambiguities in the contig overlaps.

The long-read assemblers are A5-MiSeq (Coil, Jospin & Darling, 2015), Flye (Kolmogorov
et al., 2019), and SGA (Simpson & Durbin, 2012). SGA is an assembler based on FM index
(Ferragina & Manzini, 2005; Burrows & Wheeler, 1994), memory-efficient data structures,
and assembly algorithms. Preprocessing the sequence reads to filter or trim the reads is

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 12/22

https://peerj.com
https://www.ncbi.nlm.nih.gov/nucleotide?term=ERR3485043
https://www.ncbi.nlm.nih.gov/nucleotide?term=ERR3415827
https://www.ncbi.nlm.nih.gov/nucleotide?term=ERR3338758
https://www.ncbi.nlm.nih.gov/sra?term=SRR9641613
https://www.ncbi.nlm.nih.gov/sra?term=SRR12573761
https://www.ncbi.nlm.nih.gov/sra?term=SRR10538960
https://www.ncbi.nlm.nih.gov/sra?term=SRR005721
https://www.ncbi.nlm.nih.gov/sra?term=SRR13684281
https://www.ncbi.nlm.nih.gov/sra?term=SRR12596359
https://www.ncbi.nlm.nih.gov/nucleotide?term=ERR4467305
https://www.ncbi.nlm.nih.gov/sra?term=SRR12560295
https://www.ncbi.nlm.nih.gov/sra?term=SRR10807892
http://dx.doi.org/10.7717/peerj.14186

the first step in the SGA pipeline. The FM index is built from the filtered set of reads,
and base-calling errors are detected and corrected using K -mer. Corrected reads are
re-indexed, duplicate sequences are discarded, and a string graph is generated. Scaffolds
are built from the string graph if paired-end or mate-pair data are available. Each step in
the A5-MiSeq pipeline is described below. The specifics are as follows: (I) Trimmomatic
(Lohse et al., 2012) removes adapters and low-quality sequences. This is followed by read
error correction using the SGA K -mer. (II) IDBA-UD (Peng et al., 2012) assembles paired
and unpaired reads. (III) Any large insert library can scaffold contigs with permissive
parameters. Misassembled contigs and scaffolds are broken. Following this, a final round
of scaffolding repairs any previously broken continuity. Finally, Flye, a long-read assembly
algorithm that builds an accurate repeat graph from disjointigs, generates disjointigs that
represent disjointed genome segment concatenations. Error-prone disjointigs are then
joined together. Assembly graphs are built using the resulting string read, which untangles
the graph and fixes bridged repeats. Later, the repeat graph addresses unbridged repeats
and outputs precise contigs formed by the paths in the graph.

Except for the human genome, we ran the assembler using the default parameters to
allow comparisons between assemblies produced by different assemblers. We fine-tuned
the parameters of each assembler because the default parameters were inadequate to enable
the assembler to run on the human genome. All of the assembler’s output contains an
unknown sequence. Using their output, we tested the gap-filling tools.

Validation
To determine the best assembly for each gap-filling tool, QUAST QUAST (Gurevich et al.,
2013) was used to determine length statistics for the assembly, such as total length and
NG50, as well as alignment to the reference, including NGA50, mismatch, number of gaps,
total aligned length, and misassemblies.

• NG50 is the length for which the collection of all contigs of that length or longer covers
at least half the reference genome.
• NGA50 is an NG50 corrected assembly error.
• Mismatch is the number of mismatches in all aligned bases.
• The number of gaps is equal to the total number of uncalled bases (N’s) in the assembly.
• Misassemblies is the number of positions in the assembled contigs where the left-
flanking sequence is more than 1 kbp away from the right-flanking sequence on the
reference (relocation), or where flanking sequences are on different strands (inversion),
or different chromosomes (translocation).

Evaluation
This section intends to demonstrate which gap-filling algorithm generates the fewest
mismatches and misassemblies, as well as the greatest number of NGA50 and total aligned
length, on the filled gap sequence. Additionally, gap-filling algorithms are evaluated in
terms of different flanks and gap length, including an equal number of flanks, a single-sided
flank, a shorter flank, and a gap length of 1 bp. Different flanks and gap lengths in the same
dataset may fall into different categories. According to our analysis of the sequences, those

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

(A)

(B)

(C)

(D)

(E)

(F)

Figure 7 Assembly statistics.Misassemblies, mismatch and total aligned length of gap fillers on (A) Arabidopsis thaliana, (B) Bacillus cereus, (C)
Escherichia coli, (D) Homo sapiens, (E) Saccharomyces cerevisiae, and (F) Staphylococcus aureus dataset. RFF represents RFfiller, GC represents Gap-
Closer, S represents sealer, and TG represents TGS-GapCloser. The y-axis represents basepairs. The x-axis represents gap fillers.

Full-size DOI: 10.7717/peerj.14186/fig-7

sequences having a large number of 1 bp gaps fell into the 1 bp gap-length category. The
same was true for the remaining categories.

Equal number of flanks
To validate this case, the Arabidopsis thaliana, Bacillus cereus, and Staphylococcus aureus
datasets were used. RFfiller generated the fewest misassemblies and mismatches.
Additionally, it generated the greatest number of total aligned lengths compared with
the other gap fillers, as illustrated in Fig. 7. These datasets contain an equal number of
flanking sequences. RFfiller took advantage of this to amass sufficient overlap information
to construct a well-defined transition table. The precise unknown sequences were then
generated using the well-defined transition table. On the three datasets used to validate
this concept, RFfiller outperformed the other gap-filling algorithms for an equal number
of flanks. Table 2 summarizes the output of the gap fillers.

One flank shorter
When RFfiller was executed, few misassemblies and mismatches were produced.
Additionally, when compared with the other gap fillers, it produced the greatest number
of total aligned lengths, as illustrated in Fig. 7. The Escherichia coli overlap data aided in
verifying that one the flank was shorter than the other flank. Although RFfiller extracted less

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 14/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-7
http://dx.doi.org/10.7717/peerj.14186

Table 2 Difference in assembly statistics of all gap fillers and de novo assemblers across all datasets.

Assemblers Gap filling
algorithms

Arabidopsis thaliana Bacillus cereus Escherichia coli

gaps Misassembly Mismatch TAL NGA50 # gaps Misassembly Mismatch TAL NGA50 # gaps Misassembly Mismatch TAL NGA50

RFfiller 0 10 1009 −17 – 0 0 20 −160 – 0 0 4 −7 0

GapCloser 63610 −24 −24172 229264 – 799 0 −3 −108 – 558 0 −127 0 0

Sealer 220 2 332 12974 – 8 0 −6 −141 – 1 0 1 22 0A5-MiSeq

TGS-GapCloser 0 0 0 0 – 0 0 0 0 – 0 0 0 0 0

RFfiller 0 0 0 0 – 303 0 19 −516 – 288 2 26 −578 328

GapCloser 0 0 0 0 – 855 0 −16 −409 – 952 −2 −10 −372 328

Sealer 0 0 0 0 – 789 0 −6 −194 – 718 −1 −19 −556 328ABySS

TGS-GapCloser 0 0 0 0 – 100 0 0 0 – 202 0 −48 −1924 0

RFfiller 0 0 0 0 0 0 5 0 0 – 0 0 0 0 0

GapCloser 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0

Sealer 0 0 0 0 0 0 5 0 0 – 0 0 0 0 0FLYE

TGS-GapCloser 0 0 0 0 0 0 0 0 0 – 0 0 0 0 0

RFfiller 0 0 0 0 – 50 0 8 −1060 – 0 0 0 0 1464

GapCloser 0 0 0 0 – 864 0 −2 61 – 0 0 0 0 1464

Sealer 0 0 0 0 – 0 0 0 0 – 0 0 0 0 1464SGA

TGS-GapCloser 0 0 0 0 – 175 0 −55 −1032 – 0 0 0 0 1464

RFfiller 763 2 −64 −188 – 786 0 0 −163 – 1343 1 14 −11545 −51

GapCloser 2938 3 −16 −1637 – 5030 0 −16 −713 – 4103 −2 −234 −6465 40

Sealer 2880 4 −24 −4577 – 4857 0 32 −408 – 3807 −1 −415 −11068 −29SOAPdenovo2

TGS-GapCloser 897 0 −67 −628 – 87 0 0 7 – 393 0 −58 −1355 −29

RFfiller 200 0 199 −805 – 100 0 6 −45 – 200 0 0 −300 4722

GapCloser 80 0 −39 −258 – 695 0 2 297 – 447 0 −7 −134 4722

Sealer 0 0 0 0 – 600 0 5 153 – 300 0 −6 6 4722SPAdes

TGS-GapCloser 0 0 0 0 – 0 0 0 0 – 200 0 −9 212 4722

Homo sapiens Saccharomyces cerevisiae Staphylococcus aureus

RFfiller 118 21 2007 38 – −5647 2 −8 −1000 0 6097 0 −9990 0 0

GapCloser 697827 −562 −347997 1186684 – 24 3 −3885 −90 0 6137 0 −10012 0 0

Sealer 704 12 589 69560 – −5965 1 −80 −567 0 6097 0 −9998 265 0A5-MiSeq

TGS-GapCloser 187 0 −6 102 – −5729 1 −42 −859 0 6097 0 −10000 0 0

(continued on next page)

M
idekso

and
Yi(2022),PeerJ,D

O
I10.7717/peerj.14186

15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

Table 2 (continued)
Assemblers Gap filling

algorithms
Arabidopsis thaliana Bacillus cereus Escherichia coli

gaps Misassembly Mismatch TAL NGA50 # gaps Misassembly Mismatch TAL NGA50 # gaps Misassembly Mismatch TAL NGA50

RFfiller 0 0 0 0 – −5472 4 2096 −16125 −100 4917 −25 −300 −1200 −16603

GapCloser 0 0 0 0 – 199 −3 −1781 −15215 −1 5068 −25 −322 −130 −16603

Sealer 0 0 0 0 – −5790 0 2024 −15692 −81 5075 −25 −308 0 −16603ABySS

TGS-GapCloser 0 0 0 0 – −5554 −3 2062 −15984 3147 5022 −25 −310 −401 −16603

RFfiller 0 0 0 0 – −300 0 0 0 – 300 0 0 0 0

GapCloser 0 0 0 0 – −200 0 13 262 – 300 0 0 0 0

Sealer 0 0 0 0 – −300 0 0 0 – 300 0 0 0 0FLYE

TGS-GapCloser 0 0 0 0 – −300 0 0 0 – 300 0 0 0 0

RFfiller 0 0 0 0 – −2100 8 −83 −20018 0 10926 4 104 −3911 −603

GapCloser 0 0 0 0 – 4737 −13 −511 −11565 0 14173 −3 −63 −3771 −25

Sealer 0 0 0 0 – −3803 2 −229 −3706 3297 9268 0 0 0 0SGA

TGS-GapCloser 0 0 0 0 – −66 −9 −411 −2887 6978 12401 1 −917 5649 −537

RFfiller 171396 −2 −17853 123776 – −22310 −7 −477 −41611 1213 39137 −2 −202 −894 0

GapCloser 164706 14 −1209 43796 – 2992 −23 −1495 −89720 2098 41044 −10 −228 −10522 178

Sealer 0 0 0 0 – −7817 −6 −1320 −75616 −820 40348 −10 −178 −7659 178SOAPdenovo2

TGS-GapCloser 2521 1 −62 −4041 – −32770 −10 −1455 −32457 694 38116 0 −422 −7659 −71

RFfiller 1534 6 34 −209 – −4639 3 −136 −10592 0 7439 0 9 −1069 0

GapCloser 1153 −12 −2 −1393 – −658 0 −115 −3607 0 7733 0 −46 −638 0

Sealer 0 0 0 0 – −51 2 −66 1739 0 7538 0 −45 −965 0SPAdes

TGS-GapCloser 190 6 −753 −49977 – −439 2 −168 2094 0 7339 0 −17 −379 0

Notes.
Values in italicized bold indicate the best result in each category.
The full results of gap fillers and de novo assembly statistics on each dataset can be found in the Supplementary Material.

M
idekso

and
Yi(2022),PeerJ,D

O
I10.7717/peerj.14186

16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186#supp-1
http://dx.doi.org/10.7717/peerj.14186

information than the algorithms utilized on the Arabidopsis thaliana, Bacillus cereus, and
Staphylococcus aureus datasets, the overlap information obtained from both flank ends was
adequate to construct an appropriate transition table. Despite this, RFfiller outperformed
the other gap fillers in terms of misassemblies, mismatch, and total aligned length on the
scaffold constructed by all de novo assemblers. Table 2 summarizes the gap filler’s output.

Single-sided flanks
As illustrated in Fig. 7, RFfiller had the fewest misassemblies and mismatches. RFfiller
was evaluated against single-sided flanks on the Saccharomyces cerevisiae dataset in terms
of creating the longest aligned length achievable. Saccharomyces cerevisiae data assisted in
confirming the condition characterized by the presence of only one side flank. Only one
flank was used to retrieve the overlap information. Due to RFfiller inability to discern
patterns in such data, information from a single flank is insufficient to accurately narrow
a gap. When this occurs, RFfiller fills only a portion of the gap and leaves the remaining
portion unchanged. Despite the absence of overlap information, RFfiller outperformed
other gap fillers in terms of misassemblies and mismatches. Table 2 summarizes the result
of the gap fillers on the Saccharomyces cerevisiae dataset.

Gap length of 1 bp
RFfiller produced the fewest misassemblies, as seen in Fig. 7. The Homo sapiens dataset
was used to confirm that the gap length was limited to a single character (1 bp gap length)
in some cases. RFfiller gathered overlap information from the flanks in the circumstances
described above. Because a gap is 1 bp long, the algorithms’ candidate sequences were
all limited to generating 1 bp sequences. A pattern could not be generated from these
candidate sequences, resulting in an incorrect transition table. When the algorithm
attempted to generate candidate sequences, it looked for patterns within the candidate
sequences in order to generate a transition table. A Markov chain would be able to infer the
missing sequences based on the transition table and the pattern detected in the candidate
sequences. If no pattern was found, no transition table was built (i.e., all the rows and
columns are set to 0), and no inference was made. There had to be at least 2 bp for a pattern
to be detected. Such a gap was labeled as unfillable by RFfiller. This was especially apparent
on the SOAPdenovo scaffold, but the suggested approach also functioned well on scaffolds
that were created by other de novo assemblers. The results of the gap fillers on the Homo
sapiens dataset are summarized in Table 2.

Performance
We compared RFfiller with the three gap fillers in terms of time andmemory consumption.
In comparison with the other gap fillers, RFfiller only utilizes reads that are in the
neighboring region of the gap sequences, thus RFfiller outperformed other gap fillers
in terms of memory usage. For comparing in terms of time, gap filling is dependent on the
gap filler’s objective. For example, if a gap filler’s objective is to fill all gaps within a scaffold
at the expense of accuracy, the gap filler will run faster. However, if its objective is accuracy
rather than speed, it will make extensive use of memory and time. RFfiller’s objective is to
find accurate overlapping sequences to tackle mismatches andmisassemblies. It achieves its

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

Figure 8 Average time andmemory of gap fillers. The x-axis represents datasets. AT represents Ara-
bidopsis thaliana, BC represents Bacillus cereus, EC represents Escherichia coli, HS represents Homo sapiens,
SC represents Saccharomyces cerevisiae, and SA represents Staphylococcus aureus dataset.

Full-size DOI: 10.7717/peerj.14186/fig-8

object at the expense of time. Nonetheless, by extracting sufficient overlapping information
from gap regions, a highly accurate read can be achieved within a short period of time
(Fig. 8). For this reason, we compared gap fillers based on their ability to fill gaps with
fewer mismatches andmisassemblies relative to the original sequence. RFfiller was the most
resource-efficient algorithm of all the gap fillers. The average result of the comparison is
illustrated in Fig. 8.

CONCLUSION
Despite the recent advances in next-generation sequencing technologies, published draft
assemblies of small and large genomes still contain unknown sequences. We demonstrated
in this paper that RFfiller, which is based on a Markov chain, produces high-quality results
on most datasets tested while requiring only moderate computational resources. Although
RFfiller produces the shortest erroneous sequence length, we cannot generalize about the
robustness of our problem formulation because gaps were left unfilled. Although achieving
100% completion without at least some computer-assisted manual finishing and labor-
intensive PCR work is improbable, each tool performs differently in terms of misassemblies
and the number or length of gaps closed, and this emphasizes the problem difficulty. We
demonstrated how long and short reads can be used in the gap-filling algorithms to achieve
in a near-complete genome. Additionally, we discovered that patterns exist within a gap
region. Using long reads and gap region analysis, we were able to statistically guess missing
sequences.

After scaffolding the draft genomes, RFfiller assists in filling long gaps and solving the
gap-filling problem. Because no other application employs probability to solve this type of
problem, RFfiller is novel. We demonstrated this by comparing the results of our tool to
those of Sealer, TGS-GapCloser, and GapCloser.

Sealer and GapCloser utilized short reads to close the gap. In our findings, we discovered
that both Sealer and GapCloser reconstructed the scaffold in the absence of a gap. In
this case, their assembly statistic was not better than the provided scaffold. GapCloser
was somewhat greedy when closing gaps. It was more concerned with filling in the gaps

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 18/22

https://peerj.com
https://doi.org/10.7717/peerj.14186/fig-8
http://dx.doi.org/10.7717/peerj.14186

than with accuracy. Due to its lack of focus on accuracy, it excelled at time and memory
efficiency.

TGS-GapCloser and RFfiller closed the gaps using long reads. Their result was extremely
similar, but TGS-GapCloser generated significantly more mismatches than did RFfiller.
Even when fewer mismatches and misassemblies were generated, the total aligned length
and fully aligned contigs were shorter than the provided scaffold and RFfiller output.
Similarly, similar scenarios were observed with Sealer. Concerning resource consumption,
TGS-GapCloser consumed themostmemory, whereas Sealer took the longest time to finish.
Considering the pros and cons of using TGS-GapCloser and Sealer involves considering a
trade-off between resource efficiency and moderate accuracy.

RFfiller outperformed the gap fillers on the majority of datasets. RFfiller was primarily
impacted by short gaps and an insufficient number of nucleotides on the flanks of the
gap region. On short gaps (1 bp), the algorithm required a pattern within the candidate
sequence. However, if the gap length is one base pair, all candidate sequences will be
one base pair in length, and this makes it difficult to identify patterns within a sequence.
On the other hand, when the gap length is greater than the length of either flank, the
alignment generated on the gap region lacks sufficient information to extend the sequences
as candidate sequences. On the SOAPdenovo2 scaffolds, this phenomenon was observed.
These are the algorithm’s only limitations. Even in these instances, it generated fewer
mismatches and misassemblies than the other gap fillers. According to our findings, the
most effective method for filling in gaps is by using a statistical approach. Utilizing a hybrid
method to update a draft de novo genome assembly, aided by RFfiller, is an efficient and
accurate strategy for improving the quality of gene annotation and the structural variation
detection. As a result, downstream analyses of high quality is possible.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2022R1F1A1074228). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Research Foundation of Korea: NRF-2022R1F1A1074228.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Firaol Dida Midekso performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 19/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.14186

• Gangman Yi conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Data is available at RFfiller: Midekso, Firaol Dida, & Yi, Gangman. (2022). RFfiller.
Zenodo. https://doi.org/10.5281/zenodo.7086759.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.14186#supplemental-information.

REFERENCES
Abate AR, Hung T, Sperling RA, Mary P, Rotem A, Agresti JJ, Weiner MA,Weitz

DA. 2013. DNA sequence analysis with droplet-based microfluidics. Lab on a Chip
13(24):4864–4869 DOI 10.1039/c3lc50905b.

Bankevich A, Nurk S, Antipov D, Gurevich AA, DvorkinM, Kulikov AS, Lesin VM,
Nikolenko SI, Pham S, Prjibelski AD. 2012. SPAdes: a new genome assembly
algorithm and its applications to single-cell sequencing. Journal of computational
biology 19(5):455–477 DOI 10.1089/cmb.2012.0021.

Behjati S, Tarpey PS. 2013.What is next generation sequencing? Archives of Disease in
Childhood-Education and Practice 98(6):236–238
DOI 10.1136/archdischild-2013-304340.

BurrowsM,Wheeler D. 1994. A block-sorting lossless data compression algorithm..
Chmielecki J, MeyersonM. 2014. DNA sequencing of cancer: what have we learned?

Annual Review of Medicine 65:63–79 DOI 10.1146/annurev-med-060712-200152.
Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble

microbial genomes from Illumina MiSeq data. Bioinformatics 31(4):587–589
DOI 10.1093/bioinformatics/btu661.

Collins FS, MorganM, Patrinos A. 2003. The Human Genome Project: lessons from
large-scale biology. Science 300(5617):286–290 DOI 10.1126/science.1084564.

Coordinators NR. 2016. Database resources of the national center for biotechnology
information. Nucleic Acids Research 44(D1):D7–D19 DOI 10.1093/nar/gkv1290.

Dida F, Yi G. 2021. Empirical evaluation of methods for de novo genome assembly. PeerJ
Computer Science 7:e636 DOI 10.7717/peerj-cs.636.

Ferragina P, Manzini G. 2005. Indexing compressed text. Journal of the ACM (JACM)
52(4):552–581 DOI 10.1145/1082036.1082039.

Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for
genome assemblies. Bioinformatics 29(8):1072–1075
DOI 10.1093/bioinformatics/btt086.

Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y,
Clapham P, Clarke L. 2009. Ensembl 2009. Nucleic Acids Research 37(suppl
1):D690–D697 DOI 10.1093/nar/gkn828.

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 20/22

https://peerj.com
https://doi.org/10.5281/zenodo.7086759
http://dx.doi.org/10.7717/peerj.14186#supplemental-information
http://dx.doi.org/10.7717/peerj.14186#supplemental-information
http://dx.doi.org/10.1039/c3lc50905b
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1136/archdischild-2013-304340
http://dx.doi.org/10.1146/annurev-med-060712-200152
http://dx.doi.org/10.1093/bioinformatics/btu661
http://dx.doi.org/10.1126/science.1084564
http://dx.doi.org/10.1093/nar/gkv1290
http://dx.doi.org/10.7717/peerj-cs.636
http://dx.doi.org/10.1145/1082036.1082039
http://dx.doi.org/10.1093/bioinformatics/btt086
http://dx.doi.org/10.1093/nar/gkn828
http://dx.doi.org/10.7717/peerj.14186

KolmogorovM, Yuan J, Lin Y, Pevzner PA. 2019. Assembly of long, error-prone reads
using repeat graphs. Nature Biotechnology 37(5):540–546
DOI 10.1038/s41587-019-0072-8.

Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-Tárraga A, Cheng Y, Cleland
I, Faruque N, Goodgame N, Gibson R. 2010. The European nucleotide archive.
Nucleic Acids Research 39(suppl 1):D28–D31.

Li R, Zhu H, Ruan J, QianW, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K. 2010. De
novo assembly of human genomes with massively parallel short read sequencing.
Genome Research 20(2):265–272 DOI 10.1101/gr.097261.109.

Lodish H, Berk A, Kaiser CA, Kaiser C, Krieger M, Scott MP, Bretscher A, Ploegh H,
Matsudaira P. 2008.Molecular cell biology. 6th edition. New York: W.H. Freeman.

Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B. 2012. R obi NA:
A user-friendly, integrated software solution for RNA-Seq-based transcriptomics.
Nucleic Acids Research 40(W1):W622–W627 DOI 10.1093/nar/gks540.

Luo R, Liu B, Xie Y, Li Z, HuangW, Yuan J, He G, Chen Y, Pan Q, Liu Y. 2012. SOAP-
denovo2: an empirically improved memory-efficient short-read de novo assembler.
Gigascience 1(1):2047–217X.

McGinnis S, Madden TL. 2004. BLAST: at the core of a powerful and diverse set
of sequence analysis tools. Nucleic Acids Research 32(suppl 2):W20–W25
DOI 10.1093/nar/gkh435.

Paulino D,Warren RL, Vandervalk BP, Raymond A, Jackman SD, Birol I. 2015. Sealer:
a scalable gap-closing application for finishing draft genomes. BMC Bioinformatics
16(1):1–8.

Pekin D, Skhiri Y, Baret J.-C, Le Corre D, Mazutis L, Salem CB, Millot F, El Harrak
A, Hutchison JB, Larson JW. 2011. Quantitative and sensitive detection of rare
mutations using droplet-based microfluidics. Lab on a Chip 11(13):2156–2166
DOI 10.1039/c1lc20128j.

Peng Y, Leung HC, Yiu SM, Chin FY. 2012. IDBA-UD: a de novo assembler for single-
cell and metagenomic sequencing data with highly uneven depth. Bioinformatics
28(11):1420–1428 DOI 10.1093/bioinformatics/bts174.

Pevzner PA, Tang H, Tesler G. 2004. De novo repeat classification and fragment
assembly. Genome Research 14(9):1786–1796 DOI 10.1101/gr.2395204.

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26(6):841–842 DOI 10.1093/bioinformatics/btq033.

Reuter JA, Spacek DV, Snyder MP. 2015.High-throughput sequencing technologies.
Molecular Cell 58(4):586–597 DOI 10.1016/j.molcel.2015.05.004.

Simpson JT, Durbin R. 2012. Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Research 22(3):549–556 DOI 10.1101/gr.126953.111.

Simpson JT,Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a par-
allel assembler for short read sequence data. Genome Research 19(6):1117–1123
DOI 10.1101/gr.089532.108.

Vandervalk BP, Jackman SD, Raymond A, Mohamadi H, Yang C, Attali DA, Chu J,
Warren RL, Birol I. 2014. Konnector: Connecting paired-end reads using a bloom

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 21/22

https://peerj.com
http://dx.doi.org/10.1038/s41587-019-0072-8
http://dx.doi.org/10.1101/gr.097261.109
http://dx.doi.org/10.1093/nar/gks540
http://dx.doi.org/10.1093/nar/gkh435
http://dx.doi.org/10.1039/c1lc20128j
http://dx.doi.org/10.1093/bioinformatics/bts174
http://dx.doi.org/10.1101/gr.2395204
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1016/j.molcel.2015.05.004
http://dx.doi.org/10.1101/gr.126953.111
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.7717/peerj.14186

filter de Bruijn graph. In: 2014 IEEE international conference on bioinformatics and
biomedicine (BIBM), 51–58.

Vega L. 2019. Fundamentals of genetics. Scientific e-Resources.
XuM, Guo L, Gu S,Wang O, Zhang R, Peters BA, Fan G, Liu X, Xu X, Deng L. 2020.

TGS-GapCloser: a fast and accurate gap closer for large genomes with low coverage
of error-prone long reads. Gigascience 9(9):giaa094 DOI 10.1093/gigascience/giaa094.

Midekso and Yi (2022), PeerJ, DOI 10.7717/peerj.14186 22/22

https://peerj.com
http://dx.doi.org/10.1093/gigascience/giaa094
http://dx.doi.org/10.7717/peerj.14186

