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Background. Trichoptera are one of the most diverse groups of freshwater insects worldwide and one of
the main bioindicators for freshwater quality. However, in many areas, caddiesflies remain understudied
due to lack of taxonomic expertise. Meanwhile, globally increasing anthropogenic stress on freshwater
streams also threatens Trichoptera diversity.

Methods. To assess the Trichoptera diversity of the area within and around the Mount Halimun Salak
National Park (MHSNP or Taman Nasional Gunung Halimun Salak) in West Java (Indonesia), we carried out
a molecular-morphological study of adult and larval trichopteran diversity based on a benthic survey and
hand netting. In addition to morphological identification, we applied three different species delimitation
approaches (Generalized Mixed Yule Coalescent, Bayesian Poisson Tree Processes, and Automatic
Barcode Gap Discovery) based on DNA-barcoding of Cytochrome-C-Oxidase I.

Results. The molecular delimitation detected 73 to 79 Operational Taxonomic Units (OTU). Only five
OTUs could be identified to species level by comparing sequences against the BOLD database using
BLAST, and four more to the genus level. Adults and larvae could be successfully associated in 17 cases
across six families. The high diversity of Trichoptera in this area highlights their potential as bioindicators
for water quality assessment.

Conclusions. This study provides an example of how molecular approaches can benefit the exploration
of hidden diversity in unexplored areas and can be a valuable tool to link life stages. However, our study
also highlights the need to improve DNA barcode reference libraries of Trichoptera for the Oriental
region.
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21 Abstract

22 Background. Trichoptera are one of the most diverse groups of freshwater insects worldwide 

23 and one of the main bioindicators for freshwater quality. However, in many areas, caddiesflies 

24 remain understudied due to lack of taxonomic expertise. Meanwhile, globally increasing 

25 anthropogenic stress on freshwater streams also threatens Trichoptera diversity. 

26 Methods. To assess the Trichoptera diversity of the area within and around the Mount Halimun 

27 Salak National Park (MHSNP or Taman Nasional Gunung Halimun Salak) in West Java 

28 (Indonesia), we carried out a molecular-morphological study of adult and larval trichopteran 

29 diversity based on a benthic survey and hand netting. In addition to morphological identification, 

30 we applied three different species delimitation approaches (Generalized Mixed Yule Coalescent, 

31 Bayesian Poisson Tree Processes, and Automatic Barcode Gap Discovery) based on DNA-

32 barcoding of Cytochrome-C-Oxidase I. 

33 Results. The molecular delimitation detected 73 to 79 Operational Taxonomic Units (OTU). 

34 Only five OTUs could be identified to species level by comparing sequences against the BOLD 

35 database using BLAST, and four more to the genus level. Adults and larvae could be 

36 successfully associated in 17 cases across six families. The high diversity of Trichoptera in this 

37 area highlights their potential as bioindicators for water quality assessment. 

38 Conclusions. This study provides an example of how molecular approaches can benefit the 

39 exploration of hidden diversity in unexplored areas and can be a valuable tool to link life stages. 
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40 However, our study also highlights the need to improve DNA barcode reference libraries of 

41 Trichoptera for the Oriental region.

42

43 Introduction

44 Trichoptera (caddisflies), with currently 16,267 described species, represent one of the largest 

45 orders of primarily aquatic insect species worldwide (Morse, 2020). In tropical regions, the high 

46 Trichoptera diversity has been linked in the past with the high variety of larval adaptations to 

47 different habitat types (Mackay & Wiggins, 1979), and high rates of endemism in mountainous 

48 areas (de Moor & Ivanov, 2008). Caddisfly larvae habitat requirements vary significantly 

49 between species, and they are frequently used as a bioindicator for monitoring water quality (Ab 

50 Hamid & Md Rawi, 2017; Bonada et al., 2006). This type of monitoring provides better 

51 predictions than physicochemical approaches and is less expensive (Iliopoulou-Georgudaki et al., 

52 2003). However, it requires the availability of a good knowledge of species taxonomy in the area

53 of interest, which is rarely the case especially in tropical and remote areas (Geraci et al., 2011; 

54 Hoppeler et al., 2016). Moreover, caddisfly taxonomy is largely based on traits of adult males, 

55 whereas larval morphology remain unknown in many species (Zhou et al., 2007). A recent 

56 estimate predicts that around 13,000 Trichoptera species are awaiting recognition as formal 

57 species (Zhou et al., 2016), which further complicates their use as bioindicators.

58 In Indonesia, knowledge on the caddisfly fauna remains very limited. Previous studies have 

59 revealed that Java with 146 species, is one of the most diverse islands, exceeding considerably 

60 Bali (with 73 species) and Lombok (with 61 species) (Malicky et al., 2014). The MHSNP in 

61 southern West Java has one of the last remaining sub-montane forests in this part of the island 

62 (Kahono, 2003; Whitten et al., 1996). Located near the capital city of Jakarta, it serves as the 

63 major water reservoir for this megacity (Peggie & Harmonis, 2014), since its rivers and streams 

64 have water also during the dry season. Due to its richness of habitats, ranging from lowland and 

65 lower montane rain forest to montane forest, this park belongs to the area with the highest 

66 biodiversity in Java (Kahono, 2003). Still, due to some settlements, agricultural practices, and 

67 illegal gold mining in the national park, the anthropogenic pressure on rivers increases especially 

68 during the dry season (Galudra et al., 2005; Yoga et al., 2014b). Studies of freshwater organisms 

69 inside the National Park have only been conducted sporadically (e.g. on crustaceans by Ng & 

70 Wowor, 2018, 2019, dragonflies by Aswari, 2004, or on snails by Heryanto, 2001). The only 

71 study available on aquatic insect diversity in this area recognized a total of 269 caddisfly species, 

72 including 12 families of Trichoptera (Rizali et al., 2002). However, the sampling areas, though 

73 located within the park, were highly disturbed.

74 DNA-barcoding takes advantage of intraspecific variability in a 658-base-pair (bp) long part of 

75 the mitochondrial gene Cytochrome-C-Oxidase I (COI), and is a valuable standard tool for 

76 studying unknown diversity, especially in groups where taxonomic expertise is very rare

77 (Borisenko et al., 2009; Hebert et al., 2003). It has been used successfully to assess species 

78 diversity in understudied areas (Araujo et al., 2018; Cordero et al., 2017; Geraci et al., 2011, 

79 2011; Janzen & Hallwachs, 2011) and provide insights into cryptic species diversity ( Hebert et 
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80 al., 2004; Pauls et al., 2010; Tyagi et al., 2019). The method has in many cases facilitated the 

81 association between life stages without the time-consuming rearing of specimens (Ahrens et al., 

82 2007; Gattolliat & Monaghan, 2010; Hjalmarsson et al., 2018; Molina et al., 2017; Ruiter et al., 

83 2013; Zhou et al., 2007), which often lack significant visible intraspecific features (Johanson, 

84 2007; Ruiter et al., 2013; Zhou et al., 2007), and has also turned out to be a valuable tool in 

85 stream monitoring routines (Behrens-Chapuis et al., 2021).

86 In this study, we assess the Trichoptera diversity of the MHSNP, apply three different species 

87 delimitation methods (bPTP, AGBD, and GMYC) to estimate the number of species entities, and 

88 associate larva and adults by DNA-barcoding as part of the Indonesian-German IndoBioSys 

89 (Indonesian Biodiversity and Information System) project. OTUs are compared with the BOLD 

90 database (Ratnasingham & Hebert, 2007) to assign species names where possible and to 

91 determine the number of putative species missing in genetic reference libraries. Our results 

92 contribute to a better understanding of the Trichoptera diversity in West Java.

93

94 Materials & Methods

95 Taxon Sampling

96 Juvenile and adult trichopteran specimens were collected at 26 sampling sites between 252 and 

97 1400 m above sea level in 2015 (dry season, September) and adults additionally in 2016 (wet 

98 season, April) (Research permit no. 339/SIP/FRP/E5/Dit.KI/IX/2015 by the Ministry of 

99 Research and Higher Education of the Republic of Indonesia). Sites inside the Mount Halimun 

100 Salak National Park in West Java, Indonesia, were selected as part of a larger biodiversity 

101 assessment study of this area (Araujo et al., 2018). Additionally, samples from the vicinity of 

102 Bogor were included. The sampling of the larval Trichoptera followed a multi-habitat sampling 

103 approach of 20 pooled sampling units along a 100m stream stretch with the standard kick-

104 sampling method (Barbour et al., 1999) and stone washing from down- to upstream using a dip 

105 net (standard Heberle net 25 x 25 cm frame; 2 mm mesh-sized). Adults were collected in the 

106 field by sweeping with a net or using a light trap. Specimens were preserved in 96% ethanol. 

107 Larval morphospecies were primarily identified based on the taxonomical keys of de Moor & 

108 Ivanov, 2008, Malicky et al., 2014, and Yule & Yong, 2004. The identification of adult 

109 specimens followed Malicky et al., 2011, Malicky et al., 2010, Ulmer, 1913, 1930 and 1951.

110

111 DNA extraction, amplification, and sequencing

112 DNA was extracted from 180 specimens using the standardized Glass Fiber Plate DNA 

113 Extraction protocol of the Canadian Center for DNA Barcoding (Ivanova et al., 2006). PCR 

114 followed the CCDB protocol and a 658-bp fragment of the mitochondrial gene COI was 

115 amplified using the primer pairs HCO2198-JJ (Astrin & Stüben, 2008). Samples were sequenced 

116 at the Canadian Center for DNA Barcoding (CCDB). 

117

118 Sequence and phylogenetic analysis
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119  Raw data was assembled and trimmed with MEGA (v.7.0; (Kumar et al., 2016) and Sequencher 

120 (v.5.0, Gene Codes Corporation, Ann Arbor, Mich). The COI haplotype sequences were 

121 combined with two selected lepidopteran outgroup species (Triodia sylvina, Accession No.: 

122 JN307373 and Dyseriocrania subpurpurella, Accession No.: HQ563464). The sequences were 

123 aligned using MUSCLE (Edgar, 2004) and edited in Geneious (v.7.1.9, Biomatters, Auckland, 

124 New Zealand). COI gene trees were reconstructed using both Bayesian inference (BI) and 

125 Maximum Likelihood (ML). The Bayesian tree was inferred using BEAST (v.1.8.3; Drummond 

126 & Rambaut, 2007)), with two independent runs from a random starting tree, an uncorrelated 

127 lognormal relaxed clock, GTR+G+I substitution model, and the Yule tree prior. The Monte 

128 Carlo Markov chains (MCMC) ran twice for 30 million generations, with sampling at every 3000 

129 generations. Convergence was checked using Tracer v. 1.7 (Rambaut et al., 2018). The ML tree 

130 was calculated in MEGA (v.7.0; (Kumar et al., 2016) based on the GTR+G+I model (selected 

131 also in MEGA) and support was calculated using non-parametric bootstrap with 1000 replicates.  

132

133 Species delimitation analysis

134 Three different tree-based species delimitation approaches were applied: the generalized mixed 

135 Yule coalescent model (GMYC; Fujisawa & Barraclough, 2013; Pons et al., 2006), the Bayesian 

136 Poisson Tree Processes (bPTP; (Zhang et al., 2013), and the Automatic Barcode Gap Discovery 

137 (ABGD; (Puillandre et al., 2012a). The starting ultrametric Maximum Likelihood tree for 

138 GMYC was generated using the chronos function in the ape v. 5.2 package (Paradis & Schliep, 

139 2019) in R. Four different clock models were tested: strict, discrete with ten rate categories, 

140 correlated and uncorrelated-relaxed. The best model was selected based on the φ information 

141 criterion by  Paradis (2013), which takes the penalized term into account. All models were fitted 

142 on lambda set to 1.0 and in all cases, the strict clock was found to be the best-fitting model. The 

143 single threshold version of GMYC was run on the maximum credibility tree inferred with 

144 BEAST and the ultrametric Maximum Likelihood tree in R (v3.5.2) (R Core Team, 2018) using 

145 the package splits (Ezard et al., 2009). bPTP analyses were carried out using the bPTP 

146 Webserver (http://species.h-its.org/; Zhang et al., 2013) based on the maximum likelihood tree, 

147 with 100.000 MCMC generations, sampling every 100 generations, the burn-in set to 0.1 and T. 

148 sylvina and D. subpurpurella were included as the outgroup. For the AGBD analysis, the 

149 alignment was submitted to the AGBD online webserver 

150 (http://wwwabi.snv.jussieu.fr/public/abgd/; (Puillandre et al., 2012a), with P (prior intraspecific 

151 divergence) set from 0.001 to 0.1 and steps set to 10, X (minimum relative gap width) set to 1, 

152 Nb bins (from distance distribution) set to 20, selection of the Kimura (K80) model and TS/TV 

153 to 2.0.

154

155 Life stage associations

156 Only OTUs for which all three species delimitation approaches yielded the same results 

157 (Carstens et al., 2013) were used to further investigate and discuss possible associations between 

158 larvae and adults. Moreover, to understand how many of the sampled OTUs are already present 
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159 in BOLD, sequences were compared against the BOLD database using BLAST 

160 (www.boldsystems.org; Camacho et al., 2009; Ratnasingham & Hebert, 2007). A solid match to 

161 a species was assumed when the hit was higher than 99% similarity, at genus level when ≥ 95%, 

162 and family ≥ 91% as a rough proxy, following Coddington et al., 2016 and Elbrecht et al., 2017.

163

164 Results

165 Morphotype grouping and phylogenetic inference

166 The morphological identification of 180 adult and larval specimens resulted in 64 morphospecies 

167 from 15 families (see Fig.1). Larval specimens belonged to at least 16 morphospecies from 13 

168 families, whereas adult specimens could be identified up to 47 species from 12 families (Table 

169 1). Brachycentridae, Ecnomidae, Dipseudopsidae, and Polycentropodidae are represented only 

170 by larvae, while Helicopsychidae, Calamoceratidae, and Xiphoncentridae are represented only 

171 by adult specimens. Furthermore, Brachycentridae, Ecnomidae, and Helicopsychidae were only 

172 represented by singletons (Table S1).

173 Sequence length ranged from 363 to 658 bp with at least 36.5% of identical sites and a GC 

174 content of 32.7%. The resulting trimmed COI sequences have been deposited in GenBank. 

175 Accession numbers can be found in supplemental Table S1. Gene trees based on ML (Fig. S1) 

176 and BI trees (Fig.1) of the COI sequences produced overall similar topologies with just minor 

177 differences. Main differences are in the relationships between Ecnomidae and 

178 Pseudoneuroclipsidae, Hydroptilidae and Glossosomatidae, and finally Brachycentridae and 

179 Goeridae. Morphospecies formed monophyletic entities in almost all cases in the maximum 

180 likelihood tree, except for Glossosoma javanicum (Glossosomatidae), Ganonema fuscipenne 

181 (Calamoceratidae), and Leptoceridae (9.2.III). In the Bayesian inferred tree, G. javanicum was 

182 paraphyletic and Triplectides indicus (Leptoceridae) was misplaced as a sister group of 

183 Calamoceratidae. 

184

185 Estimation of species diversity

186 Species diversity was analyzed based on morphology and three different statistical species 

187 delimitation approaches: GMYC, bPTP, and ABGD. Overall, the total number of species yielded 

188 by all statistical methods was very similar with 77, 79, and 73, respectively, representing 15 

189 families in total. 

190 Analysis with ABGD generates two different results: the initial and the recursive partition (see 

191 Fig. S2 and S3). The recursive partitions usually generate a higher number of clusters; however, 

192 the initial partition has proven to give results that best match group assignments of expert 

193 taxonomists (Puillandre et al., 2012b). Recursive partitions of the full data set (n= 128 

194 haplotypes) showed that the group assignments range from 1 (P=0.1) to 77 (P= 0.001). On the 

195 other side, initial partitions resulted in 73 groups with P-values between 0.001 and 0.0599. The 

196 GMYC analysis delimitated 77 OTUs in total (Fig. S4), and the bPTP method recovered 79 

197 OTUs. When applying these three species delimitation methods on our data, six differences 

198 could be found: one within Psychomyiidae, three within Hydropsychidae, one within 
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199 Lepidostomatidae, and one within Leptoceridae (Table 2). Dissimilarities were caused mainly by 

200 AGBD being more conservative in comparison to bPTP and GMYC. Of all families present, 

201 Hydropsychidae had an overall much higher species richness with 19 OTUs. Six families were 

202 only represented by one OTU each.

203 Of the 66 OTUs delimited using all three species delimitation approaches, 44 could only be 

204 identified to family level in the BOLD database. Only five OTUs (7.6% of all OTUs) could be 

205 identified to species level and 4 to genus-level. In 12 cases the OTUs could only be identified as 

206 Trichoptera (see green labels in Fig.1). Overall, the morphological identification was consistent 

207 with the molecular species diversity delimitation with just four exceptions: Hydropsyche 

208 saranganica (Hydropsychidae), G. javanicum, Lepidostoma diehli (Lepidostomatidae), and G. 

209 fuscipenne which are each divided into two OTUs.

210

211 Larval-adult association of Trichoptera

212 In 17 of the 66 consensus OTUs, representing six families, an association of larval and adult 

213 stages was possible (see Table S1). In seven cases, the association involved two or more 

214 specimens for each life stage. In ten cases, either the larval or adult stage was represented by 

215 only one specimen. It was possible to associate 40 larvae and 38 adults to the following 16 taxa: 

216 Diplectrona gombak, Diplectrona pseudofasciata, Hydropsyche saranganica, Cheumatopsyche 

217 globosa/lucida- complex, Hydromanicus flavoguttatus, Potamyia flavata, Chimarra sp., 

218 Chimarra briseis, Agapetus sp. / Glossosoma javanicum-complex, Lepidostoma 

219 diehli/jacobsoni- complex, Goera conclusa, Adicella sp., Oecetis tripunctata, Trichosetodes 

220 handschini/Setodes musagetes- complex, Setodes sp., and Rhyacophila sp.

221

222 Discussion

223 Phylogenetic reconstruction and delimitation methods

224 The gene trees inferred based on COI of 180 Trichoptera larvae and adults with ML and BI, 

225 show very similar topologies. In general, the structure and position of superfamilies and families 

226 of both trees reflect the known phylogeny of Trichoptera (Thomas et al., 2020). The main 

227 incongruence between ML and BI trees is the unclear relationships between the two genera 

228 within Glossosomatidae, Glossosoma, and Agapetus. COI data suggest that both genera are 

229 polyphyletic, as it is the case in several genera of Trichoptera (de Moor & Ivanov, 2008). 

230 However, phylogenetic inferences based on single and fast-evolving mitochondrial markers have 

231 to be treated with caution, also in Trichoptera. The main goal in larval associations is to find the 

232 closest match between adult and larval specimens, in this case with a species delimitation 

233 approach on a COI tree (Zhou et al. 2007).

234

235 Species delineation and the overall Trichoptera diversity of West Java

236 To our knowledge, this is the first molecular assessment of the Trichoptera diversity of West 

237 Java. A total of 73 to 79 OTUs within 15 Trichoptera families were recovered. In 63 OTUs, the 

238 molecular delimitation matched the morphological identification. The only previous study of the 
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239 Trichoptera of this area reported 269 species in 12 families near rice fields in the MHSNP (Rizali 

240 et al. 2002); the exact information on which species were recorded is however not available. 

241 Nonetheless, we can confirm the presence of twelve of the sixteen families reported by Rizali et 

242 al. 2002. Moreover, species of six additional families (Calamoceratidae, Dipseudopsidae, 

243 Ecnomidae, Goeridae, Lepidostomatidae, Psychomyiidae) are here identified. Different sampling 

244 methods and the incorporation of different habitats likely explain the discrepancy. 

245 A comprehensive study on Indonesian Trichoptera diversity (Malicky et al., 2014) reported 146 

246 species from 16 families, based on collections and published data. With the exception of 

247 Stenopsychidae, all of the families recorded by Malicky et al. (2014) are also reported here, from 

248 one single national park. Moreover, several species recorded here are first records for Java or 

249 even undescribed (Mey et al. in prep). In the families Brachycentridae, Lepidostomatidae and 

250 Calamoceratidae, nearly all species previously known from Java could be confirmed. The 

251 diversity of Hydroptilidae was relatively low compared to previous studies, however; this might 

252 be due to the limitations of the net sampling applied here, since specimens of this family are very 

253 small and better sampled with Malaise traps (Mey et al. in prep.).

254 The high number of caddisfly species in this part of West Java suggests the presence of a large 

255 range of microhabitats (Dudgeon, 2011). However, due to illegal gold mining and settlements, 

256 this habitat diversity is under threat, also within the park. High concentrations and 

257 bioaccumulation of heavy metals (e.g. mercury) have already been found in water and sediments 

258 (J. Sudarso et al., 2013; Y. Sudarso et al., 2008). These may cause shifts in Trichoptera diversity 

259 (Loayza‐Muro et al., 2010; Wiederholm, 1984), and lead to morphological abnormalities at least 

260 in some species (Yoga et al., 2014a, 2014b). 

261 The application of DNA-barcoding is an efficient method to assess Trichoptera diversity in areas 

262 with insufficient or even missing taxonomic knowledge, and can help to assess freshwater stream 

263 quality (Sweeney et al., 2011). This is especially valuable, as a clear morphological identification 

264 of caddisfly species is in many cases hindered by the absence, or lack of knowledge, of reliable 

265 morphological characters (Hjalmarsson et al., 2018). Merely 7.6% of all OTUs identified in this 

266 study could be identified to species level when comparing against the BOLD database. 

267 Therefore, even though we now have a better idea of the number of species present in the 

268 national park, their names and thus the ecological features associated with them remain largely 

269 unknown. This underlines the need to expand genetic and morphological studies on Trichoptera 

270 in poorly known tropical areas with high diversity, to make DNA-barcoding a more accessible 

271 monitoring method of Trichoptera diversity in the Oriental Region, and consequently also a 

272 proxy indicator of water quality (Zhou et al., 2016). 

273

274 Life stage association with DNA-barcoding

275 DNA-barcoding enabled matching caddisfly larvae and adults in 17 cases. In some of these, only 

276 a single individual of one life stage (adults or larvae) was available for inferring the association. 

277 Incorporation of higher numbers of both life stages, from a larger number of sites and covering 

278 all relevant habitats, would be required for filling the substantial gap remaining; a sound 
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279 knowledge of both life stages is in turn essential for understanding inter- and intraspecific 

280 variation, ontological variations, and finally the species-specific ecology (Hjalmarsson et al., 

281 2018). While the present study has once more demonstrated the potential of DNA-barcoding to 

282 understand and link life stages of Trichoptera, it also highlights the need for a better, more 

283 complete barcode reference library of this region. The associated taxa could in most cases be 

284 identified to species level as a result of the morphological identification of adult specimens and 

285 not by larvae or a match in BOLD. Of the associated species represented by adult and larval 

286 specimens in this study, Pomtayia flavata was the only species present in BOLD. The collected 

287 adult and larval specimens with their correspondent DNA barcodes provide valuable information 

288 for future studies in this area.

289

290 Conclusions

291 The present results highlight the potential of DNA-barcoding to identify hidden biodiversity in 

292 species-rich and poorly studied taxa. They also show the poor state of exploration of Indonesian 

293 Trichoptera, a group of organisms that offers substantial potential as bioindicators for freshwater 

294 habitat quality. In Mount Halimun Salak National Park, a protected area of importance for 

295 freshwater supply, but nevertheless affected by intensive agriculture and illegal gold mining, 

296 freshwater indicators could be of immediate use for monitoring freshwater habitat quality. 

297 However, our results show that the inventory of Trichoptera diversity on Java is far from 

298 complete, and substantial gaps remain in linking the OTUs uncovered here to species entities. 

299 Likewise, substantial work remains to be done in order to link trichopteran life stages. 

300 Nevertheless, we would argue that upscaling our approach would, in concert with progress in 

301 Trichoptera taxonomy, represent a decisive move towards translating biodiversity data into a 

302 monitoring tool of wide applicability.

303
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Figure 1
Bayesian inferred ultrametric phylogenetic tree based on COI of 182 Trichoptera larvae
(in bold) and adults.

Bootstrap values higher than 0.5 are indicated above branches. Results of the three different
species delimitation approaches (bPTP, GMYC, and AGBD) are illustrated by vertical bars.
Each bar represents an Operational Taxonomic Unit (OTU) detected by the respective
approach labeled on the top. Morphological identification of adult (in bold) and juvenile
specimens were added directly on the leaves. Green tips are species also identified in BOLD
following the thresholds by Elbrecht et al. 2017. OTUs endorsed by all the delimitation
methods are numbered in the first column and BLAST results are summarized in Table 1.
Additionally, confirmed OTUs with juvenile and adult specimens are marked with a symbol at
the end of the vertical bars. N= number of OTU´s collapsed in the phylogenetic tree, n=
number of haplotypes collapsed to one sequence.

PeerJ reviewing PDF | (2021:05:60931:0:2:NEW 25 Jun 2021)

Manuscript to be reviewed

reviewer
Riscado

reviewer
Texto digitado
larval



PeerJ reviewing PDF | (2021:05:60931:0:2:NEW 25 Jun 2021)

Manuscript to be reviewed



Table 1(on next page)

Trichoptera diversity in and around the Mount Halimun Salak National Park, West Java,
derived from adult and larval records (no. of specimens).
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Family Taxa Larva Adult

Brachycentridae  1  

Calamoceratidae Anisocentropus flavomarginatus Ulmer, 1906 3

Calamoceratidae Anisocentropus sp. 2

Calamoceratidae Ganonema fuscipenne Albarda, 1881 4

Calamoceratidae Ganonema ochraceellum McLachlan, 1866 2

Pseudoneureclipsidae 2

Ecnomidae 1

Glossosomatidae Glossosoma javanicum Ulmer, 1930 2

Glossosomatidae Glossosoma sp. 1

Goeridae Goera conclusa Ulmer, 1905 2

Goeridae Goera sp. 1

Goeridae 3

Helicopsychidae Helicopsyche sp. 1

Hydropsychidae Agapetus sp. 5

Hydropsychidae Cheumatopsyche globosa Ulmer, 1910 1

Hydropsychidae Cheumatopsyche lucida Ulmer, 1907 2

Hydropsychidae Cheumatopsyche sp. 2

Hydropsychidae Diplectrona gombak Olah, 1993 2

Hydropsychidae Diplectrona pseudofasciata Ulmer, 1909 1

Hydropsychidae Diplectrona ungaranica Ulmer, 1951 1

Hydropsychidae Hydromanicus flavoguttatus  Albarda,  1881 4

Hydropsychidae Hydromanicus sp. 2

Hydropsychidae Hydropsyche saranganica Ulmer, 1951 3

Hydropsychidae Hydropsyche sp. 1

Hydropsychidae 32 2

Hydroptilidae Orthotrichia sp. 1

Hydroptilidae Scelotrichia sp. 2

Hydroptilidae 1

Lepidostomatidae Lepidostoma diehli Weaver, 1989 2

Lepidostomatidae Lepidostoma jacobsoni Ulmer, 1910 1

Lepidostomatidae Lepidostoma longipenis Weaver, 1989 1

Lepidostomatidae Lepidostoma sp. 4

Lepidostomatidae 5

Leptoceridae Adicella byblis Malicky, 1998 1

Leptoceridae Adicella pulcherrima Ulmer, 1906 1

Leptoceridae Adicella sp. 4

Leptoceridae Oecetis kapaneus Malicky, 2005 2

Leptoceridae Oecetis oviformis Ulmer, 1951 1

Leptoceridae Oecetis sp. 4

Leptoceridae Oecetis tripunctata Fabricius, 1793 4

Leptoceridae Setodes larentia Malicky & Chantaramongkol, 2006 1

Leptoceridae Setodes musagetes Malicky & Chantaramongkol, 2006 2

Leptoceridae Setodes sp. 2

Leptoceridae Tagalopsyche brunnea Ulmer, 1905 3
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Leptoceridae Triplectides indicus Walker, 1852 1

Leptoceridae Trichosetodes handschini Ulmer, 1951 3

Leptoceridae 7

Philopotamidae Chimarra briseis Malicky, 1998 3

Philopotamidae Chimarra sp. 3

Philopotamidae Chimarra sp., cf. aram 1

Philopotamidae Gunugiella sp. 1

Philopotamidae 10

Polycentropodidae 3

Psychomyiidae Lype atnia Malicky & Chantaramongkol, 1993 2

Psychomyiidae Paduniella sp. 1

Psychomyiidae Psychomyia capillata Ulmer, 1910 2

Psychomyiidae Psychomyia sp.

Psychomyiidae Tinodes sp. 4

Psychomyiidae Tinodes sp.nov. 1

Rhyacophilidae Rhyacophila sp. 1

Rhyacophilidae 5

Xiphocentronidae Drepanocentron sp. 3

Xiphocentronidae Drepanocentron sp.1 2

Xiphocentronidae Drepanocentron sp.2 1

Unknown  1  

Total  78 102
1
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Table 2(on next page)

Total number of OTUs per family based on the different species delimitation
approaches.
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Family bPTP GMYC ABGD

Brachycentridae 1 1 1

Calamoceratidae 4 4 4

Dispeudopsidae 1 1 1

Ecnomidae 1 1 1

Glossosomatidae 3 3 3

Goeridae 1 1 1

Hydropsychidae 19 19 17

Hydroptilidae 1 1 1

Lepidostomatidae 5 4 4

Leptoceridae 11 10 9

Polycentropodidae 1 1 1

Philopotamidae 9 9 9

Psychomyiidae 6 6 5

Rhyacophilidae 2 2 2

Xiphocentronidae 2 2 2

Others 12 12 12

Total 79 77 73

1
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