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ABSTRACT
Fish populations that bear considerable pressure levels tend to show a decline in the
average size of individuals, with the small and unexploited species replacing the large
and exploited ones. It is important to carry on with their characterization in areas
where they are becoming an important source of food for local human populations.
An example of such species are parrotfishes, whose responses to external factors
such as fishing need to be understood and predicted. In this study, we used a
diver-operated stereo-video to examine individual body size, sex ratios and
proportion of species of the parrotfish assemblage and analyze them on a qualitative
fishing pressure gradient at four oceanic islands in the Colombian Caribbean.
We reported over 10,000 occurrences of eleven parrotfish species, of which we
estimated the total length of over 90%, grouping them into three size categories
(large, medium, and small). Our data showed a spatial variation of parrotfishes’
abundances, biomass, and individual body size. Observed differences are size-
category-dependent throughout the qualitative fishing pressure. In general, the
medium-bodied species had smaller sizes, lower abundances, and thus lower
contribution to the total parrotfish biomass at the most heavily fished island.
Unexpectedly, we found evidence of possible indirect effects over the small-bodied
species Scarus iseri and Scarus taeniopterus with significantly greater abundances,
and larger sizes of males of S. iseri, at the higher fishing pressure sites. Overall, our
data highlights the extent of the spatial variation in the parrotfish communities at
relatively short distances, and present new insights into the responses of parrotfish
species on a spectrum of body sizes along a gradient of human pressure.
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INTRODUCTION
Local stressors such as overfishing have caused significant changes in the structure and
function of coral reefs (Jackson et al., 2001; McLean et al., 2016). Overexploited fisheries
tend to shift towards lower trophic levels (Taylor, 2014), with growing captures of smaller
and less commercial species, usually herbivores (Burke et al., 2011). The assessment of
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herbivores populations in coral reefs subject to fishing activities is compulsory, yet the lack
of rigorous data on fishing effort remains one of the main obstacles to understanding
fishing effects (Stewart et al., 2010). Therefore, to assess populations in localities with
poorly documented coastal fishing efforts, it is necessary to resort to additional
information linked to such efforts.

Different measures, such as human population density, have been proposed to indicate
fishing effort (Stewart et al., 2010). There are two ways in which human density can affect
fish populations locally (Williams et al., 2008). Directly, through overfishing, with a
selective effect on targeted species, and indirectly, through habitat degradation, with a
more widespread effect on both targeted and non-targeted species (Pauly, 1990; Williams
et al., 2008; Stewart et al., 2010). Studies in insular territories around the world have shown
a negative relationship between human population density and biomass and abundance of
fish populations in coral reefs adjacent to inhabited territories (Clua & Legendre, 2008;
Williams et al., 2008; Bellwood, Hoey & Hughes, 2012). Related information such as access
to local markets and urbanization are also reliable indicators to approach the fishing
pressure level of a particular locality (Aswani & Sabetian, 2009; Brewer et al., 2012, 2013;
Cinner et al., 2013). In addition, different biological attributes in fish populations are also
proposed as features to study fishing effects.

Individual body size is one of the most operational features to evaluate the effects of
overfishing (Rochet & Trenkel, 2003). However, size-based analyses have typically
examined assemblage-level patterns of the entire reef fish communities (Jennings et al.,
2002; Dulvy et al., 2004; Graham et al., 2005), ignoring possible variation within groups of
fishes. In the Caribbean, size-based studies have shown a turnover of fisheries towards
species of lower trophic levels, such as parrotfishes (Hawkins & Roberts, 2004;Hardt, 2009;
Vallès & Oxenford, 2014) and a size-based study conducted on this group can add
resolution to the existing literature on this topic.

Parrotfishes (Labridae: Scarinae) and surgeon fishes (Acanthuridae) are two of the main
herbivore clades in coral reefs of the Caribbean (Mumby et al., 2006). Former studies in the
Caribbean have linked patterns of spatial variation in parrotfish communities with
overfishing. Those studies found a negative relationship between fishing pressure and
biomass of large-bodied species and with the individual body weight of all parrotfish
species (Hawkins & Roberts, 2004; Vallès & Oxenford, 2014; Vallès, Gill & Oxenford, 2015).
Overfishing has also been associated with indirect effects on fish communities through
compensatory increases of small species when the larger ones decrease (Dulvy et al., 2004).
However, there is scarce evidence of this effect in parrotfish communities. A largescale
study by Hawkins & Roberts (2003) found that the abundance of the small-bodied
Sparisoma atomarium increased with fishing pressure. Vallès, Gill & Oxenford (2015)
found that at higher fishing pressure, Scarus iseri and Scarus vetula were still more and less
abundant, suggesting a possible event of competitive release between the two species, but
no significant differences supported such hypothesis. Therefore, it is relevant to provide a
better characterization of parrotfish spatial variation to explore emergent exploitation
impacts within fisheries, especially in small-scale spatial gradient of fishing pressure and in
areas where these effects are still unknown.
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Furthermore, parrotfishes are an interesting group to assess fishing effects on sex ratios
and body sizes of protogynous species, the most common form of sequential
hermaphroditism of reef fishes (Gemmell et al., 2019), an issue than remains poorly
examined (Buxton, 1993; Coleman, Koenig & Collins, 1996;McGovern et al., 1998;Hawkins
& Roberts, 2003; O’Farrell et al., 2016). In Bonaire, abundances of males of S. vetula,
Sparisoma viride, Sparisoma aurofrenatum and Scarus taeniopterus increased after a
fishing ban (O’Farrell et al., 2016). Likewise, most parrotfish species evaluated by Hawkins
& Roberts (2003) showed a decreased in body sizes of males and females with fewer males
at higher fishing pressure. In marine protected areas, the authors also found an increase in
time of body sizes of males and females of most species. Hence, adding resolution to these
relationships is pertinent to monitor their populations over time.

In this study, we used diver-operated stereo-video to assess parrotfish populations and
explore the effects of fishing pressure in oceanic islands of the Colombian Caribbean.
The stereo-video technique allowed us to gather high-resolution body-length data for a
size-based analysis under a qualitative fishing pressure gradient in which we included the
best available local information. We anticipated that fishing exploitation would reduce the
abundance and average body size of medium and large-bodied species, with a minor
contribution of those species to the overall parrotfish biomass. Consequently, small-sized
species would have a greater contribution to the overall parrotfish biomass either by having
greater abundances at higher fishing pressure or mainly because of the lower contribution
of the medium and large-bodied species proportions.

MATERIALS AND METHODS
Sampling sites and fishing pressure gradient
The Seaflower Biosphere Reserve (SBR) is a complex of islands, atolls, cays, and shoals in
the Colombian Caribbean, including one of the largest Caribbean coral reefs complexes
(Abril-Howard et al., 2012a) and over 77% of the coral formations of the country
(Abril-Howard et al., 2012b). We recorded parrotfish species in coral reef areas of several
islands of the SBR: San Andrés (SA), Bolívar Cay (BOL), Albuquerque Cay (ALB), and
Providencia and Santa Catalina (PRO). The main island of the archipelago is SA, located
90 km south of PRO, the other inhabited populated island, while BOL and ALB are two
small uninhabited cays, 25 and 37 km south of SA, respectively (Fig. 1).

Considering the selectivity of fisheries for large fishes (O’Farrell et al., 2016), metrics
such as individual body size, sex ratio, and overall proportions of parrotfishes would reflect
different responses to exploitation by comparing them across a fishing gradient (Rochet &
Trenkel, 2003; Dulvy et al., 2004). However, at the SBR, no standardized information
precludes us to quantify fishing pressure. Therefore, we considered additional drivers
based on the literature of the topic (Clua & Legendre, 2008;Williams et al., 2008; Aswani &
Sabetian, 2009; Bellwood, Hoey & Hughes, 2012; Brewer et al., 2012, 2013; Cinner et al.,
2013). To include species with different levels of interest for the fisheries, we evaluated
eleven species of parrotfish across a wide range of body sizes along the established human
pressure gradient. We separated the species into three categories: small-sized ones
(maximum total length <30 cm) including S. taeniopterus, S. iseri, S. aurofrenatum and
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S. atomarium; medium-sized species (maximum total length >30–<70 cm) Sparisoma
chrysopterum and Sparisoma rubripinne, in addition to S. vetula and S. viride.
The large-bodied species (maximum total length >70 cm) included Scarus coelestinus,
Scarus coeruleus, and Scarus guacamaia.

The proposed ranking of localities from highest to lowest fishing pressure was: SA, BOL,
ALB, and PRO. This order was based on: (1) Human population density (number of
inhabitants per square kilometer of reef structure) in SA is 784 inhabitants/km2, while in
PRO is 18 inhabitants/km2 (Gamboa et al., 2012;DANE, 2016; Cámara de Comercio de San
Andrés, Providencia y Santa Catalina, 2018). Bolívar and Albuquerque cays have no
human population besides a dozen Colombian soldiers; however, fishers of San Andrés
frequently visit these islets due to their proximity to the main island. (2) SA has easy access
to fishing grounds from the coastline, allowing for shore fishing. This activity is conducted
by independent fishers, whose population is not characterized and quantified, and targets
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Figure 1 Location of the four sampling sites along the Seaflower Biosphere Reserve. Sample allocations of 2018 and 2019 surveys are specified
with red and black dots. Stations evaluated at each locality are georeferenced (QGIS v.3.14). Insert map shows location of the reserve within the
Colombian Caribbean (white arrow). Localities: Providencia and Santa Catalina (PRO); Albuquerque (ALB); Bolívar (BOL); San Andrés (SA).

Full-size DOI: 10.7717/peerj.14178/fig-1
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multiple species, including parrotfishes, grunts (Haemulidae), and jacks (Carangidae),
with unknown catch volumes (Castro, 2005). (3) In 1953, SA was designated as a tax-free
region, which promoted an enormous increase in tourism and a significant immigration of
people to the island (Meisel, 2003; Abril-Howard et al., 2012a). Artisanal fishery went from
local subsistence to a specialized and institutionalized activity based on the local market
demand (Olmos, 2019). In contrast, those changes have not significantly impacted PRO
(Meisel, 2003; Abril-Howard et al., 2012a). (4) Catch per unit effort (CPUE) in SA has
shown a decline since 2009, which has been related to an increase in overfishing on the
island (Santos-Martínez, García & Rojas, 2017; Santos-Martínez et al., 2019). Additionally,
reports show a greater effort and capture volumes in SA over nearby fishing grounds,
including BOL and ALB cays (Castro, Grandas & García, 2007; Rojas et al., 2015).
The fishing pressure distinction between BOL and ALB was based merely on their distance
from SA.

Surveys
We used a diver-operated stereo-video approach (Harvey, Fletcher & Shortis, 2003;
Langlois et al., 2010) to collect field data. Before each field trip, we performed the
stereo-video calibration using the CAL software (SeaGIS Pty Ltd. Bacchus Marsh, Victoria,
Australia) following Harvey & Shortis (1998). During the calibration process, a cube with
approximately 80 targets was filmed in 20 different positions with the stereo-video system.
With the CAL software, the targets were located in those different positions of the cube,
generating a calibration archive with the exact configuration of the camera system,
including the inward angle and distance between the cameras, among other parameters.
After testing the calibration with a known-size devise, the stereo video was set to be used in
the field (Fig. S1A).

The stereo-video technique allowed us to gather reliable data on individual body size,
sex ratio, and overall proportions of the parrotfishes’ assemblage in the SBR with high
resolution and low estimation error. In the absence of previous data from this technique to
compare with, four considerations influenced our final sampling design: (i) to sample each
location as close together in time as possible, (ii) to select sites with similar coral reef
bottoms and with a similar number of shallow (3–8 m), medium (8–15 m) and deep
(15–30 m) stations surveyed at each locality (Table S1), (iii) to minimize associated
researcher biases by having the same researcher handling the stereo-video and processing
the videos, and (iv) to produce a balanced set of samples across errant diver specific timed
surveys.

Sample allocation and video processing
We sampled 16 stations per locality for a total of 64 stations between October and
November 2018 in SA, BOL, ALB, and PRO, and 32 stations a year later in 2019 in SA and
PRO (Fig. 1; Table S1). In addition, in 2019, we sampled a greater number of shallower
stations (<6 m) close to seagrass meadows to gather more data on S. rubripinne and
S. chrysopterum, which had a small sample size in the 2018 surveys. Consequently, the
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sampling design was unbalanced when comparing SA and PRO between the 2 years
(Table S1).

We used the guides of Humann & Deloach (2014) and Robertson et al. (2015) to identify
the individuals to species level and to give a sex designation. Following Hawkins & Roberts
(2004), we considered parrotfishes in juvenile and initial color phases as females and in
terminal color phases as males. In the case of S. coelestinus, with no color phases, there was
no sex designation. To distinguish between the initial phases of S. taeniopterus and S. iseri
we used the color of the edges of the caudal fin (light for the first and dark brown upper
and lower edges for the second species) (Robertson et al., 2015). From the videos, we
recorded occurrence, sex, and total length data (TL), measured from the tip of the mouth
to the median projection of caudal fin lobes with the EventMeasure software (SeaGIS Pty
Ltd. Bacchus Marsh, Victoria, Australia; Fig. S1B).

We took special attention during video processing to minimize the possibility of
counting fish twice. Whenever two similar fish were observed and there was a doubt on
whether it was the same individual, length estimated by the software was examined. If sizes
were very different and the accuracy index (RMS; SeaGIS Pty Ltd. Bacchus Marsh,
Victoria, Australia) indicated by the software was acceptable (<20 mm), fish were
considered to be different individuals. Further, additional features in the coloration and
distinct marks on the individuals were considered.

Statistical analysis
Total length data

Considering the hierarchical structure of our data with individual body size per species
nested within each video station and each video station nested within each locality, we used
Generalized Additive Mixed Effects Models (GAMMs) fit by REML (statistical packages
“nlme” v. 3.1–157 and “mgcv” v. 1.8–39) (Barry &Welsh, 2002). The Mixed Effects Models
approach allowed us to examine the overall interaction between species, sex, years, and
localities while accounting for within study variance structure due to random effects.
In our case, video-stations were used as random effect due to the expected correlation
between the multiple observations (individual body size) from the same video station.

For the optimal model selection, we followed the top-down protocol described by Zuur
et al. (2009). Therefore, we started with a full linear regression model, including every
possible explanatory variable within the fixed part (sex, species, localities, year) and their
interactions. To include video stations, we fit the model with generalized least-squares
(GLS) regression models and compare the linear regression model with the linear mixed
effect model (LMEM) using the likelihood ratio test and confirmed with the Akaike
Information Criterion (AIC; Table S2) (Burnham & Anderson, 2003). Finally, we
performed model validation by inspecting the residuals of the best-fitted models (statistical
package “lattice” v. 3.1–157), as patterns were observed within the residuals, we applied
GAMMs fitted by REML. Species without sex designation were excluded when the sex
explanatory variable was included as fixed effect in the model. Likewise, BOL and ALB
were excluded from the model when comparing data for 2018 and 2019, as only SA and
PRO were surveyed during those years (Table S2).
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Abundances and biomass
Biomass was calculated per individual with the estimated individual total length and the
equation B = aLb (Marks & Klomp, 2003) where “B” is the biomass in grams, “L” is body
length in cm and parameters “a” and “b” are constants available in FishBase (www.
fishbase.org). We performed a square root transformation of abundances and biomass data
so that each taxon could contribute to the similarity among samples by softening the
influence of the more dominant taxa. In addition, we standardized the biomass data by
dividing the estimated values per species by the total biomass of parrotfishes at each station
per locality. To determine if localities were statistically distinct from each other in their
parrotfish community structure, under the fishing gradient established, we ran a
PERMANOVA (Anderson, 2001) with a Bray-Curtis similarity matrix. Finally, we ran a
SIMPER test (Clarke, 1993) to assess the average percent contribution of each species to the
dissimilarity (statistical packages “vegan” v. 2.5–7; “ggplot2” v. 3.3.5).

All analyses used a p-value significance level of 5% and were carried out in R (v 4.0.2, R
Foundation for Statistical Computing, Vienna, Austria). In addition, the data gathered in
2018 and 2019 were analyzed independently as we did not sample BOL, and ALB in the
second year. Likewise, to evaluate changes in time, only the data from SA and PRO in 2018
were included in the analysis.

RESULTS
We recorded a total of 10,438 parrotfishes (6,665 in 2018 and 3,763 in 2019). The most
frequently observed species were S. iseri, S. taeniopterus, S. aurofrenatum, and S. viride.
As expected, the large-sized species S. coelestinus, S. coeruleus, and S. guacamaia were rare
and almost exclusively observed in PRO, the site with the lowest level of fishing pressure.
We were able to estimate the total length of 9,788 individuals, corresponding to over 90%
of the reported occurrences. Abundance, biomass, and individual body size of parrotfishes
varied widely among the islands, species, and sexes (Tables S3 and S4). We present the
results per metrics evaluated, emphasizing the general patterns observed per size category
under the fishing pressure gradient proposed.

Variation of the individual total length
The best-fitted models for the individual total length had sex, year, species and locality as
fixed effects, including the interaction between them and video stations as random effects
(Table S2).

From the 2018 data set, the total length of the medium-sized species showed a negative
relationship with fishing pressure, with the smallest individuals found on the most heavily
fished island (SA, Table S3; Fig. 2A). Sparisoma viride had larger sizes in PRO (β = 4.77,
SE = 8.77, p = 1.91e−06; Fig. 2A) and significantly smaller ones in SA (β = −5.39, SE = 9.42,
p = 7.25e−08; Fig. 2A). Females of the species reached larger sizes in PRO (β = 5.81,
SE = 12.84, p = 0.000275; Fig. 2C), and smaller in SA (β = −4.47, SE = 8.95, p = 8.14e−06;
Fig. 2C) while males had greater sizes in BOL (β = 8.45, SE = 3.86, p = 0.00011; Fig. 2B) and
smaller in SA (β = −5.98, SE = 11.02, p = 3.11e−09; Fig. 2B). On the other hand, S. vetula
had larger sizes in PRO (β = 3.64, SE = 13.01, p = 6.7 e−09; Fig. 2A) and BOL (β = 3.26,
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SE = 12.34, p = 0.0011; Fig. 2A), with females reaching larger sizes in the former (β = 5.81,
SE = 12.84, p = 0.000275; Fig. 2C). In contrast, only the males of the small sized species
S. iseri had larger individual body sizes at the most heavily exploited island of SA (β = 3.1,
SE = 7.6, p = 0.0019; Fig. 2C). Sparisoma aurofrenatum showed no clear pattern related to
fishing pressure, although their individual body sizes presented significant differences
among the localities (β = 3.8, SE = 7.34, p = 0.00014).
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Figure 2 Trends in mean body size of parrotfish species under the fishing pressure gradient.
(A) Variogram with standard error (SE) bars on independent means of body size of the full sample
size of the species populations in 2018, (B) variogram with standard error (SE) bars on independent
means of body size of males, (C) variogram with standard error (SE) bars on independent means of body
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colors. Full-size DOI: 10.7717/peerj.14178/fig-2
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We found no differences between the 2 years evaluated (DF = 6, F = 1.45, p = 0.19).
Nevertheless, in 2019 the differences between localities and species remained the same,
with the medium size species showing smaller sizes in SA, including S. vetula (β = −6.01,
SE = 8.91, p = 2.13s−09; Fig. 3; Table S4) and S. viride (β = −10.3, SE = 7.53, p = <2e−16),
and the small-sized S. iseri having larger sizes in SA (β = 3.73, SE = 6.68, p = 0.0002).
In addition, in 2019 we were able to gather a greater sample size of the other two
medium-bodied species, and both species showed smaller sizes in SA: S. rubripinne
(β = −5.78, SE = 12.01, p = 8.27e−09) and S. chrysopterum (β = −3.49, SE = 10.57,
p = 0.00049).

Variation of abundances and biomass
The PERMANOVA applied to parrotfishes abundance in 2018 showed significant
differences (DF = 3, MS = 1013.2, F = 1.99, p = 0.01) between SA and the remaining three
localities (DF = 30; SA:ALB t = 1.59, p = 0.023; SA:BOL t = 1.52 p = 0.026; SA:PRO t = 1.71,
p = 0.026). The results dropped by the SIMPER test showed that the greater abundances of
S. taeniopterus females in SA contributed the most to the differences between this island
and the other three localities (Fig. 4; Table S5). We also found significant differences in
2019 between SA and PRO in the proportions of the parrotfish composition (DF = 1,
MS = 3849.5, F = 4.44, p = 0.002). Likewise, S. taeniopterus females showed to be more
abundant in SA and were largely the major contributors to the differences found by the
SIMPER analysis (Table S6).
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Figure 3 Boxplot of total length (TL) of parrotfish species collected in 2019 in San Andrés (SA) and Providencia (PRO). (A) Boxplot of total
length calculated of the full sample size of medium and samall-bodied species populations, (B) boxplot of total length calculated for males of medium
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Biomass data showed significant differences (DF = 3, MS = 1903.1, F = 2.81, p = 0.01)
between SA and the other three localities (DF = 30; SA:ALB t = 2.28, p = 0.003; SA:BOL
t = 1.92 p = 0.012; SA:PRO t = 2.39, p = 0.002). Also, the 2019 biomass data showed SA and
PRO to be significantly different (DF = 1, MS = 4045.2, F = 4.57, p = 0.004). In both studied
years, the species that contributed most to the overall differences were the small-sized
species S. taeniopterus, and the medium-sized species S. vetula and S. viride (Tables S7 and
S8). The former had a higher load in the overall parrotfish biomass in SA, while the other
two contributed in greater proportion in the other three localities. In addition, at the least
exploited site of PRO we found a higher contribution of the medium-bodied species
S. rubripinne and S. chrysopterum and the large-bodied species S. coelestinus, S. coeruleus,
and S. guacamaia (Figs 5; Tables S6 and S7). As with individual body sizes, no significant
differences were found at SA and PRO between the 2 years evaluated in terms of
abundances (DF = 1, MS = 929.32, F = 1.57, p = 0.158) and biomass (DF = 1, MS = 851.61,
F = 0.9, p = 0.474).

DISCUSSION
Effects of artisanal fishing pressure on parrotfish species populations, sex change, and sex
ratios have been previously described (Hawkins & Roberts, 2003, 2004; Hardt, 2009; Vallès
& Oxenford, 2014; Vallès, Gill & Oxenford, 2015; O’Farrell et al., 2016). In this study, we
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have further investigated these relationships under a qualitative fishing pressure gradient,
including a comprehensive sample size of eleven species and a high-resolution technique
for the underwater assessment of body sizes (diver-operated stereo-video). Overall, our
data suggest that fishing pressure is indeed related to the spatial variation in abundance,
biomass, and individual body size of the parrotfish species, but most importantly, that
there might be indirect effects of fishing pressure on small-sized species.

Following our initial predictions, we expected to find smaller sizes and lower
proportions of large and medium-bodied species at a greater fishing pressure. This was
indeed the case for most of the species and is consistent with previous studies, where a
negative relationship between fishing pressure, body sizes, sex ratios, and abundances were
found (Hawkins & Roberts, 2003, 2004; Vallès & Oxenford, 2014; Vallès, Gill & Oxenford,
2015). Likewise, Mixed Effects Models considering sex showed that females of the
medium-bodied species S. vetula and S. viride had larger sizes at lower fishing pressure.
This finding could be due to selective fishing for large females at the high fishing pressure
sites, but it could also indicate that, at least in less exploited locations, sex change occurs at
larger sizes than at more heavily fished grounds (Hawkins & Roberts, 2004; O’Farrell et al.,
2016). What was most striking, however, were the differences found in the small-sized
species S. iseri and S. taeniopterus. We found that parrotfish proportions at the most
heavily fished locality showed significant differences with the other three least exploited
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fishing grounds evaluated and that higher abundances and biomass of S. iseri and
S. taeniopterus contributed the most to those differences. Furthermost, this is the first
documented study, to our knowledge, to record larger individual sizes of a small-sized
parrotfish species at a heavily fished locality, as is the case of the males of S. iseri in SA.

Differences found in biomass are certainly driven by the mentioned changes observed in
the abundances and individual body sizes. The higher proportion of small-sized species in
the total assemblage of parrotfishes predicted at the beginning of this work is not only
a product of a lower contribution of individual body size and proportions of medium
and large-bodied species but also an outcome of the higher abundances and individual
body sizes of small species. We consider that the higher contribution of S. iseri and
S. taeniopterus in the most heavily fished locality suggests an indirect effect of fishing on
these two small-sized parrotfish species. Dulvy et al. (2004) suggested that indirect effects
of fishing pressure may be due to reduced predation or interspecific competition. In theory,
once predators are removed from the ecosystem, their preys should increase as there is no
control over them, yet, there is no clear evidence of this relation (Clua & Legendre, 2008).
Some studies have found no changes in preys after the demise of predators (Jennings &
Polunin, 1997; Taylor et al., 2018; Roff et al., 2019). Other authors have linked greater
biomass of predators such as Epinephelus striatus with smaller sizes of S. iseri and
S. aurofrenatum (Mumby et al., 2006). In our study, although the greater size and
abundance of S. iseri and S. taeniopterus due to lower predation in SA cannot be
completely ruled out and requires further examination, to our knowledge, there are no
potential predators that may be significantly more abundant in BOL, ALB, and PRO in
contrast to SA. Also, as described by Mumby et al. (2006), we should have found greater
sizes of the other small-sized species (i.e., S. aurofrenatum, which is smaller than
S. taeniopterus) at the locality with supposedly fewer predators due to higher fishing
pressure (SA); still, this was not the case.

Instead, we believe that competitive release might be playing a role in the results found
with S. iseri and S. taeniopterus. Through stable isotope analysis and intestinal content,
Dromard et al. (2015) recognized an overlap in the trophic niche between S. vetula,
S. viride, S. iseri and S. taeniopterus. Therefore, it could be argued that when the
medium-bodied species (i.e., S. vetula, S. viride) are removed from the system, the
small-bodied ones (i.e., S. iseri, S. taeniopterus) may be favored, as some resources for
which they actively compete become more available. Consequently, in an intensely
exploited locality such as SA, small species can reach larger sizes and higher abundances
than in less exploited localities, where larger species limit the resources they compete for.
In addition, Hawkins & Roberts (2004) found greater abundances of the smallest species of
parrotfish (S. atomarium) in Jamaica, the most heavily exploited island in their study.
The intense pressure exerted on parrotfishes in Jamaica has been documented (Hardt,
2009), and we wonder if SA, the most heavily exploited island considered in our study, is
showing a step in a chain of changes that follows as parrotfishes are gradually depleted
according to sizes of interest for fisheries. Hence, it is essential to monitor parrotfish
populations in the Reserve as small size species, like S. aurofrenatum, may become of
interest to fisheries. Such monitoring may also give insights into phase shift processes in
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coral reefs as S. aurofrenatum is a critical consumer of the seaweed Dyctiota in the
Caribbean reefs (Dell et al., 2020), a highly opportunistic algae and a great competitor of
corals (Fong et al., 2003).

The differences found in parrotfish assemblages can likely influence many biological
traits of the species, such as reproduction, but also at the ecosystem level. On the one hand,
given the positive relationship between body length and egg production, the reduction of
mean body sizes of parrotfish populations due to overfishing is probably negatively
affecting their reproductive productivity (Hawkins & Roberts, 2004). On the other hand,
the differences found in this study could have a flow-on influence on ecosystem functions
(Bonaldo & Bellwood, 2008; Robinson et al., 2019; Shantz, Ladd & Burkepile, 2020). Larger
individuals of parrotfishes have greater roles in processes like bioerosion, corallivory, and
grazing of certain macroalgae (Bonaldo, Hoey & Bellwood, 2014). Shantz, Ladd & Burkepile
(2020) found that the removal of large parrotfish on Caribbean coral reefs increases the
abundance of macroalgae and decreases the growth of massive and reef-building corals.
This result suggests that it should be necessary to protect fishes larger than 20 cm to
maintain their functional diversity. Hence, the functional roles of large parrotfish species
are not necessarily replaced by higher abundances or larger sizes of the small-sized species.
Bioerosion and coral predation are two ecological functions highly susceptible to
overfishing as their rates increases with the body size of parrotfishes (Bellwood, Hoey &
Hughes, 2012). Scarus vetula and S. viride are important bioeroders (Bruggemann et al.,
1996), and they had smaller sizes in SA; this could cause lower bioerosion rates at the
locality. Concerning the consumption of algae, recent studies show that species not
consistently considered as part of the herbivore community in the Caribbean, such as
Acanthurus coeruleus, Acanthurus tractus, and Kyphosus spp., are critical consumers of
macroalgae (Duran et al., 2019; Dell et al., 2020), which are the type of algae that are
dominating degrading coral reefs (Perry et al., 2018). Consequently, future studies should
include these groups of herbivores to determine the effect of herbivores removal on the
ecosystem function.

Our findings did not show significant differences between the 2 years evaluated.
However, sampling efforts differ between years as a greater number of shallower stations
nearby seagrass meadows were examined in both localities (SA and PRO) in 2019.
Therefore, it is relevant to continue monitoring the parrotfish populations, hopefully at the
same stations to accurately evaluate possible differences in time. Nonetheless, our
sampling effort was balanced between the localities in 2019 and allowed us to gather a
greater sampling size of S. rubripinne and S. chrysopterum. Those two medium-sized
species had smaller sizes in the most heavily fished locality. At present, neither of these two
species has a threat category assigned in Colombia (Chasqui et al., 2017), and it is
premature to speak of threat due to fishing pressure when their comparable data is only
given in two localities. However, it is important to consider that S. chrysopterum had a
negative relationship with fishing pressure (Vallès & Oxenford, 2014) and, according to a
report from the continental shores of Colombia, it is one of the most captured species of
parrotfishes (INVEMAR-MADS, 2017). Therefore, we recommend increasing the sampling
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effort by focusing on gathering data of both species on a temporal and spatial level to better
understand the differences in our study.

Finally, among the study limitations, different factors were not considered that may
influence fish herbivore species’ body size and abundances. Such items may include habitat
quality, food availability, and other environmental variables. In some studies, factors such
as productivity, temperature, rugosity, latitude, geomorphological attributes of reef
formations and slope have shown weak relationships with parrotfish community changes
(Cinner et al., 2013; Taylor, 2014; Taylor et al., 2018). In contrast, coral cover and position
of coral reefs seem to be related to changes in biomass and abundance of parrotfishes
(Hoey & Bellwood, 2008; Nash et al., 2012). Exposed reefs have greater biomass of
parrotfishes and erosion levels (Russ, 1984; Gust, Choat & McCormick, 2001; Hoey &
Bellwood, 2008; Taylor, 2014; Taylor et al., 2018; Roff et al., 2019). Our findings show that
S. vetula and S. viride reach larger sizes in the less fished locality (PRO) and in BOL, with
males of S. viride reaching larger sizes in the former. Larger sizes and levels of bioerosion of
both species are associated with exposed reefs (Koltes, 1993; Bruggemann et al., 1996;
Clements et al., 2017), and BOL seem to have more exposed environments than the other
localities (Gamboa et al., 2012) which could explain why such differences were found in
this site. Consequently, differences in body size are explained by different factors such as
reefs’ exposure, resource availability, and demographic characteristics of fish stocks
influenced by external stressors such as fishing exploitation. Future efforts should include
environmental factors such as reef exposure and coral cover to account for our study’s
intraspecific variation in body size.

CONCLUSIONS
Abundances, individual body sizes and biomass of parrotfish species showed significant
differences and varied widely depending on the fishing pressure gradient and the size
category of the species. On the one hand, medium and large-bodied species of parrotfishes
had a negative relation between fishing pressure and contribution to the overall biomass,
occurrences, and individual body sizes. On the other hand, we found a significant
contribution of the small-size species evaluated to the overall biomass at higher fishing
pressure sites. The such greater contribution was driven by the reduction of sizes and
abundances of medium and large-bodied species, directly affected by fisheries but was also
a product of greater abundances and, most interestingly, larger sizes of the small-sized
species. We suggest this result points to indirect effects of overfishing and that such effects
could related to a possible case of competitive release. It is relevant to establish how such
variations are linked with possible effects on the species’ reproductive productivity and
ecosystem processes.

Overall this study provides insights into intraspecific variation in body size, and our
substantial volume of data adds to the existing literature on the extent of variation in
parrotfish assemblages over relatively short distances. While we consider our general
results are better explained under a fishing pressure perspective, this by no means denies
the influence of other factors such as inter-island environmental differences. Therefore,
although the direct and indirect effects of fishing pressure suggested by our work deserve
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attention, they should be taken as preliminary until further examination on a temporal and
spatial scale is conducted.
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