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ABSTRACT
Background. There have been promising results published regarding the potential of
stem cells in regenerative medicine. However, the vast variety of choices of techniques
and the lack of a standard approach to analyse human osteoblast and osteoclast
differentiation may reduce the utility of stem cells as a tool in medical applications.
Therefore, this review aims to systematically evaluate the findings based on stem cell
differentiation to define a standard gene expression profile approach.
Methods. This review was performed following the PRISMA guidelines. A systematic
search of the study was conducted by retrieving articles from the electronic databases
PubMed and Web of Science to identify articles focussed on gene expression and
approaches for osteoblast and osteoclast differentiation.
Results. Six articles were included in this review; there were original articles of in vitro
human stem cell differentiation into osteoblasts and osteoclasts that involved gene
expression profiling. Quantitative polymerase chain reaction (qPCR) was the most
used technique for gene expression to detect differentiated human osteoblasts and
osteoclasts. A total of 16 genes were found to be related to differentiating osteoblast
and osteoclast differentiation.
Conclusion. Qualitative information of gene expression provided by qPCR could
become a standard technique to analyse the differentiation of human stem cells into
osteoblasts and osteoclasts rather than evaluating relative gene expression. RUNX2
and CTSK could be applied to detect osteoblasts and osteoclasts, respectively, while
RANKL could be applied to detect both osteoblasts and osteoclasts. This review provides
future researchers with a central source of relevant information on the vast variety
of gene expression approaches in analysing the differentiation of human osteoblast
and osteoclast cells. In addition, these findings should enable researchers to conduct
accurately and efficiently studies involving isolated human stem cell differentiation into
osteoblasts and osteoclasts.
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INTRODUCTION
Bone, one of the hardest tissues in the body, serves three important functions: it provides
mechanical support, acts as a shield to internal organs and carries out metabolic processes,
such as providing storage for minerals and haematopoiesis (Ansari, Ito & Hofmann , 2021;
Konukoğlu, 2019). As bone tissues are of paramount importance to the human body, the
bones must be replenished continuously to retain their strength and structural integrity.
This process is known as bone remodelling, which involves two main mechanisms, namely
bone matrix formation and resorption. Osteoblasts are responsible for bone formation
while osteoclasts are involved in bone resorption (Konukoğlu, 2019; Phan, Xu & Zheng,
2004). Faulty regulation of these two mechanisms disrupts the bone remodelling cycle,
making them potential targets for pharmacological interventions in disease states such as
osteoporosis (Kenkre & Bassett, 2018).

Stem cells have shown promise in tissue regeneration and have been considered for
application in medicine, such as repairing defective tissues and organs, including bone
tissues. Several types of mesenchymal stem cells (MSC) isolated from various organs
have been suggested as a source of osteoblast progenitors, such as dental pulp tissues
(Koh et al., 2021; Shahrul Hisham et al., 2016) and peripheral blood (Shahrul Hisham et
al., 2010; Shahrul Hisham et al., 2019). MSC have anti-inflammatory, angiogenic and
immunomodulatory properties, which are responsible for wound healing and regeneration.
Preclinical and clinical studies have shownpromising potential to treat degenerative diseases
that involve osteoblasts and osteoclasts, including osteoporosis and osteogenesis imperfecta
(Götherström &Walther-Jallow, 2020; Paim &Wink, 2022; Yahao & Xinjia, 2021). The use
of cell-based regenerative medicine is able to modulate bone resorption, to reduce the
susceptibility of fractures and to enhance the loss of mineral density (Arjmand et al., 2020;
Iaquinta et al., 2019).

Osteoblasts and osteoclasts are the main cells that exist in the organic phase of bone
tissue (Iaquinta et al., 2019). Osteoblasts differentiate from MSC that have been induced
by regulatory factors such as bone morphogenic proteins (BMP). Osteoblasts produce
bone matrix proteins wherein type 1 collagen (COL1A) is the most abundant extracellular
protein of bone and is responsible for tissue mineralisation. Therefore, human osteoblast
differentiation is observed through the expression of various kinds of bone-related
extracellular matrix proteins, such as COL1A, osteocalcin (OCN), osteopontin (OPN)
and bone sialoprotein (BSP). In addition, an increase in the alkaline phosphatase (ALP)
activity profile is believed to be the major contributor to its characteristics (Intan Zarina et
al., 2010; Katagiri & Takahashi, 2002).

Osteoclasts are formed via the fusion ofmonocyte lineage cells, activating bone-resorbing
osteoclast cells. Amyriad of factors such as cytokines, signallingmolecules and transcription
factors aid osteoclast differentiation. Macrophage colony-stimulating factor (M-CSF) and
receptor activator of nuclear factor- κB ligand (RANKL), which are produced by osteoblasts,
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are crucial to activate osteoclast differentiation. The survival of osteoclasts is maintained
through the binding of RANKL to the nuclear factor κB receptor, which induces the
formation of multinuclear osteoclasts (Kang et al., 2014).

Osteoblasts and osteoclasts communicate with each other through cell–cell interactions,
cytokines or the cell-bone matrix. This communication occurs at various stages of
differentiation, including the early and proliferative stages. Moreover, osteoblasts
affect osteoclast differentiation through several pathways, such as the osteoprotegerin
(OPG)/RANKL/receptor activator of nuclear factor κB (RANK) pathway. Osteoclasts are
also involved in the formation of bones by osteoblasts, where osteoclasts resorb the bone
matrix (Chen et al., 2018).

Osteoblast and osteoclast differentiation can be observed using various gene expression
profiling approaches. Gene expression profiling is the study of the gene expression pattern
at the transcript level. Genes that contain biological information about the organisms are
transcribed into RNA and then translated into proteins (Brown, 2012). Hence, the analysis
of gene expression can be directly correlated to the end products of the genes. These
analyses enable researchers to understand the process, development and behaviour of cells,
and the interactions among cells.

There have been many publications on how gene expression approaches can help to
analyse human stem cells differentiation into osteoblasts and osteoclasts. However, there
are a wide variety of molecular techniques and there is currently no established standard
method to analyse the differentiation of human osteoblasts and osteoclasts. Hence, this
systematic review aims to collect and evaluate the findings of studies that have examined
osteoblast and osteoclast differentiation. This information should help to develop a standard
technique with suitable markers to investigate osteoblast and osteoclast differentiation.
Moreover, it should provide researchers with a central source of information to perform
more efficient and accurate experiments.

MATERIAL AND METHODS
This systematic review was performed by following the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021). The
PICOS question was established as follows: Amongst the many methodologies and genes
available, which are the most suitable techniques and genes for standard analysis of human
stem cell differentiation into osteoblasts and osteoclasts? Two independent observers
(K.W.L. and A.N.J.) performed the searches and evaluated the articles to determine their
eligibility. Three other authors (S.H.Z.A., R.M.A.W. and I.Z.Z.A.) helped resolve any
discrepancies from the stated methods.

Data search
The studies included in this systematic review were retrieved from the PubMed andWeb of
Science databases. Independent keywords and their combinationswere applied to the search
engines of these databases. A detailed customised search strategy was established for each
electronic database (Table 1). The title, abstract, authors’ names and affiliations, journal
name and year of publication were exported to a Microsoft Excel spreadsheet. K.W.L. and
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Table 1 The combinations of the keywords used in the search.

Database Search strategy

PubMed {[((((molecular analysis) AND (stem cell)) AND
(differentiation)) AND (osteoblast)] AND (osteoclast)}
AND (human)

Web of Science (WOS) ALL= (molecular analysis AND stem cell AND
differentiation AND osteoblast AND osteoclast AND
human)

A.N.J. then independently screened the titles and abstracts to assess each article’s eligibility
for inclusion. During this phase, disagreements between the two observers were discussed
and resolved by consensus. If no agreement could be reached, a third observer (S.H.Z.A.)
was involved.

Selection criteria
Only original articles that were published in the English language between 2016 and 2022
were included; review articles and duplicate articles were excluded. In vitro studies involving
the potential of only human stem cells to differentiate into osteoblasts and osteoclasts were
included; studies using any cell lines or primary cultures from animals were excluded. In
vivo studies were not included. Studies that had combinations of both animal and human
cultures were included, but only the section on human cell cultures was considered.

Data extraction and screening process
Screening involved the following process. First, review articles and articles published in
a language other than English were removed. Next, studies performed without utilising
human stem cells and that did not match the parameters of osteoblastic and osteoclastic
differentiation were removed. Techniques involved in screening profiles were also excluded
in this review. All the remaining articles were screened for their eligibility. Data were
extracted from each included article by following the PRISMA guidelines (Page et al.,
2021). The data extracted included: study characteristics (first author, year of publication,
language and study design), organism and cell lines and the methods used to analyse gene
expression profiles.

Risk of bias assessment
The quality of methodology of the included studies was evaluated by K.W.L. following
the ‘Modified CONSORT checklist of items for reporting in vitro studies’, with slight
modifications to fit the study. The main domains are listed as follows: (1) structured
summary in abstract, (2) specific objectives or hypothesis, (3) study population, (4)
further description of interventions, (5) primary and secondary outcomes, (6) results,
(7) limitations, (8) sources of funding and (9) availability of protocol. Any domains that
were related to clinical trials or cell lines and primary cultures from animal samples were
excluded, while the domains involving human stem cells were included. Disagreements
between reviewers were resolved after discussion. Each criterion was marked as follows:
present (+), absent (-), unclear (?), not stated (/) or not applicable (NA).
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Table 2 Risk of bias assessment.

Domain
Author (year)

1 2 3 4 5 6 7 8 9

Srikanth et al. (2016) + + + + + + / / +
Bradamante et al. (2018) + + + + + + + / +
Xu et al. (2018) + + + + + + + + +
Höner et al. (2018) + + + + + + / / +
Hashimoto et al. (2018) + + + + + + / / +
Xie et al. (2021) + + + + + + + + +

Notes.
+Domain included.
-Domain absent.
/Domain not stated in the article.

1–9Main CONSORT domain.

RESULTS
Data extraction results
Searches with keywords in the electronic databases related to stem cell osteogenic
differentiation (Table 1) produced a total of 52 articles, 17 results from PubMed and
35 results from Web of Science. Every potential article was assessed independently based
on the inclusion and exclusion criteria. After removing five duplicates between the two
databases, 47 articles remained. A review article was also excluded. In addition, a single
article in Japanese and a single article in German were excluded, followed by 12 articles not
relevant to human stem cells and 26 articles that did not match the parameters of interest.
Hence, there are six articles published between 2016 and 2022 eligible for qualitative
synthesis. Figure 1 shows the flowchart of the article selection process.

Study design
Of the six included studies, four focussed on the differentiation of osteoblasts, and another
two focussed on the differentiation of both osteoblasts and osteoclasts. However, no
studies focussed specifically on the differentiation of osteoclasts. All six studies were based
on in vitro studies. The cultured cells included CD34+ peripheral blood stem cells (HSC)
(Srikanth et al., 2016), and human mesenchymal stem cells (hMSC) (Bradamante et al.,
2018; Höner et al., 2018; Xie et al., 2021; Xu et al., 2018). One study included multiple
cultured cells, namely hMSC and human blood peripheral mononuclear cells (hBPMC)
(Höner et al., 2018). The results from the risk of bias assessment are shown in Table 2.
The included studies presented an abstract with a brief rationale and clear objective or
hypotheses and introduction. The studies also provided information on the populations
and results. Three studies did not state the limitations while four studies did not provide
information regarding funding.

Gene expression profiles of osteoblasts and osteoclasts
The methods used to analyse osteoblast and osteoclast differentiation included gene
expression evaluatedwith quantitative polymerase chain reaction (qPCR) (Hashimoto et al.,
2018; Höner et al., 2018; Srikanth et al., 2016; Xie et al., 2021; Xu et al., 2018) or microRNA
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Figure 1 Article selection process. The article selection process was performed following the exclusion
and inclusion criteria.

Full-size DOI: 10.7717/peerj.14174/fig-1

sequencing (miRNA-seq) analysis (Bradamante et al., 2018). CD34+ HSC express runt-
related transcription factor 2 (RUNX2), osterix (OSX), RANKL and osteonectin (SPARC)
during osteoblast differentiation. Meanwhile, when using human bone marrow-derived
mesenchymal stem cells (hBMSC),miR-142-5p is the only gene expressed during osteoblast
differentiation. hMSC, the most commonly used cells in studies included in this systematic
review, express COL1A, BSP, OPN, OCN, miR-139-5p, ALP, OPG, miR-940, four and a
half LIM domains 2 (FHL2) and RUNX2 during osteoblast differentiation. hMSCs were
also used for osteoclast differentiation; they express cathepsin K (CTSK ), NOTCH1, HES1
and HEY1.

Irrespective of the cell types and methodologies, there are certain gene expression
profiles for osteoblast and osteoclast differentiation. These genes are specifically expressed
during either osteoblast or osteoclast differentiation, except RANKL, which is expressed
during both. RUNX2, OSX, SPARC, miR-142-5p, COL1A, BSP, OPN, miR-139-5p, ALP,
OPG, miR-940 and FHL2 are only expressed during osteoblast differentiation. CTSK,
NOTCH1, HES1 and HEY1 are expressed specifically during osteoclast differentiation.
Table 3 presents the gene expression levels, techniques and the type of stem cells applied to
investigate osteoblast and osteoclast differentiation, while Table 4 includes the genemarkers
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used in the included studies. Based on Table 4, RUNX2 is the most commonly expressed
gene during osteoblast differentiation, while CTSK is the most commonly expressed gene
during osteoclast differentiation.

Upregulation of RUNX2, OSX, RANKL, SPARC, BSP, COL1A, OPN, OPG, miR-940,
ALP, and/or FHL2 indicates osteoblast differentiation. OPG is highly expressed during
osteoblast differentiation and halts osteoclast differentiation. CTSK is highly upregulated
during osteoclast differentiation. Increased expression of Notch signalling pathway genes,
including NOTCH1, HEY1 and HES1, ultimately suppress osteoblast differentiation.

DISCUSSION
Types of stem cells used in osteoblast and osteoclast analysis
Of the six included studies, hMSC were the most commonly used cell type (Bradamante
et al., 2018; Hashimoto et al., 2018; Höner et al., 2018; Srikanth et al., 2016; Xu et al., 2018).
On the other hand, hMSC isolated from bone marrow, namely hBMSC (Bradamante et
al., 2018; Xie et al., 2021), were the most used cell source, followed by a hMSC cell line
from the human umbilical cord (Hashimoto et al., 2018), primary culture of hMSC from
the femoral head (Höner et al., 2018) and primary culture of hMSC from blood peripheral
monocytes (Xu et al., 2018). The properties of hBMSC such as ease of isolation from bone
marrow without causing an immunological problem and the ability to reach confluence in
a short period make them the most popular model for in vitro osteogenic differentiation
studies (Bhat et al., 2021; Ouryazdanpanah et al., 2018). Ansari, Ito & Hofmann (2021)
showed that rapid osteogenic differentiation under biochemical and/or mechanical stimuli
significantly increase gene expression specific to osteoblast differentiation. The other
variant of adult stem cells in the included studies are HSC (Srikanth et al., 2016). HSC
are the most thoroughly characterised tissue-specific stem cells and possess potential
in regenerative medicine (Zakrzewski et al., 2019). Monocytes derived from HSC, which
comprise 10%–20% of peripheral blood, have been used during in vitro studies as osteoclast
precursor cells. HSC and monocytes can be isolated and purified based on the expression
of their specific surface markers such as CD34 and CD14. However, unlike MSC, the HSC
isolation procedures are time-consuming andmight lead to a low number of cells obtained,
resulting in a larger volume of peripheral blood needed (Ansari, Ito & Hofmann , 2021).

Gene expression profiling techniques
Genes are upregulated and downregulated during cell-specific differentiation. Changes
in gene expression can be detected by qPCR and miRNA-seq analysis. qPCR can detect
the expression of a single gene while miRNA-seq analysis provides a profile of predefined
transcripts or genes via hybridisation. Most of the studies included in this systematic review
used qPCR rather than miRNA-seq to evaluate osteoblast and osteoclast differentiation
because qPCR provides quantitative information about relative gene expression. In
addition, miRNA-seq lacks an optimised standard protocol despite its computational
infrastructure and bioinformatic analyses (Rao et al., 2019). Therefore, qPCR is the most
commonly chosen technique.
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Table 3 Gene expression profile approach.

Reference Cell variant Technique(s)
used

Upregulation/ Highly expressed No
expression

Downregulation/
Low expression

Osteoblast Osteoclast Osteoclast Osteoblast Osteoclast

Srikanth et al. (2016) CD34 + peripheral
blood stem cell (HSC)

qPCR Runx2, Osterix,
RANKL, SPARC

RANK, OSCAR,
NFATc, CTSK

Bradamante et al. (2018) hBMSC miRNA-
seq analysis

miR-142-5p

Xu et al. (2018) Primary culture of
hMSC from blood pe-
ripheral monocyte

qPCR BSP, COLA1, OPN,
Runx2, miR-139-5p

Notch1, Hey1,
Hes1

Höner et al. (2018) hMSC qPCR Runx2, OPN, Col1,
OPG, ALP

Hashimoto et al. (2018) hMSC cell line from
umbilical cord

qPCR miR-940, ALP CTSK

Xie et al. (2021) hMSC qPCR FHL2, Runx2, ALP,
Col1a
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Table 4 Summary of the gene markers for osteoblast and osteoclast cells.

Gene markers Frequencies
used

Indication

Nuclear factor κb ligand (RANKL) 1 Osteoblast & osteoclast
differentiation

Runt-related transcription factor 2 (Runx2) 5
Collagen type 1 (COL1a) 4
Alkaline phosphatase (ALP) 2
miR-142-5p 1
Osterix 1
Bone sialoprotein (BSP) 1
Osteopontin (OPN) 1
miR-139-5p 1
Osteonectin (SPARC) 1
Osteoprotegerin (OPG) 1
Osteocalcin (OCN ) 1
miR-940 1
Four and a half LIM domains 2 (FHL2 gene) 1

Osteoblast
differentiation

Cathepsin K (CTSK ) 2
Notch signalling pathway (Notch1, Hes1, Hey1) 1

Osteoclast
differentiation

Markers for both osteoblast and osteoclast differentiation
RANKL stimulates osteoclast formation and activity, which induces the expression of
RANKL by osteoblastic stromal cells (Konukoğlu, 2019; Tobeiha et al., 2020). RANKL
together with its receptor, RANK, is essential for bone remodelling. RANKL is highly
expressed in osteoblasts while it is also important in osteoclastogenesis: dysregulation of
RANKL signalling may impair bone resorption (Ono et al., 2020). Osteoblasts regulate
bone resorption through RANKL expression (Konukoğlu, 2019). RANKL, part of the
RANKL/RANK/OPG signalling pathway, is secreted by osteoblasts. It then binds to its
receptor (RANK) on osteoclasts and increases osteoclastic differentiation, resulting in bone
resorption and bone loss (Fig. 2) (Roumeliotis et al., 2020). On the other hand, OPG could
bind to RANKL to inhibit osteoclastogenesis (Tobeiha et al., 2020).

Gene expression profile of osteoblast differentiation
The most frequently used gene markers among the included articles to detect osteoblastic
differentiation are RUNX2 (Höner et al., 2018; Srikanth et al., 2016; Xie et al., 2021; Xu et
al., 2018) and COL1A (Höner et al., 2018; Xie et al., 2021; Xu et al., 2018). Early osteoblastic
genes such as RUNX2 and OSX showed high expression on the seventh day of culture,
and enhanced expression was the key factor of osteogenesis (Xu et al., 2018; Srikanth et al.,
2016). RUNX2 is a member of the Runt-related transcription factor family. It is a master
transcription factor and communicates with target gene promoters via its Runt domain.
RUNX2 facilitates bone remodelling through interaction with proteins and DNA sequences
(Narayanan et al., 2019). Positive and negative regulation of RUNX2 is crucial for bone
formation (Narayanan et al., 2019). RUNX2 is initially detected in pre-osteoblasts and later
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Figure 2 RANKL/RANK interaction and CTSK expression. Binding of RANKL, which is secreted by
osteoblasts to its receptor, RANK embedded on osteoclasts results in bone resorption and bone loss.
RANKL-RANK signalling pathway regulates the expression of CTSK through activation of NFATc1.
Figure created with BioRender.com.

Full-size DOI: 10.7717/peerj.14174/fig-2

upregulated in immature osteoblasts but downregulated in mature osteoblasts (Fig. 3).
RUNX2 is required for the determination of the osteoblast lineage during multipotent
MSC differentiation into immature osteoblasts (Komori, 2009). RUNX2 encodes multiple
transcripts that are derived from two promoters (P1 and P2) and alternative splicing. P1
(distal) and P2 (proximal) initiate the expression of the major RUNX2 isoforms, type II
(RUNX2-II) and type I (RUNX2-I), respectively. The structure of the promoter has been
conserved in both human and murine RUNX2 genes. RUNX2-I is expressed by osteoblasts
at consistent levels throughout osteoblast differentiation while RUNX2-II expression is
increased during osteoblast differentiation under the induction BMP (Schroeder, Jensen
& Westendorf, 2005). Therefore, RUNX2 is the master transcription factor, and no bone
is formed in the absence of RUNX2; making RUNX2 the preferred standard marker for
osteoblast differentiation.

COL1A is a bone matrix protein that facilitates morphological changes and
transformation of pre-osteoblasts into mature osteoblasts; it also serves as an early marker
for osteoblasts (Fig. 3) (Narayanan et al., 2019). Collagen is a triple helical structure in
which procollagen forms the first helical structure during collagen synthesis. Protease
removes the amino and carboxyl ends of the molecule, forming tropocollagen followed
by cross-linking. PYD and DYP cross-link collagen polypeptides, providing mechanical
support to maintain and stabilise collagen. These cross-linkages affect the differentiation
of osteoblasts. DYP is a more specific and sensitive marker as it is found specifically in
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Figure 3 Gene expression profile of the osteoblastic cell. Runx2 expression is upregulated throughout
from osteoprogenitor to osteoblast. However, there is a downregulation in mature osteoblast. Runx2 ac-
tivates osterix to produce immature osteoblast and both Runx2 and osterix induce osteoblastic cells. Col1
and ALP genes are expressed in osteoprogenitor to immature osteoblast under different conditions. Other
genes such as OPG, SPARC, OCN, and OPN are secreted and induced mature osteoblastic cells. Figure
created with BioRender.com.

Full-size DOI: 10.7717/peerj.14174/fig-3

bones and dentin (Konukoğlu, 2019). Similarly to RUNX2, MSC transfected with a miRNA
mimic of miR-139-5p significantly enhances COL1A expression (Xu et al., 2018).

Some osteoblastic markers such as RANKL and SPARC (Roumeliotis et al., 2020) show
high expression only at the later stages of osteoblast differentiation. SPARC regulates
extracellular matrix assembly and the formation of matrix metalloproteinases and collagen
that is needed for fibronectin-induced, integrin-linked kinase activation as extracellular
matrix development needs an organised fibronectin matrix (Purnachandra Nagaraju et al.,
2014).

FHL2 interacts with integrins and transcription factors to control osteoblast
differentiation. FHL2 overexpression leads to rapid differentiation of stem cells into
osteoblasts and increases the expression of osteoblast markers. On the other hand, knocking
out FHL2 downregulates osteoblast markers (Lai et al., 2006; Xie et al., 2021).

OSX is also upregulated during osteoblast differentiation. This gene encodes an
osteoblast-specific transcription factor required for osteoblast differentiation and bone
formation (Fig. 3). OSX, one of the early osteoblastic genes, shows high expression in the
early days of differentiation (Srikanth et al., 2016). OSX is considered a major effector in
skeletal formation. OSX interacts with the nuclear factor of activated T cells (NFAT), which
then forms a complex that improves osteoblast-mediated bone formation via activation of
the COL1A1 promoter (Han et al., 2016).

ALP (Hashimoto et al., 2018; Höner et al., 2018) is an early marker for osteoblastic
differentiation produced by osteoblasts; its elevated level is positively correlated with bone
formation rate (Fig. 3). ALP increases the local rate of inorganic phosphate release and
aids in mineralisation while reducing extracellular pyrophosphate, which is an inhibitor of
mineral formation (Vimalraj, 2020).
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OPN and BSP are co-expressed in osteoblasts and osteoclasts. These genes encode
proteins that promote adhesion of the cells to the bone matrix through the RGD (Arg-
Glu-Asp) cell adhesion sequence. OPN is an acidic molecule; its central section consists
of sequences that communicate and interact with seven integrins. OPN is a crucial factor
in bone remodelling and settling osteoclasts in the bone matrix (Zhao et al., 2018). On
the other hand, BSP, which is highly negatively charged, can isolate calcium ions while
conserving polyglutamate regions with hydroxyapatite crystal nucleation potential. BSP
allows the attachment and activation of osteoclasts through the RGD motif (Huang et al.,
2005). qPCR analysis has revealed that elevated OPN and BSP expression is an osteogenic
signature (Xu et al., 2018).

OPG (Iaquinta et al., 2019) is a decoy receptor for RANKL. It is secreted by osteoblasts
to inhibit osteoclast differentiation: OPG binds to RANKL to block the interaction between
RANK and RANKL (Kenkre & Bassett, 2018). Kang et al. (2014) reported very low OPG
expression during osteoclastogenesis in osteoclasts involved in alveolar bone resorption.
OPG expression plays a role in autoregulation in the later phase of osteoclastogenesis (Kang
et al., 2014).

Several studies have shown the role of miRNAs in bone turnover, such as miR-940,
which promotes in vitro osteoblast differentiation from hMSC (Hashimoto et al., 2018;
Konukoğlu, 2019). However, the roles of miRNAs are very complicated, and additional
studies are needed to understand them better.

Gene expression profile of osteoclast differentiation
The Notch signalling pathway is highly conserved; it regulates cell proliferation and
differentiation, determines cell fate and is involved in cellular processes in adult tissues,
including skeletal tissue development and regeneration (Luo et al., 2019). The Notch
pathway regulates bone marrow mesenchymal progenitors by suppressing osteoblast
differentiation and NOTCH1 overexpression inhibits osteoblastogenesis in stromal cells.
Hence, activation of Notch signalling has a negative effect on osteoblast differentiation.
When exposed to an osteogenic induction medium, MSC are forced to undergo epigenetic
modifications, resulting from the upregulation ofmiR-139-5p, a phenomenon that inhibits
NOTCH1 signalling activity, triggering osteoclast differentiation (Xu et al., 2018).However,
NOTCH1 deletion indirectly promotes osteoclast differentiation through the enhancement
of osteoblast-lineage-cell-mediated stimulation of osteoclastogenesis (Konukoğlu, 2019).

Osteoclast Associated Ig-Like Receptor (OSCAR), RANK, NFATC and CTSK are
predominantly expressed by active osteoclasts (Konukoğlu, 2019; Srikanth et al., 2016).
CTSK expression is regulated by the RANKL/RANK signalling pathway, which is one of
the important pathways for osteoclastogenesis. Activation of this signalling pathway in
osteoclast precursors enhances the pro-osteoclastogenesis transcriptional factor NFATC1,
which allows the initiation of CTSK transcription to occur (Fig. 2) (Dai et al., 2020).

CONCLUSION
In studies published from 2016 to 2022, qPCR has been the most used technique and it
is suggested as a standard approach to assess stem cell differentiation into osteoblasts and

Zainal Ariffin et al. (2022), PeerJ, DOI 10.7717/peerj.14174 12/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.14174


osteoclasts because it provides qualitative information on gene expression profiles. RANKL
has been widely used as an osteogenic marker, CTSK is an osteoclast marker and RUNX2
is an osteoblast marker. This review provides useful insights on gene expression profiles
for future researchers evaluating human stem cell differentiation into osteoblasts and/or
osteoclasts. Identification of these gene markers should increase the efficiency of future
osteogenic research, a phenomenon that should ultimately promote better therapies and
medications.
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