Impact of cover crop and mulching on soil physical properties and soil nutrients in a citrus orchard (#73518)

First submission

Guidance from your Editor

Please submit by 8 Jul 2022 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 2 Figure file(s)
- 6 Table file(s)
- 1 Raw data file(s)

ī

Structure and Criteria

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.

 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- All underlying data have been provided; they are robust, statistically sound, & controlled.

Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

Τ	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult. I suggest you have a colleague who is proficient in English and familiar with the subject matter review your manuscript, or contact a professional editing service.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Impact of cover crop and mulching on soil physical properties and soil nutrients in a citrus orchard

Tran Van Dung¹, Ngo Phuong Ngoc², Le Van Dang¹, Ngo Ngoc Hung ^{Corresp. 1}

Corresponding Author: Ngo Ngoc Hung Email address: ngochung@ctu.edu.vn

Background: Cover crops and mulching can ameliorate soil porosity and soil nutrient availability, but their effects on soil quality in the raised bed soils are less known.

Methods: The field experiment was conducted in a pomelo orchard from 2019 to 2021,

with an area of about 1500 m². The treatments included control (no cover crop), nonlegume cover crop (Commelina communis), egume cover crop (Arachis pintoi), and riceare missing straw mulching (Oryza sativa L.). Each year, soil samples were collected at four different layers (0-10 cm, 10-20 cm, 20-30 cm, and 30-40 cm) in each treatment. Soil bulk density, soil porosity, and the concentration of nutrients in the soil were investigated. Results: The results revealed that soil bulk density at two depths, 0-10 cm and 10-20 cm, was reduced how multiple remarkably by mulched rice straw and cover crop by a legume, thus increasing soil how porosity. Soil nutrients (Ca, K, Fe, and Zn) at topsoil (0-10 cm) and subsoil (10-20 cm) much layers were not significantly different in the first year, but those nutrients improved greatly in the second and third years. **Conclusions:** Legume cover crops and straw mulch improved means enhanced soil health by increasing soil porosity and the availability of plant nutrients. what? These conservation practices are best beneficial for fruit orchards cultivated in the raised bed soils.

what soil much, how and how much it increased in percent?

how much and which out 16 essential nutrients"

time?

¹ Soil Science Department, College of Agriculture, Can Tho University, Can Tho, Viet Nam

Department of Plant Physiology-Biochemistry, College of Agriculture, Can Tho University, Can Tho, Viet Nam

1 Impact of cover crop and mulching on soil physical

2 properties and soil nutrients in a citrus orchard

3

- 4 Tran Van Dung, Ngo Phuong Ngoc, Le Van Dang, Ngo Ngoc Hung
- 5 College of Agriculture, Can Tho University, Can Tho, Vietnam.

6

- 7 Corresponding Author:
- 8 Ngo Ngoc Hung
- 9 3/2 street, Can Tho city, 94000, Vietnam
- 10 Email address: ngochung@ctu.edu.vn

11

12 Abstract

- 13 Background: Cover crops and mulching can ameliorate soil porosity and soil nutrient
- 14 availability, but their effects on soil quality in the raised bed soils are less known.
- 15 **Methods:** The field experiment was conducted in a pomelo orchard from 2019 to 2021, with an
- area of about 1500 m². The treatments included control (no cover crop), non-legume cover crop
- 17 (Commelina communis), legume cover crop (Arachis pintoi), and rice straw mulching (Oryza
- 18 sativa L.). Each year, soil samples were collected at four different layers (0-10 cm, 10-20 cm,
- 19 20-30 cm, and 30-40 cm) in each treatment. Soil bulk density, soil porosity, and the
- 20 concentration of nutrients in the soil were investigated.
- 21 **Results:** The results revealed that soil bulk density at two depths, 0–10 cm and 10–20 cm, was
- 22 reduced remarkably by mulched rice straw and cover crop by a legume, thus, increasing soil
- porosity. Soil nutrients (Ca, K, Fe, and Zn) at topsoil (0–10 cm) and subsoil (10–20 cm) layers
- 24 were not significantly different in the first year, but those nutrients improved greatly in the
- 25 second and third years.
- 26 Conclusions: Legume cover crops and straw mulch enhanced soil health by increasing soil
- 27 porosity and the availability of plant nutrients. These conservation practices are best beneficial
- 28 for fruit orchards cultivated in the raised bed soils.
- 29 Keywords: available nutrients, Mekong Delta, pomelo orchard, soil conservation practices, soil
- 30 compaction

31 Introduction

- 32 The loss of nutrients in the soil is considered a key problem for decreasing soil fertility in the
- 33 fruit orchards grown in the raised bed soils (Quang, 2013). In the Vietnamese Mekong Delta

(VMD), soil compaction and soil degradation became more severe (*Ghyselinck*, 2013). Many 34 studies have reported that reduced soil organic matter is a primary cause of increased soil bulk 35 density (Hossain et al., 2015; Athira et al., 2019; Dang et al., 2021). Citrus needs high soil 36 porosity and available nutrients for optimum growth and development. Pomelo (Citrus grandis 37 Osbeck) has been cultivated in many places at the VMD/They are a great source of income for 38 growers (*Viet, 2015*). However, the pomelo productivity cultivated on old raised soils has been 39 reduced due to poor soil fertility and compaction (*Quang*, 2013). Dang et al. (2022) reported that 40 soil acidity in the citrus orchards increased significantly with chemical fertilizers in the long 41 term. Moreover, farmers often are not cover ground in their fruit orchards. This reason may 42 decrease soil moisture and biological activity. / focus on your topic only 43 Soil conservation practices (mulching, cover cropping, crop rotation, etc.) are measures the 44 farmer can apply to mitigate soil degradation and soil erosion (Ogunsola et al., 2020; López-45 Vicente et al., 2020). Conservation agriculture reduces soil loss by keeping a cover over the 46 47 ground, decreasing soil displacement associated with raindrops and irrigation water affecting soil particles (Vincent-Caboud et al., 2019; Calegari et al., 2020). Additionally, soil conservation 48 measures also decrease the pressure and velocity of runoff on the topsoil (*Kumawat et al.*, 2020). 49 According to Page et al. (2020), conservation practices improved the soil's organic carbon 50 content, foil structure, available water capacity, plant nutrient availability, soil biota activity, and 51 how is it possible? crop productivity. 52 correct definition, please Cover cropping is a crop utilized mainly to decrease erosion, ameliorate soil porosity, enhance 53 soil organic matter, weed control, pests and diseases management, and increase biodiversity 54 (Sharma et al. 2018; Das et al., 2021). According to Van Sambeek (2017) and Abdalla et al. 55 56 (2019), cover crops attract pollinators leading to improve fruit set ratio, thus increasing plant productivity. There are two key cover crops, including legumes and non-legumes (Abdalla et al., 57 2019). Cover crops by legumes increase soil nutrients, especially total and available nitrogen 58 because they can fix nitrogen biologically (Möller et al., 2008; Kaye et al., 2019; MacMillan et 59 60 al., 2022). Meanwhile, the non-legume cover crops increase crop biomass and decrease soil loss from the surface layer (Rühlemann & Schmidtke, 2016; Romdhane et al., 2019). 61 Mulches comprise organic material (straw, litter, leaves fleath) etc.) spread over the soil surface 62 to control weeds and reduce runoff (Li et al., 2021; Khoramizadeh et al., 2021). Mulches will 63 64 help increase soil organic carbon, resulting in decreased soil compaction (*Igbal et al.*, 2020). The 65 decomposition process of organic mulches releases many nutrients (Ranjbar & Jalali, 2012). These nutrients are in a form that is useful to plants (Cattanio et al., 2008) and might increase the 66 uptake, improving crop productivity (Singh et al., 2021). Mulching also affects soil 67 microorganism activity and the abundance of soil organisms (Rodrigues da Silva et al., 2022). 68 A previous study indicated that covering crops with legumes and mulched rice straw 69 significantly increased soil organic carbon, total nitrogen, availability, and phosphorus (*Dung et* 70 al., 2022). However, the effects of soil conservation practices on soil compaction and available 71

nutrients (Ca, Mg, K, Cu, Fe, Zn, and Mn) did not report. Hence, this study aimed to evaluate

i do not
agree or
show
reference
s, and
kind of
fertilizers,
i know
so many
chemical
fertilizers
which
reduced
soil
acidity

PeerJ

- 73 soil conservation measures on soil bulk density, soil porosity, and soil nutrients in a pomelo
- orchard cultivated on alluvial soil of the Mekong Delta, Vietnam.

names?

Materials & Methods 76

77 Study site, soil, and climate

- 78 A pomelo orchard used for the experiment in this research was the same as described in our
- 79 previous study (*Dung et al.*, 2022). It was located in Hau Giang province (9°54'30.3 "N,
- 105°51'06.7 "E). The soil was classified as Gleyic Anthrosols based on the reference of WRB 80
- 81 (2015)
- avearage of 470 and 10, and your average is too big?
 The average annual rainfall from 2019 to 2021 at the study site was 1750 mm, with September 82
- and March usually receiving the highest (470 mm) and lowest (10 mm) rainfalls, respectively. 83
- Table 1 shows the initial physical and chemical properties. 84

85 **Experimental design**

- 86 The field experiment was arranged in a randomized complete block design, including four
- 87 treatments. Each treatment had four replications. The treatments were no cover crop (control),
- non-legume cover crop (NLC), legume cover crop (LCC), and rice straw mulching (RSM). The 88
- number of trees per trial plot was three plants. The five-year-old "Da Xanh" pomelo orchard was 89
- used in this study, with an average fruit yield of 18 t ha⁻¹ yr⁻¹. At the beginning study, the 90
- 91 pomelo plants were 3.0-3.4 m tall, and the canopy diameter was 2.8-3.1 m. All treatments
- accepted the no-till practice. Chemical fertilizers are applied in the same amount as pests and not correct 92
- disease control (Dung et al., 2022) 93
- Nicotex Co., Ltd., Vietnam, a commercial product, was used for weed management in the control 94
- 95 plots. The herbicide with commercial named NIPHOSATE 480SL contains 480-gram glyphosate
- 96 IPA salt per liter. The spraying rate was 2.5 liter per ha per the producer's recommendation. A
- hand sprayer (Mitsuyama TL-767) was used for herbicide application. The weeds are controlled 97
- 98 when they have about 8–10 cm tall (about 5–6 leaves). write time of application or growth stage too
- Asiatic dayflower (Commelina communis) is utilized for NLC plots. Asiatic dayflower was 99
- 100 cultivated by cuttings that were about 20 cm long. When the Asiatic dayflower has above 30 cm
- high, cutting the tops about 20 cm by Honda Grass Cutter GX35. Pinto peanut (Arachis pintoi) 101
- 102 was used for LCC plots. The pinto peanut was cultivated by clusters of 2–3 cuttings spaced 10–
- 15 cm apart. 103 why twice, not good practice
- 104 Mulched rice straw was carried out twice per year (October and March). Rice straw was spread
- thickness a 2–2.5 em around pomelo canopy. Spread the mulch out far enough from the base of 105
- the plant that it will cover the entire root system. The total rice straw used for the experiment was 106
- $5.5 \text{ t ha}^{-1} \text{ yr}^{-1}$. 107

108 Soil collection and analysis

- Soil physical 109
- In order to determine soil bulk density (BD), soil sample rings of Eijkelkamp company were 110
- used to take the soil during 2019, 2020, and 2021. The soil sample ring was 51 mm in height and 111
- 53 mm in diameter. Five soil samples were randomly taken from each plot for the BD analysis. 112
- 113 After collection, soil cores were dried at 100°C for 48 h in an oven BD was calculated from the
- ratio of the mass of the dry soil per unit volume of the soil cores (Mtyobile et al., 2020). The total 114

- porosity of the soil was calculated from the soil BD values and the particle density. In this study,
- particle density is 2.65 g cm⁻¹. The total porosity is shown in the following equation:

Total porosity (%) =
$$1 - \frac{\text{(Soil bulk density)}}{2.65} \times 100 \text{ (1)}$$

- 118 Soil chemical ?
- 119 In each plot, a soil auger took five soil cores from depths of 0–10 cm, 10–20 cm, 20–30 cm, and
- 120 30–40 cm, following a zigzag pattern in 2019, 2020, and 2021. The five samples from the same
- 121 depth were blended into one composite sample per depth. The soil was then divided into
- subsamples of about 500 g. All soil samples were air-dried and ground to pass through a 2 mm
- sieve.
- 124 A 0.1 M BaCl₂ extraction was used to analyze the exchangeable base cations (K, Ca, and Mg)
- 125 (Hendershot & Duquette, 1986). The soils' iron content was extracted in oxalate-oxalic acid
- 126 (Novozamsky et al., 1986). Nitric-perchloric acid digestion was performed on Mn, Cu, and Zn,
- following the procedure recommended by the AOAC (1990). The macroelements (K, Ca, and
- 128 Mg) and micronutrients (Fe, Mn, Cu, and Zn) were determined using Atomic Absorption
- 129 Spectrometers (Thermo ScientificTM iCETM 3000 Series).
- 130 Statistics

- 131 The statistical analysis relied on SPSS version 20.0. Analysis of variance was used to compare
- the differences between means among treatments by the Duncan test at a statistical level of p < 1
- 133 0.05 (*) and p < 0.01 (**).

Results

- 135 Effect of soil conservation practices on soil bulk density
- 136 Figure 1 shows that using soil conservation practices (LCC and RSM) significantly improved
- BD at both 0–10 and 10–20 cm in three years of experiments. However, soil conservation
- measures did not affect BD at two depths (20–30 and 30–40 cm). At the topsoil (0–10 cm), BD
- in LCC and RSM treatments were higher than in the control and NLC plots. Using of NLC
- positively affected BD in the topsoil (0–10 cm) in 2020 and 2021 compared with the control
- treatment (Figure 1a). Similarly, a 10–20 cm BD was reduced by covering crops with pinto
- peanuts and mulching with rice straw (Figure 1b). Meanwhile, Figures 1a & b showed that BD in
- peanuts and mulcining with free straw (Figure 10). Weatwine, Figures 1a & 0 showed that BD in
- 143 the lower layers was not changed after soil conservation measures application. The value of BD
- in two depths (20–30 cm and 30–40 cm) ranged from 1.23-1.26 g cm⁻³.
- 145 Soil porosity is affected by soil conservation measures
- Soil conservation measures utilization increased greatly soil porosity at two depths, 0–10 cm and
- 147 10–20 cm (Figure 2). Like BD, cover crop by non-legume or legume and RSM did not improve
- soil porosity in deeper soil layers (20–30 cm and 30–40 cm). The use of conservation practices
- 149 (LCC and mulched rice straw) enhanced soil porosity by about 5% and 3% at 0–10 and 10–20
- cm (Figures 2a & b) after three years of experiments, respectively. In the depths of 20–30 and
- 151 30–40 cm, there was no significant difference in soil porosity between soil conservation
- measures compared to no conservation (Figures 2c & d).
- 153 Influence of soil conservation practices on soil nutrients


```
154
      Topsoil layer (0–10 cm)
      The concentrations of macroelements (Ca, K, and Mg) in soil did not improve in the first year
155
      when applying conservation practices, but they increased significantly in the next two years,
156
      except for Mg (Table 2). In particular, the Ca content in the RSM treatments increased by 0.31
157
158
      and 0.39 cmol<sub>c</sub> kg<sup>-1</sup> in 2020 and 2021 compared with the control, respectively, and those in the
      LCC treatment were 0.29 and 0.38 cmol<sub>c</sub> kg<sup>-1</sup>. Likewise, the K concentration in RSM and LCC
159
      was enhanced by about 0.11 and 0.12 cmol<sub>c</sub> kg<sup>-1</sup> in three years of experiments. By contrast,
160
      using the cover crop or mulching did not affect the concentration of Mg in soil. The application
161
162
      of soil conservation measures did not affect the micronutrients (Cu, Fe, Zn, and Mn) contents in
163
      2019 (Table 2). However, in 2020 and 2021, the concentrations of Fe and Zn elevated greatly
      due to covering the crops with legumes and mulched with rice straw. Soil conservation practices
164
      did not influence the contents of Cu and Mn.
                                                                                                             how
165
                                                                                                              much?
      Subsurface layer (10–20 cm)
166
167
      Table 3 indicates the effect of cover crops and organic mulching on soil fertility. In 2019, soil
      nutrients (Ca, K, Mg, Cu, Fe, Zn, and Mn) were not increased by soil conservation practices,
168
      except for Zn. LCC significantly increased exchangeable Ca by 0.61 and 0.72 cmol<sub>c</sub> kg<sup>-1</sup>
169
      compared with control in 2020 and 2021, respectively. Exchangeable Ca was significantly higher
170
      in RSM than in control. The exchangeable K<sup>+</sup> was greatly higher by an average of 0.07–0.10
171
      cmol<sub>c</sub> kg<sup>-1</sup> in RSM and LCC than in control in 2020 and 2021. Available Fe concentrations were
172
      about 1.5-fold greater in LCC and RSM than in no conservation treatment in two years (Table 3).
173
      Similarly, RSM and LCC enhanced available Zn by more than 10 mg kg<sup>-1</sup> compared with
174
      control in the experiment of three years. In the current research, the concentrations of Mg. Cu.
175
176
      and Mn were not affected by soil conservation practices.
                                                                       concentrate on your own topic conservation
      A depth of 20–30 cm
                                                                           agriculture is very broad term
177
      In a three year study, conservation agriculture did not improve soil quality at a depth of 20–30
178
      cm (Table 4). However, in 2021, the concentration of Cu was the highest in LCC, followed by
179
180
      NLC, RSM, and control. The value of macronutrients (Ca, K, Mg) ranged in 4.00–4.22 cmol<sub>c</sub> kg<sup>-</sup>
```

¹, 0.18–0.22 cmol_c kg⁻¹, and 2.31–2.47 cmol_c kg⁻¹, respectively. There was no significant 181

difference in all treatments for micronutrient (Fe, Zn, and Mn) concentrations for micronutrient 182

(Fe, Zn, and Mn) concentrations. Fe, Zn, and Mn concentrations were 8.71–11.3 mg kg⁻¹, 38.8– 183

 45.9 mg kg^{-1} , and $24.3-30.4 \text{ mg kg}^{-1}$ from 2019 to 2021, respectively. 184

The layer of 30–40 cm 185

The results in Table 5 showed no significant differences in all treatments regarding soil chemical 186 properties, except exchangeable K in 2021 was influenced by soil conservation practices. The 187 188

concentration of K⁺ was significantly greater by 1.1-fold in RSM and LCC treatments compared

with NLC and control. 189

PeerJ

191 Correlation between soil quality parameters

- The BD indicated a negative significant relationship with Ca (r = -0.74**), K (r = -0.73**), Fe
- 193 $(r = -0.79^{**})$, and Mn $(r = -0.69^{**})$. Table 6 also showed a strong positive correlation between
- 194 Ca and K (r = 0.74**), Ca and Fe (r = 0.81**), Ca and Zn (r = 0.76**). We found a positive very
- strong significant relationship between K and Fe and Mn (r = 0.86**, r = 0.69**, respectively).
- The correlation matrix also indicated a positive significant relationship between Fe and Zn (r = 0.82**).

198

199

200

201

202

203

204

205

206

207

208209

210

219

220221

222223

224

225

226

227228

229

230

Discussion

Soil BD is a vital indicator of soil degradation because it influences soil porosity, plant nutrient availability, and soil microorganism activity (*Nawaz et al., 2013*). According to *Shaheb et al.* (2021), soil conservation measures decreased soil compaction, resulting in increased root development and length. *Hakl (2007)* indicated that soil compaction reduced root biomass significantly. The reason might be decreased crop growth and yield because the plants did not uptake nutrients, preventing root growth (*Parlak & Parlak, 2011*). In this study, cover crop with pinto peanut and mulched rice straw reduced BD at depths of 0–10 cm and 10–20 cm about 0.10 g cm⁻³ and 0.08 g cm⁻³ in three years consecutively trial, respectively (Figure 1a & b). The current research is consistent with *Mondal et al.* (2019), who reported that using conservation agriculture practices contributed to significantly reduced soil compaction. Similar results have also been reported by *Degu et al.* (2019), *Ceylan* (2020), and *Belayneh et al.* (2019).

211 Like BD, soil porosity was increased significantly at two depths, 0–10 cm and 10–20 cm, when covered with legumes and straw mulch (Figure 2). Many studies have indicated a strong negative 212 correlation between BD and total porosity (Gebert et al., 2009; Kakaire et al., 2015). In the 213 present work, the use of cover crop and mulching decreased greatly BD. This reason may be 214 215 reduced soil compaction, which improved total porosity. Moreover, our previous study showed that soil organic matter increased remarkably when applying cover by pinto peanut and mulched 216 217 straw (Dung et al., 2022). Improvement of soil organic carbon is the main reason increase in total porosity (Fukumasu et al., 2022). 218

The first year of research evaluated covering crops and mulching treatments (Tables 2, 3, 4, & 5). However, in the second and third years, Ca, K, Fe, and Mn concentrations in RSM and LCC increased significantly at the topsoil and subsoil layers. Conversely, these nutrients were not elevated at the depths of 20–30 and 30–40 cm compared with the control, except for exchangeable K at 30–40 cm in 2021. This contrast may be because the root of a plant used for cover is short, and all treatments followed the no-till practice. The results did not agree with that of *Haruna and Nkongolo* (2020) that conservation practices enhanced soil nutrients in 20–40 and 40–60 cm during the second year of study. Soil conservation measures can favorably ameliorate soil fertility by enhancing the number of soil biota that decompose organic matter and, in the process, release plant-available nutrients (*Veum et al.*, 2015; *Belayneh*, 2019). According to *Jat et al.* (2018), conservation practices are considered a better alternative that recycles plant nutrients in the soil and improves soil health.

are u studied soil health parameters, if yes then how much improved

discuss your results, do not just report the review of literature here

- According to *Belayneh et al.* (2019), high BD negatively affected soil nutrients due to decreased
- 232 soil biological and biochemical processes, resulting in reduced soil fertility. Our study showed
- 233 that soil has a high BD, which caused the availability of soil nutrients (Ca, K, Fe, and Zn) to
- decline. Singh et al. (2020) also indicated a negative correlation between BD and soil nutrients.
- 235 Another study also revealed that strong negative correlation between BD and soil total
- 236 microelements (Chaudhary et al., 2013). However, the results of the present work in contrast
- with a report of *Duan et al.* (2019), who showed that there was a strong positive correlation of
- BD with exchangeable Ca (r = 0.32), exchangeable Mg (r = 0.45) and available Fe (r = 0.71).

239 Conclusions

which practices you mean here, report that with proof base on your results obtained

- 240 The use of soil conservation practices significantly improved soil BD at the topsoil layer (0-10)
- 241 cm) and subsoil layer (10 20 cm), enhancing soil porosity compared with applying the herbicide
- 242 (control). In the first year, available macronutrients (Ca, K, and Mg) and micronutrients (Cu, Fe,
- 243 Zn, and Mn) were not affected by cover crop with legume and RSM. However, soil nutrients
- (Ca, K, Fe, and Zn) increased greatly in the second and third years. The current study results
- suggest that farmers who cultivated truit orchards in the VMD should use legumes to cover crops
- or mulch because these practices can mitigate soil compaction and soil degradation. Moreover,
- 247 they are considered for land use strategies that reduce the risk of environmental pollution as well
- 248 as increase soil health.

show proof of increase in percent

give proof from your results how much improvement

249 References

- 250 Abdalla M, Hastings A, Cheng K, Yue Q, Chadwick D, Espenberg M, Truu K, Rees RM,
- 251 Smith P. 2019. A critical review of the impacts of cover crops on nitrogen leaching, net
- 252 greenhouse gas balance and crop productivity. Global Change Biology, 25: 2530–2543.
- 253 doi:10.1111/gcb.14644
- 254 AOAC. 1990. Official methods of analysis. 15th Edition, Association of Official Analytical
- 255 Chemist, Washington DC. 1990.
- 256 Athira M, Jagadeeswaran R, Kumaraperumal R. 2019. Influence of soil organic matter on
- bulk density in Coimbatore soils. *International Journal of Chemical Studies*, 7: 3520–3523.
- 258 Belayneh M, Yirgu T, Tsegaye D. 2019. Effects of soil and water conservation practices on soil
- 259 physicochemical properties in Gumara watershed, Upper Blue Nile Basin, Ethiopia. Ecol
- 260 *Process.*, **8**: 36. doi.org/10.1186/s13717-019-0188-2
- **Belayneh M. 2019.** The effects of soil conservation practices on selected soil health indicators.
- 262 *C.O.R.N. NEWSLETTER*, 2018-01.
- 263 Calegari A, Tiecher T, Wutke EB, Canalli LB, Bunch R, Santos DR. 2020. The role and
- 264 management of soil mulch and cover crops in Conservation Agriculture systems. In: A. Kassam
- 265 Ed. Advances in Conservation Agriculture Volume 1 Systems and Science (Cambridge: Burleigh
- 266 Dodds). pp.179–248. DOI: 10.19103/AS.2019.0048.05

- 267 Cattanio JH, Kuehne R, Vlek PLG. 2008. Organic material decomposition and nutrient
- 268 dynamics in a mulch system enriched with leguminous trees in the Amazon. R. Bras. Ci. Solo.,
- 269 **32**:1073–1086. DOI: 10.1590/S0100-06832008000300016
- 270 Ceylan S. 2020. Effects of soil conservation practices on soil properties in a cotton and soybean
- 271 system in West Tennessee. Master's Thesis, University of Tennessee, 124 pages.
- 272 Chaudhari PR, Ahire DV, Ahire VD, Chkravarty M, Maity S. 2013. Soil bulk density as
- 273 related to soil texture, organic matter content and available total nutrients of Coimbatore soil.
- 274 International Journal of Scientific and Research Publications, 3: 2250-3153.
- 275 Dang LV, Ngoc NP, Hung NN. 2021. Soil quality and pomelo productivity as affected by
- 276 chicken manure and cow dung. The Scientific World Journal, 2021:
- 277 6289695. doi.org/10.1155/2021/6289695
- 278 Dang LV, Ngoc NP, Hung NN. 2022. Effects of biochar, lime, and compost applications on soil
- 279 physicochemical properties and yield of pomelo (Citrus grandis Osbeck) in alluvial soil of the
- 280 Mekong Delta. Applied and Environmental Soil Science, 2022:
- 281 5747699. doi.org/10.1155/2022/5747699
- 282 Das B, Kandpal BK, Devi HL. 2021. Cover crops for orchard soil management. In cover crops
- and sustainable agriculture. CRC Press: BocaRaton, FL, USA, pp 147–168.
- 284 DOI: 10.1201/9781003187301-10
- 285 Degu M, Melese A, Tena W. 2019. Effects of soil conservation practice and crop rotation on
- 286 selected soil physicochemical properties: the case of Dembecha District, Northwestern
- 287 Ethiopia. Applied and Environmental Soil Science, 2019: 6910879.
- 288 Duan A, Lei J, Hu X, Zhang J, Du H, Zhang X, Guo W, Sun J. 2019. Effects of planting
- density on soil bulk density, ph and nutrients of unthinned chinese fir mature stands in south
- 290 subtropical region of China. *Forests*, **10**: 351. doi.org/10.3390/f10040351
- 291 Dung TV, Hung NN, Dang LV, Ngoc NP. 2022. Soil fertility and pomelo yield influenced by
- 292 soil conservation practices. *Scientifica*. (Under review).
- 293 Gebert J, Rachor I, Bodrossy L. 2009. Composition and activity of methane oxidizing
- 294 communities in landfill cover. Proceedings Sardinia 2009, Twelfth International Waste
- 295 Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy; 5 9 October 2009.
- 296 Ghyselinck T. 2013. Temporal changes of physical soil properties under different land use
- 297 systems and land management practices of alluvial soil in the Mekong Delta, Vietnam. Master
- 298 thesis, Ghent University. 93 pages.
- 299 Hakl J, Šantrůček J, Kocourková D, and Fuksa P. 2007. The effect of the soil compaction on
- 300 the contents of alfalfa root reserve nutrients in relation to the stand density and the amount of
- 301 root biomass. Soil & Water Res., 2: 54–58.
- 302 Haruna SI, Nkongolo NV. 2020. Influence of cover crop, tillage, and crop rotation management
- 303 on soil nutrients. *Agriculture*, **10(6)**: 225. doi.org/10.3390/agriculture10060225

- 304 Hendershot WH, Duquette M. 1986. Simple barium chloride method for determining cation
- exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50: 605-
- 306 608.
- 307 Hossain MF, Chen W, Zhang Y. 2015. Bulk density of mineral and organic soils in the
- 308 Canada's arctic and sub-arctic. Information Processing in Agriculture, 2: 183-
- 309 190. doi:10.1016/j.inpa.2015.09.001
- 310 Iqbal R, Raza M.A.S., Valipour M., Saleem MF, Zaheer MS, Ahmad S, Toleikiene M,
- 311 Haider I, Aslam MU, Nazar MA. 2020. Potential agricultural and environmental benefits of
- 312 mulches a review. *Bull Natl Res Cent.*, **44**: 75. doi.org/10.1186/s42269-020-00290-3
- 313 Jat HS, Datta A, Sharma PC, Kumar V, Yadav AK, Choudhary M, Choudhary V, Gathala
- 314 MK, Sharma DK, Jat ML, Yaduvanshi NPS, Singh G, McDonald A. 2018. Assessing soil
- 315 properties and nutrient availability under conservation agriculture practices in a reclaimed sodic
- 316 soil in cereal-based systems of North-West India. Archives of Agronomy and Soil Science, 64(4):
- 317 531–545. DOI: 10.1080/03650340.2017.1359415
- 318 Kakaire J, Makokha GL, Mwanjalolo M, Mensah AK, Emmanuel M. 2015. Effects of
- 319 Mulching on Soil Hydro-Physical Propertiesin. Appl. Ecol. Environ. Sci. 3: 127–135.
- 320 Fukumasu J, Jarvis N, Koestel J, Kätterer T, Larsbo M. 2022. Relations between soil organic
- 321 carbon content and the pore size distribution for an arable topsoil with large variations in soil
- 322 properties. *European Journal of Soil Science*, **73(1)**: e13212. doi.org/10.1111/ejss.13212
- 323 Kaye J, Finney D, White C, Bradley B, Schipanski M, Alonso-Ayuso M, Hunter M, Burgess
- 324 M, Mejia C. 2019. Managing nitrogen through cover crop species selection in the U.S. mid-
- 325 Atlantic. *PLoS ONE*, **14**: e0215448. doi.org/10.1371/journal.pone.0215448
- 326 Khoramizadeh A, Jourgholami M, Jafari M, Venanzi R, Tavankar F, Picchio R. 2021. Soil
- 327 restoration through the application of organic mulch following skidding operations causing
- 328 vehicle induced compaction in the Hyrcanian Forests, Northern Iran. Land, 10: 1060.
- 329 https://doi.org/10.3390/land10101060
- 330 Kumawat A, Yadav D, Samadharmam K, Rashmi I. 2020. Soil and water conservation
- measures for agricultural sustainability. In R. S. Meena, & R. Datta (Eds.), Soil Moisture
- 332 Importance. *IntechOpen*. 2020. doi.org/10.5772/intechopen.92895
- 333 Li R, Li Q, Pan L. 2021. Review of organic mulching effects on soil and water loss. Arch.
- 334 Agron. Soil Sci., 67: 136–151. doi.org/10.1080/03650340.2020.1718111
- 335 López-Vicente M, Calvo-Seas E, Álvarez S, Cerdà A. 2020. Effectiveness of cover crops to
- 336 reduce loss of soil organic matter in a Rainfed Vineyard. Land, 9: 230.
- 337 doi.org/10.3390/land9070230
- 338 MacMillan J, Adams CB, Hinson PO, DeLaune PB, Rajan N, Trostle C. 2022. Biological
- 339 nitrogen fixation of cool-season legumes in agronomic systems of the Southern Great Plains.
- 340 *Agrosyst Geosci Environ.*, **5**: e20244. DOI: 10.1002/agg2.20244

- 341 Möller K, Stinner W, Leithold G. 2008. Growth, composition, biological N₂ fixation and
- 342 nutrient uptake of a leguminous cover crop mixture and the effect of their removal on field
- 343 nitrogen balances and nitrate leaching risk. Nutrient Cycling in Agroecosystems, 82: 233-
- 344 249. doi:10.1007/s10705-008-9182-2
- 345 Mondal S, Das TK, Thomas P, Mishra AK, Bandyopadhyay KK, Aggarwal P, and
- 346 Chakraborty D. 2019. Effect of conservation agriculture on soil hydro-physical properties, total
- and particulate organic carbon and root morphology in wheat (Triticum aestivum) under rice
- 348 (Oryza sativa)-wheat system. Indian Journal of Agricultural Sciences, 89: 46–55.
- 349 Mtyobile M, Muzangwa L, Mnkeni PNS, 2020. Tillage and crop rotation effects on soil carbon
- and selected soil physical properties in a Haplic Cambisol in Eastern Cape, South Africa. Soil &
- 351 *Water Res.*, **15**: 47–54. doi.org/10.17221/176/2018-SWR
- 352 Nawaz MF, Bourrié G, Trolard F. 2013. Soil compaction impact and modelling. A
- 353 review. Agron. Sustain. Dev. 33: 291–309. doi.org/10.1007/s13593-011-0071-8
- Novozamsky I, van Eck R, Houba VJG., van der Lee JJ. 1986. Use of inductively coupled
- 355 plasma atomic emission spectrometry for determination of iron, aluminium and phosphorus in
- Tamm's soil extracts. *Netherlands Journal of Agricultural Science*, **34**: 185–191.
- 357 Ogunsola OA, Adeniyi OD, Adedokun VA. 2020. Soil management and conservation: an
- approach to mitigate and ameliorate soil contamination. In M. L. Larramendy, & S. Soloneski
- 359 (Eds.), Soil Contamination Threats and Sustainable Solutions. IntechOpen, 2020.
- 360 doi.org/10.5772/intechopen.94526
- 361 Page KL, Dang YP, and Dalal RC. 2020. The ability of conservation agriculture to conserve
- 362 soil organic carbon and the subsequent impact on soil physical, chemical, and biological
- properties and yield. Front. Sustain. Food Syst., 4: 31. doi: 10.3389/fsufs.2020.00031
- 364 Parlak M., and Parlak AO. 2011. Effect of soil compaction on root growth and nutrient
- 365 uptakeof forage crops. J. Food Agric. Environ., 9: 275–278.
- 366 Quang PV. 2013. Soil degradation of raised-beds on orchards in the Mekong delta field and
- laboratory methods. TRITA LWR PhD thesis 1073. 46 pages.
- 368 Ranjbar F. Jalali M. 2012. Calcium, magnesium, sodium, and potassium release during
- 369 decomposition of some organic residues. Communications in Soil Science and Plant Analysis,
- **43**: 645–659. doi:10.1080/00103624.2012.644005
- 371 Rodrigues da Silva LJ, Feitosa de Souza TA, Klestadt Laurindo L, Freitas H, Costa
- 372 Campos MC. 2022. Decomposition rate of organic residues and soil organisms' abundance in a
- 373 Subtropical Pyrus pyrifolia field. *Agronomy*, 12: 263. doi.org/10.3390/agronomy12020263
- 374 Romdhane S, Spor A, Busset H, Falchetto L, Martin J, Bizouard F, Bru D, Breuil MC,
- 375 Philippot L, Cordeau S. 2019. Cover crop management practices rather than composition of
- 376 cover crop mixtures affect bacterial communities in no-till agroecosystems. Front. Microbiol.,
- **10**: 1618. doi: 10.3389/fmicb.2019.01618

- 378 **Rühlemann L, Schmidtke K. 2016.** The suitability of non-legume cover crops for inorganic soil
- 379 nitrogen immobilisation in the transition period to an organic no-till system. Plant Production
- 380 *Science*, **19**: 105–124. doi:10.1080/1343943x.2015.1128098
- 381 Shaheb MR, Venkatesh R, Shearer SA. 2021. A Review on the effect of soil compaction and
- 382 its management for sustainable crop production. J. Biosyst. Eng., 46: 417–439.
- 383 doi.org/10.1007/s42853-021-00117-7
- 384 Sharma P, Singh A, Kahlon CS, Brar AS, Grover KK, Dia M, Steiner RL. 2018. The role of
- 385 cover crops towards sustainable soil health and agriculture A review paper. American Journal
- 386 of Plant Sciences, 9: 1935–1951. DOI: 10.4236/ajps.2018.99140
- 387 Singh PD, Kumar A, Dhyani BP, Kumar S, Singh A, Singh A. 2020. Relationship between
- 388 compaction levels (bulk density) and chemical properties of different textured soil. *International*
- 389 *Journal of Chemical Studies*, **8**: 179–183. doi.org/10.22271/chemi.2020.v8.i5c.10294
- 390 Singh SP, Mahapatra BS, Pramanick B, Yadav VR. 2021. Effect of irrigation levels, planting
- methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field
- 392 mustard (Brassica rapa L.) under sandy loam soil. Agricultural Water Management, 244:
- 393 106539. doi.org/10.1016/j.agwat.2020.106539
- 394 Van Sambeek J. 2017. Cover crops to improve soil health and pollinator habitat in nut orchards.
- 395 Missouri Nut Growers Association (MGNA) Newsletter, 17: 6–12.
- 396 Veum K, Kremer R, Sudduth K, Kitchen N, Lerch R, Baffaut C, Stott D, Karlen D, &
- 397 Sadler E. 2015. Conservation effects on soilquality indicators in the Missouri Salt River basin.
- 398 *Journal of Soil and Water Conservation*, **70**: 232–246. doi.org/10.2489/jswc.70.4.232
- 399 Viet VH. 2015. Value chain analysis and competitiveness assessment of Da Xanh pomelo sector
- 400 in Ben Tre, Vietnam. *Asian Soc. Sci.*, **11**: 8–19.
- 401 Vincent-Caboud L, Casagrande M, David C, Ryan MR, Silva EM, Peigne J. 2019. Using
- 402 mulch from cover crops to facilitate organic no-till soybean and maize production A
- 403 review. Agron. Sustain. Dev., **39**: 45. doi.org/10.1007/s13593-019-0590-2
- 404 World Reference Base for Soil Resources (WRB). 2015. International soil classification
- 405 system for naming soils and creating legends for soil maps. World Soil Resources Reports. FAO,
- 406 203 pages.

Table 1(on next page)

Basic soil physicochemical properties at the study location

Depth (cm)	pH _{H2O}	SOM (%)		ronutrionol _c kg				lements kg ⁻¹)		BD (g cm ⁻³)
(CIII)		(70)	Ca ²⁺	K ⁺	Mg ²⁺	Cu	Fe	Zn	Mn	
0–10	5.02	1.50	3.53	0.16	2.28	22.7	8.25	55.1	28.6	1.19
10–20	4.95	1.42	3.29	0.18	2.36	30.5	8.36	45.2	24.2	1.22
20–30	5.25	1.35	4.10	0.21	2.32	26.9	7.45	39.5	30.1	1.25
30–40	5.18	1.20	3.98	0.17	2.41	27.0	6.32	40.3	25.7	1.23

Table 2(on next page)

Effect of soil conservation practices on nutrients availability in topsoil layer (0-10 cm)

Control, no conservation practices; NLC, non-legume cover crop; RSM, rice straw mulching; LCC, legume cover crop. Different letters in each column indicate significant differences among treatments at p < 0.05 (*) and p < 0.01 (**); ns, not significant.

		Ma	cronutrie	nts	Trace elements				
Years	Treatments	(0	mol _c kg ⁻¹	¹)	$(mg kg^{-1})$				
		Ca ²⁺	K ⁺	Mg^{2+}	Cu	Fe	Zn	Mn	
	Control	3.55	0.16	2.28	25.8	8.37	59.8	26.7	
	NLC	3.52	0.17	2.30	26.7	8.63	58.0	26.9	
2019	RSM	3.51	0.18	2.27	25.7	9.07	59.0	27.1	
	LCC	3.54	0.17	2.26	24.9	8.70	59.5	27.1	
	-value	ns	ns	ns	ns	ns	ns	ns	
	Control	3.45b	0.15c	2.27	25.2	8.57b	53.1c	27.6	
	NLC	3.60b	0.19b	2.34	26.5	10.2b	59.6b	27.8	
2020	RSM	3.76a	0.23ab	2.30	26.3	13.6a	64.8ab	26.7	
	LCC	3.74a	0.24a	2.30	27.5	13.4a	66.5a	26.8	
	P-value	*	**	ns	ns	**	**	ns	
	Control	3.47c	0.14c	2.33	26.2	8.79c	58.0b	27.1	
	NLC	3.71b	0.23b	2.36	24.5	12.2b	65.7b	26.0	
2021	RSM	3.86a	0.27a	2.29	24.8	15.4a	72.4a	26.0	
	LCC	3.85a	0.28a	2.37	26.1	16.5a	72.9a	26.3	
	P-value	**	**	ns	ns	**	**	ns	

Table 3(on next page)

The availability of plant nutrients influenced by conservation agriculture in subsurface layer (10–20 cm)

Control, no conservation practices; NLC, non-legume cover crop; RSM, rice straw mulching; LCC, legume cover crop. Different letters in each column indicate significant differences among treatments at p < 0.05 (*) and p < 0.01 (**); ns, not significant.

		Ma	cronutrie	nts	Trace elements				
Years	Treatments	(0	emol _c kg ⁻¹	1)	$(mg kg^{-1})$				
		Ca ²⁺	K ⁺	Mg^{2+}	Cu	Fe	Zn	Mn	
	Control	3.43	0.18	2.41	27.5	9.66	49.4b	27.0	
	NLC	3.51	0.19	2.48	26.0	9.76	61.8a	25.6	
2019	RSM	3.50	0.19	2.50	25.6	9.72	62.0a	25.6	
	LCC	3.51	0.19	2.54	27.1	9.72	64.0a	26.7	
	P-value	ns	ns	ns	ns	ns	**	ns	
	Control	3.42c	0.17b	2.35	27.0	8.98c	52.6b	26.6	
	NLC	3.72b	0.22ab	2.37	26.1	11.6b	62.4a	25.6	
2020	RSM	3.91ab	0.24a	2.37	27.5	13.4a	65.7a	26.0	
	LCC	4.03a	0.25a	2.32	26.6	14.0a	65.5a	26.3	
	P-value	**	*	ns	ns	**	*	ns	
	Control	3.41b	0.18b	2.41	27.2	9.11b	55.5b	26.5	
	NLC	3.93a	0.24a	2.37	26.2	13.3a	62.3a	25.0	
2021	RSM	4.10a	0.28a	2.33	25.9	14.1a	65.4a	26.8	
	LCC	4.13a	0.27a	2.41	26.2	15.1a	65.7a	26.1	
	P-value	**	**	ns	ns	**	*	ns	

Table 4(on next page)

Influence of soil conservation practices on macro-micronutrients in the soil at a depth of 20–30 cm

Control, no conservation practices; NLC, non-legume cover crop; RSM, rice straw mulching; LCC, legume cover crop. Different letters in each column indicate significant differences among treatments at p < 0.05 (*); ns, not significant.

		Ma	cronutrie	nts	Trace elements				
Years	Treatments	(0	mol _c kg ⁻¹	1)	$(mg kg^{-1})$				
		Ca^{2+}	K ⁺	Mg ²⁺	Cu	Fe	Zn	Mn	
	Control	4.15	0.19	2.31	24.4	8.71	39.5	26.2	
	NLC	4.15	0.18	2.41	26.9	8.94	39.5	25.6	
2019	RSM	4.09	0.19	2.36	23.9	8.79	43.4	27.2	
	LCC	4.10	0.21	2.36	23.8	8.93	44.3	25.4	
	P-value	ns	ns	ns	ns	ns	ns	ns	
	Control	4.00	0.20	2.38	27.4	9.67	40.5	30.4	
	NLC	4.22	0.18	2.46	25.8	10.0	39.5	28.5	
2020	RSM	4.17	0.21	2.45	24.1	9.93	38.8	28.3	
	LCC	4.06	0.22	2.47	23.7	10.7	43.2	29.2	
	P-value	ns	ns	ns	ns	ns	ns	ns	
	Control	4.05	0.19	2.33	24.2b	10.3	44.7	26.2	
	NLC	4.11	0.19	2.45	24.3b	10.9	42.0	25.8	
2021	RSM	4.07	0.19	2.31	23.9b	11.3	45.9	25.5	
	LCC	4.03	0.18	2.42	27.8a	10.0	41.8	24.3	
	P-value	ns	ns	ns	*	ns	ns	ns	

Table 5(on next page)

Effect of soil conservation measures on availability of plant nutrients at a depth of 30–40 cm

Control, no conservation practices; NLC, non-legume cover crop; RSM, rice straw mulching; LCC, legume cover crop. Different letters in each column indicate significant differences among treatments at p < 0.01 (**); ns, not significant.

		Ma	cronutrie	nts	Trace elements				
Years	Treatments	(c	mol _c kg ⁻¹	¹)	$(mg kg^{-1})$				
		Ca ²⁺	K ⁺	Mg^{2+}	Cu	Fe	Zn	Mn	
	Control	3.98	0.17	2.33	25.3	5.72	48.9	25.7	
	NLC	4.02	0.17	2.33	24.2	5.79	47.0	25.7	
2019	RSM	3.88	0.18	2.39	25.5	5.94	49.2	25.4	
	LCC	4.09	0.18	2.34	23.7	5.61	49.5	24.7	
	P-value	ns	ns	ns	ns	ns	ns	ns	
	Control	4.13	0.15	2.45	25.0	6.42	52.9	25.1	
	NLC	4.02	0.16	2.47	25.6	6.58	54.5	25.7	
2020	RSM	4.02	0.17	2.42	24.2	6.74	54.1	25.6	
	LCC	3.98	0.17	2.43	24.5	6.47	53.9	26.5	
	P-value	ns	ns	ns	ns	ns	ns	ns	
	Control	4.00	0.17b	2.41	24.7	6.60	48.8	25.1	
	NLC	3.98	0.18b	2.41	24.1	6.08	48.6	26.7	
2021	RSM	4.08	0.20a	2.36	23.4	6.32	46.0	25.1	
	LCC	3.96	0.20a	2.40	23.5	6.68	48.0	25.3	
	P-value	ns	**	ns	ns	ns	ns	ns	

Table 6(on next page)

Correlationship between soil physicochemical properties (n = 192)

** indicates a significant difference at p < 0.01

	BD	Ca	K	Mg	Cu	Fe	Zn	Mn
BD	1							
Ca	-0.74**	1						
K	-0.73**	0.74**	1					
Mg	-0.11	0.13	0.14	1				
Cu	-0.11	0.02	-0.07	0.10	1			
Fe	-0.79**	0.81**	0.86**	0.19	-0.06	1		
Zn	-0.69**	0.76**	0.69**	0.11	-0.06	0.82**	1	
Mn	0.22	-0.33	-0.26	-0.19	-0.01	-0.19	-0.17	1

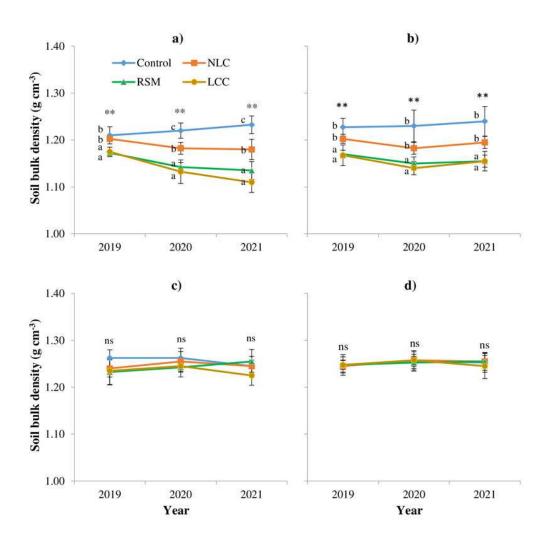


Figure 1

Soil bulk density is influenced by soil conservation practices: a) 0–10 cm, b) 10–20 cm, c) 20–30 cm, d) 30–40 cm.

Different letters show a significant difference at p < 0.01 (**); ns is not significant. Error bars represent the standard deviation (n = 4). Control, no conservation practices; NLC, non-legume cover crop; RSM, rice straw mulching; LCC, legume cover crop.

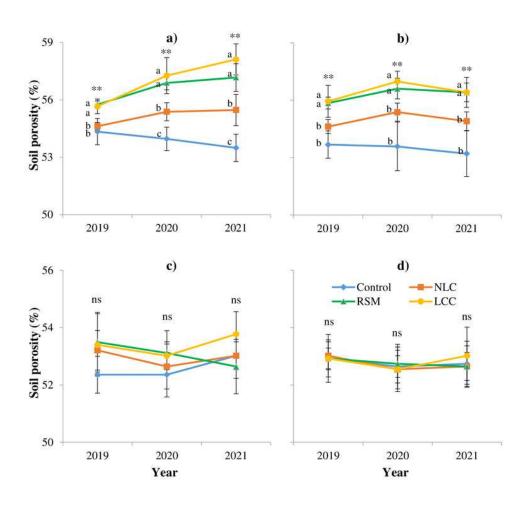


Figure 2

Soil porosity is affected by soil conservation practices: a) 0–10 cm, b) 10–20 cm, c) 20–30 cm, d) 30–40 cm.

Different letters show a significant difference at p < 0.01 (**); ns is not significant. Error bars represent the standard deviation (n = 4). Control, no conservation practices; NLC, non-legume cover crop; RSM, rice straw mulching; LCC, legume cover crop

