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WRKY transcription factors (TF) have been identified in many plant species and play critical
roles in multiple stages of growth and development and under various stress conditions.
Because of its high nutrient content, asparagus lettuce plays an important role in
balancing people's diets. However, identifying WRKY TFs family in asparagus lettuce is
limited. With the publication of the lettuce (Lactuca sativa L.) genome, we identified 76
WRKY TFs and constructed the analysis of structural characteristics, phylogenetic
relationships, chromosomal distribution and their expression profiles in growth and
development regulation as well as the stress response. The 76 LasaWRKY TFs were
phylogenetically classified as Groups I, II (IIa-IIe) and III. Cis element analysis of the
promoter region revealed complex regulatory relationships between LasaWRKY TFs in
response to abiotic stresses and phytohormones. Interaction network analysis revealed
that LasaWRKY TFs could interact with other proteins, such as SIB (sigma factor binding
protein), WRKY TFs, MPK and NPR proteins. The expression patterns of LasaWRKY TFs were
analyzed at different stages of lettuce stem enlargement. According to RT-qPCR analysis,
abiotic stresses (drought, salt, low/high temperature) could induce specific LasaWRKY
genes. LasaWRKY gene expression was also affected by phytohormone treatment. The
findings provide systematic and comprehensive information on LasaWRKY TFs and lay the
foundation for further clarification of the regulatory mechanism of LasaWRKY TFs involved
in stress response and the progression of plant growth and development.
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16 ABSTRACT

17 WRKY transcription factors (TF) have been identified in many plant species and play critical 

18 roles in multiple stages of growth and development and under various stress conditions. Because 

19 of its high nutrient content, asparagus lettuce plays an important role in balancing people's diets. 

20 However, identifying WRKY TFs family in asparagus lettuce is limited. With the publication of 

21 the lettuce (Lactuca sativa L.) genome, we identified 76 WRKY TFs and constructed the 

22 analysis of structural characteristics, phylogenetic relationships, chromosomal distribution and 

23 their expression profiles in growth and development regulation as well as the stress response. 

24 The 76 LasaWRKY TFs were phylogenetically classified as Groups I, II (IIa-IIe) and III. Cis 

25 element analysis of the promoter region revealed complex regulatory relationships between 

26 LasaWRKY TFs in response to abiotic stresses and phytohormones. Interaction network analysis 

27 revealed that LasaWRKY TFs could interact with other proteins, such as SIB (sigma factor 

28 binding protein), WRKY TFs, MPK and NPR proteins. The expression patterns of LasaWRKY 

29 TFs were analyzed at different stages of lettuce stem enlargement. According to RT-qPCR 

30 analysis, abiotic stresses (drought, salt, low/high temperature) could induce specific LasaWRKY 

31 genes. LasaWRKY gene expression was also affected by phytohormone treatment. The findings 

32 provide systematic and comprehensive information on LasaWRKY TFs and lay the foundation 

33 for further clarification of the regulatory mechanism of LasaWRKY TFs involved in stress 

34 response and the progression of plant growth and development.

35

36 Keywords: Asparagus lettuce, WRKY TF, Expression patterns, Genome-wide

37
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38 INTRODUCTION

39 Long-term domestication and directional selection of lettuce have resulted in the development of 

40 a variety of cultivars to meet various needs, including oil lettuce, stem lettuce (also known as 

41 asparagus lettuce) and various varieties of leaf lettuce. Asparagus lettuce (Lactuca sativa L. 

42 2n=2x=18), an annual or biennial variety of lettuce that can form fleshy tender stems, is a 

43 member of the Lactuca genus of Compositae. In 2016, the world's lettuce production (including 

44 chicory) and cultivation area were 26.78 million tons and 1.223 million hectares, respectively 

45 (http://www.fao.org/faostat/en/). China has the highest yield and cultivation area globally, 

46 accounting for 56% and 51% of the total, respectively. Asparagus lettuce is widely cultivated and 

47 consumed throughout the year in China's North and South. It contains various vitamins, proteins, 

48 fats and phytochemicals (flavonoids and terpenoids). As an economically important vegetable, 

49 asparagus lettuce plays an important role in balancing people's diets due to its high nutrient 

50 content (Cui et al., 2014). The diameter of the stems and their freshness and tenderness influence 

51 the quality and quantity of asparagus lettuce. Due to advancements in molecular biology 

52 techniques, more and more technologies, such as whole-genome analysis, cell activity analysis 

53 and linkage map analysis, can be used to investigate the molecular mechanism of stem 

54 enlargement (Li et al., 2020). However, the regulatory mechanism of stem expansion remains a 

55 mystery.

56 Plant transcription factors (TFs) have been found to play essential regulatory roles in stem 

57 enlargement. MADS-box, ABF/AREB and homeo-box TFs were discovered to be involved in 

58 the formation of roots and tubers (Pernisova et al., 2011). MADS-box TFs including IbMADS1, 
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59 IbMADS3, IbMADS4 and IbMADS79 were mainly expressed in the root tubers of sweet potato 

60 (Kim et al., 2002; Kim et al., 2005; Cheng et al., 2013). ABF4 (ABF-binding factor) regulates 

61 potato tuber induction positively. The expression of ABF4 increased the number and weight of 

62 tubers. Overexpression of ABF4 in Arabidopsis improved potato production as well as salt and 

63 drought tolerance (Garcia et al., 2018). The silencing of StNAC103, which was discovered in 

64 potato tuber periderm, increased the total load of suberin and wax in the periderm (Verdaguer et 

65 al., 2016). The homeo-box TFs KNOX and POTH1 were found to be related to the development 

66 of both sweet and normal potato tubers. Further studies found that the interaction of POTH1 and 

67 StBELs jointly regulated gibberellin synthesis and affected potato tuber development (Chen et 

68 al., 2004). However, the role of WRKY TFs in plant root and tuber development remains 

69 unknown. 

70 WRKY proteins which contain the conserved WRKY domain in N terminus and zinc finger 

71 motif in C terminus (C2H2 or C2HC), can recognize and bind to the W-box element (TTGAC/T) 

72 in the promoter region of target genes. WRKY TFs are classified into three types: groups I (two 

73 WRKY domains with C2H2 motif), II (one WRKY domain with C2H2 motif), and III (one 

74 WRKY domain with C2HC motif (Eulgem et al., 2000). Group II is subdivided into five 

75 subgroups IIa-IIe. WRKY TFs are involved in the regulation of multiple physiological processes 

76 (Li et al., 2020b; Liu et al., 2021a; Wei et al., 2021). WRKY TFs in Arabidopsis and rice were 

77 involved in biotic and abiotic stresses (Dong et al., 2003; Rengasamy et al., 2008). Drought 

78 stress elicited 88 WRKYs in Phaseolus vulgaris and 58 WRKYs in maize (Wu et al., 2016; 

79 Zhang et al., 2017). Brachypodium distachyon BdWRKY38 has been identified as a participant in 
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80 response to Rhizoctonia solani by mediating SA signaling (Kouzai et al., 2020). Tomato 

81 SlWRKY81 inhibited plant drought tolerance by suppressing SlRBOH1-derived H2O2 

82 accumulation (Ahammed et al., 2020). 

83 WRKY TFs play important roles in physiological processes and are also involved in 

84 developmental programs, for example, seed germination, reproductive processes, senescence and 

85 plant organ development (Chen et al., 2017). The flowering process was upregulated by 

86 AtWRKY71 by regulating expression of flowering genes, while AtWRKY6 plays an important role 

87 in leaf senescence by regulating the enzyme SIRK (Robatzek & Somssich 2002; Yanchong & Yu 

88 2016). Zhang et al. (2011) found that rice OsWRKY78 could regulate stem elongation; the 

89 expression pattern of OsWRKY78 in the elongated stem was most abundant, and inhibition of 

90 OsWRKY78 expression resulted in the shortening of somatic cell length. Cotton GhWRKY15 

91 improved not only resistance to virus and fungal infection but also stem elongation (Yu et al., 

92 2012). Li et al. (2016) found that WRKY TFs were involved in carrot root development. As a 

93 result of systematic studies, many WRKY TF family members have been identified in different 

94 plant species, such as 72 in Arabidopsis, 81 in tomato, 95 in carrot, 55 in cucumber, 59 in grape, 

95 45 in Eucommia ulmoides and 64 in Isatis indigotica (Ishiguro & Nakamura 1994; Yang et al., 

96 2020; Liu et al. 2021b; Qu et al., 2021). However, members of WRKY TFs have yet to be 

97 identified in asparagus lettuce. In this study, 76 WRKY TFs were identified in asparagus lettuce 

98 through genome-wide analysis. Exon-intron structure, phylogenetic relationships, motif 

99 compositions, collinearity of WRKY genes and chromosome distribution analysis were identified. 

100 We also investigated the different levels of WRKY gene expression at different stages of stem 
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101 expansion. Our results will provide the basis of WRKY TFs in asparagus lettuce and will 

102 highlight the role of WRKY TFs in stem expansion.

103

104 MATERIAL AND METHODS 

105 Sequence retrieval and identification of WRKY TFs in lettuce

106 The lettuce gene and protein sequence were obtained from the lettuce's genome (V7, 

107 https://lgr.genomecenter.ucdavis.edu/). The amino acid sequences of Arabidopsis WRKY TFs 

108 were used as query sequences to search for the homologous LasaWRKY TFs sequences. 

109 Subsequently, the conserved WRKY domain was identified by SMART (http://smart.embl-

110 heidelberg.de/), Pfam database (http://pfam.janelia.org/), SMART (http://smart.embl-

111 heidelberg.de/) and NCBI CDD search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). 

112 The molecular weight (Mw) and theoretical isoelectric point (pI) of LasaWRKY TFs were 

113 identified by the ExPASY server (http://www.expasy.ch/tools/pi_tool.html).

114

115 Gene structure, conserved motif and cis-elements analysis of promoter 

116 GSDS (http://gsds.gao-lab.org/) was used to analyze the structure of LasaWRKY TFs, whereas, 

117 MEME online program (https://meme-suite.org/meme/tools/meme) was used to identify the 

118 conserved motif of LasaWRKY TFs (Bailey et al., 2009). The result was visualized by TBtools 

119 software (Chen et al., 2020). To investigate the cis-elements, the promoter region of the 2000 bp 

120 genomic DNA upstream sequence was submitted to the PlantCARE database (Lescot et al., 

121 2020).
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122

123 Multiple sequence alignment and phylogenetic tree of LasaWRKY TFs

124 Multiple sequence alignment of LasaWRKY TFs was performed using the DNAMAN software. 

125 After ClustalX aligned the amino acid sequences of LasaWRKY TFs, a phylogenetic tree was 

126 constructed using the neighbor-joining method with 1000 bootstrap replicates using MEGA 7.0 

127 (Kumar et al., 2008). 

128

129 Chromosomal distribution and gene duplication of LasaWRKY TFs  

130 TBtools was used to draw the chromosomal distribution of each LasaWRKY TF from lettuce's 

131 genome. STRING software was used to conduct the interaction network (Franceschini et al., 

132 2013). McscanX was used to identify the orthologous and paragons genes of WRKY TFs in L. 

133 sativa and Lactuca saligna. The symbiotic relationships were displayed using Circos software 

134 (Krzywinski et al., 2009).

135

136 Plant materials, stress and phytohormone treatments

137 Seeds from the cultivated asparagus lettuce 'Yonganhong' were sown in a controlled environment 

138 chamber for 12 h photoperiod at 22 and 18 oC (day vs. night) with light intensity of 20,000. 

139 Asparagus lettuce seedlings were used in subsequent experiments once they reached the four-leaf 

140 stage. Seedlings were treated with 200 mmol/L NaCl (salt), 20% PEG6000 (drought), 4 oC (low 

141 temperature) and 37 oC (high temperature) for abiotic stress treatment, respectively. To treat 

142 seedlings with hormones, salicylic acid (SA, 0.5 mmol/L), abscisic acid (ABA, 75 µmol/L) and 
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143 gibberellin (GA, 50 µmol/L) were sprayed on them and placed for different duration of time. The 

144 expression patterns of LasaWRKY TFs were also analyzed using different stages of asparagus 

145 lettuce stem development (S1: diameter length is 1cm, S2: diameter length is 2 cm, S3: diameter 

146 length is 3 cm, and S4: diameter length is 4 cm). For each treatment, three biological replicates 

147 were collected. All samples were frozen in liquid nitrogen and stored in a -80 oC refrigerator. 

148 Total RNA was isolated from four stem swelling, abiotic stress and hormone treatment using a 

149 plant total RNA isolation kit (Vazyme, Nanjing, China) and first-strand cDNA was synthesized 

150 using a 1st Strand cDNA Synthesis Kit (Vazyme, Nanjing, China). 

151

152 Quantitative transcript analysis and qRT-PCR validation

153 The transcriptome sequencing completed by our lab according to the FPKM value yielded the 

154 expression abundance of LasaWRKY TFs in asparagus lettuce during different developmental 

155 stages of stem swelling (S1, S2, S3 and S4). For qRT-PCR, SYBR Green I (TaKaRa, Dalian, 

156 China) and the Roche LightCycler 96 were used. LasaTIP41 (Lsat_1_v5_gn_5_116421) was 

157 used to normalize and calculate the expression levels of each LasaWRKY TFs (Borowski et al., 

158 2014). The relative expression levels of LasaWRKY TFs were calculated using the 2-ΔΔCT 

159 methods based on the mean value of three technical repeats. The primer pairs were designed by 

160 Primer Premier 6.0 and are listed in Supplemental Table S1.

161

162 RESULTS 

163 Identification of LasaWRKY TFs in L. sativa
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164 The asparagus lettuce Yonganhong was planted in the teaching base of Linyi University. 

165 Although the root system of asparagus lettuce is straight, some dense lateral roots form after 

166 transplantation. It has very large basal and lower leaves. During the course of plant growth, the 

167 shortened stem gradually elongates and thickens (Fig. 1). 

168 From the lettuce genome, 76 LasaWRKY TFs were identified, denoted as LasaWRKY01 to 

169 LasaWRKY76. LasaWRKY TFs had coding sequences (CDS) lengths ranging from 546 bp 

170 (LasaWRKY02) to 2232 bp (LasaWRKY42), with corresponding amino acid (aa) numbers 

171 ranging from 181 aa to 743 aa. The MWs and pI values of the identified LasaWRKY TFs ranged 

172 from 20.7 kDa (LasaWRKY02) to 81.7 kDa (LasaWRKY42), and from 5.19 (LasaWRKY44) to 

173 9.98 (LasaWRKY35). On average, the polypeptide was composed of 59.90% aliphatic amino 

174 acids and 7.50% aromatic amino acids. The GRAVY values ranged from -1.274 to -0.46, 

175 indicating that LasaWRKY proteins are hydrophilic in nature (Supplemental Table S2). 

176

177 Multiple sequence alignment and phylogenetic analysis of LasaWRKY TFs 

178 Multiple sequence alignment of LasaWRKY TFs was identified, as shown in Fig. S1. Two 

179 WRKY domains with the conserved WRKYGQK were present in Group I, which contained 

180 C2H2-type zinc-finger domains. All 43 LasaWRKY TFs in Group II include LasaWRKY03, 

181 LasaWRKY05, LasaWRKY10 and LasaWRKY13 had one WRKY domain and a C2H2-type 

182 zinc-finger. All the members in Group III had one complete WRKY domain and a C2HC zinc 

183 finger. However, the WRKYGQK sequence has changed in some LasaWRKY TFs, for example, 

184 WRKYGKK in LasaWRKY50 and WKKYGEK in LasaWRKY61.
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185 To investigate the phylogenetic relationship of LasaWRKY TFs, the phylogenetic tree was 

186 also constructed using MEGA7 software. All 76 LasaWRKY TFs were divided into three groups 

187 (I, II, and III). Group II had the most members (43), but the distribution is uneven among the five 

188 subgroups IIa (3), IIb (9), IIc (15), IId (8), and IIe (8). Group I contained Ninteen LasaWRKY 

189 TFs. Group III formed the smallest group with 14 LasaWRKY TFs (Fig. 2). To analyze the 

190 classification of WRKY TFs family, a phylogenetic tree was constructed using 949 WRKY TFs 

191 from 10 different plant species (Fig. S2). Glycine max had the most WRKY TFs, with 176, 

192 followed by Zea mays (131), Oryza sativa (100) and Daucus carota (95); Arabidopsis thaliana 

193 had the fewest WRKY TFs (72). Among the three groups, WRKY TFs were mainly classified 

194 into Group II. For instance, 45 of the 72 Arabidopsis thaliana WRKY TFs belonged to Group II; 

195 while, Groups I and III contained 13 and 14 members, respectively. The distribution of WRKY 

196 TFs in Solanum lycopersicum was 15 (Group I), 52 (Group II) and 11 (Group III). The number 

197 of WRKY TFs among the 10 plant species in Groups I and III was similar, except Vitis vinifera, 

198 which was classified to Group I and Group III, with 12 and 6 members, respectively (Fig. S2). 

199

200 Gene structure, conserved motif and cis-elements analysis of LasaWRKY TFs

201 The TBtools program was used to explore the gene structure to analyze the introns and exons of 

202 LasaWRKY TFs. There were introns in all 76 LasaWRKY TFs ranging from 1 to 6. The 

203 majority (33 of 76 LasaWRKY TFs) had 2 introns and 3 exons, followed by 3 introns (17) and 4 

204 introns (10). LasaWRKY52 had the highest number of introns (6) and exons (7), while, 

205 LasaWRKY73, LasaWRKY29, LasaWRKY12, LasaWRKY30 and LasaWRKY58 each had only 
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206 1 intron (Fig. 3A). The losses and gains of LasWRKY TFs may be related to the functional 

207 diversity during the evolution of LasWRKY TFs.

208 Despite the fact that the gene structure of LasaWRKY TFs differed, some conserved motifs 

209 were found in all LasaWRKY TFs. MEME program identified Ten conserved motifs to illustrate 

210 the similarity and diversity of motif composition. The conserved motifs in all 76 LasaWRKY 

211 TFs ranged from 2 to 7. Motifs 1 and motif 2 existed in all 76 LasaWRKY TFs. There were only 

212 two motifs in nine LasaWRKY TFs (LasaWRKY51, 60, 69, 26, 07, 44, 66, 67 and 73). Motifs 9 

213 and 10 mainly existed in Group III and Group II, respectively. Motifs 3 and 5 were unique in 

214 Group I, such as LasaWRKY65, 32, 24, 53, 74, 06, 59, 42 and 48 (Fig. 3B). The results indicated 

215 that LasaWRKY TFs from the same group have similar conserved motifs. The difference also 

216 existed in LasaWRKY TFs, belonging to the same subgroup, indicating the functional diversity 

217 of LasaWRKY genes (Rose 2004).

218 The cis-elements of the promoter region, a sequence with 2.0 kb DNA sequences upstream 

219 from the codons of the 76 LasaWRKY TF, were identified as shown in Fig. 3C. Sixteen types 

220 contained hormone-related, stress-related and plant growth and development-related cis-elements, 

221 such as 4 types of hormone-related cis-elements gibberellin-responsive element, SA 

222 responsiveness element, ABA responsiveness element, auxin-responsive element), stress-related 

223 elements (defense and stress responsiveness element, low-temperature responsiveness element). 

224 MYB binding site (CAACAG) was found in 47 LasaWRKY TFs. TCTGTTG (gibberellin-

225 responsive element), CCATCTTTTT (SA responsiveness element) and ACGTG (ABA 

226 responsiveness element) were found in 70, 32 and 56 LasaWRKY, respectively. MYB binding 
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227 site (CAACAG) was detected in 47 LasaWRKY TFs, and low-temperature responsiveness 

228 element LTR (CCGAAA) was found in 23 LasaWRKY TFs. 

229

230 Chromosomal distribution and duplication of LasaWRKY TFs

231 Each LasaWRKY TF was investigated according to the lettuce genome database to evaluate the 

232 chromosomal distribution. Except for LasaWRKY01 and LasaWRKY02, a total of 74 

233 LasaWRKY TFs were found on 9 lettuce chromosomes (Fig. 4). The LasaWRKY TFs were 

234 mostly found on chromosome 09 (14), followed by chromosome 07 (13), chromosome 04 (11) 

235 and chromosome 08 (10). The number of LasaWRKY TFs on chromosome 3 and chromosome 5 

236 was the same (7). Six LasaWRKY TFs were found on chromosome 6. Only 3 LasaWRKY TFs 

237 were mapped on chromosome 01. L.saligna, which also belonged to the genus Lactuca, was 

238 chosen to construct the comparative analysis to identify the paralogs and orthologs. As shown in 

239 Fig. 5, a total of 75 and 70 pairs of paralogs were identified in L. saliva and L.saligna, 

240 respectively. Moreover, 75 pairs of orthologs between L. saliva and L.saligna were identified 

241 (Supplemental Table S3).

242

243 Interaction network analysis of LasaWRKY TFs

244 STRING software was used to construct interaction network of LasaWRKY TFs in order to 

245 analyze the regulation mechanism. As shown in Fig. 6, 49 LasaWRKY TFs showed complex 

246 interaction with other proteins such as WRKY TFs, MPK4, and Sigma factor binding protein 

247 (SIB). LasaWRKY8/69/75 (WRKY70) and LasaWRKY14/30/31/53/65/68 (WRKY33) 
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248 interacted with other proteins in a similar manner. They both interacted with SIB1, SIB2, MEK1, 

249 NPR1 and LasaWRKY28, indicating that their regulatory networks were similar. MEK1, MPK3, 

250 MPK4 could interact with the LasaWRKY8/69/75 (WRKY70) and LasaWRKY25/47 (WRKY22) 

251 TFs. LasaWRKY TFs with co-expression relationships included LasaWRKY13 (WRKY18), 

252 LasaWRKY13 (WRKY40) and LasaWRKY34/27 (WRKY60). 

253

254 Gene expression analysis

255 Expression of LasaWRKY TFs in response to abiotic stress

256 Five LasaWRKY TFs (LasaWRKY16, LasaWRKY32, LasaWRKY39, LasaWRKY55 and 

257 LasaWRKY58), with relatively high expression levels across the stem developmental stages, 

258 were chosen for RT-qPCR analysis to identify the expression patterns of abiotic stresses (high 

259 salt, drought, low and high temperature).

260 Salt stress

261 After NaCl treatment, the expression level of LasaWRKY16 and LasaWRKY39 increased at 

262 different times. The expression level of LasaWRKY16 increased approximately 32 times (12 h), 3 

263 times (24 h) and 26 times (48 h) (Fig. 7). Compared to CK, LasaWRKY39 increased by about 4 

264 times, 3 times and 10 times increase after 12 h, 24 h and 48 h, respectively. LasaWRKY58 also 

265 showed increased expression after NaCl treatment for 24 h (40 times) and 48 h (20 times). 

266 LasaWRKY55 showed an insensitive response to salt treatment.

267 Drought stress
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268 The expression profiles of LasaWRKY16 and LasaWRKY39 were similar under drought 

269 stress. LasaWRKY16 and LasaWRKY39 showed the highest expression (32 folds and 10 folds, 

270 respectively), as shown in Fig. 7. There were no obvious changes in the mRNA levels of 

271 LasaWRKY32, LasaWRKY55 and LasaWRKY58.

272 Low temperature (4 oC)

273 Under different treatment times, low temperature significantly induced the expression of 

274 four LasaWRKY genes (LasaWRKY16, LasaWRKY32, LasaWRKY58 and LasaWRKY39). 

275 LasaWRKY16, LasaWRKY32, LasaWRKY58 and LasaWRKY39 showed 30-fold (48 h), 15-fold 

276 (24 h), 10-fold (48 h) and 8-fold (12 h) increase, respectively. In contrast, the expression of 

277 LasaWRKY55 was upregulated by 9 times (24 h) and downregulated by 0.11 times (12 h) and 

278 0.03 times (48 h), respectively. 

279 High temperature (37 oC) 

280 The transcription level of 2 LasaWRKY genes (LasaWRKY16 and LasaWRKY32) was 

281 significantly increased by high temperatures. As shown in Fig. 7, the expression of LasaWRKY16 

282 and LasaWRKY32 increased continuously as treatment time was increased. At 48 h, the 

283 expression levels of LasaWRKY16 and LasaWRKY32 increased the most, 32-fold and 27-fold, 

284 respectively. LasaWRKY58, LasaWRKY39 and LasaWRKY55 all had similar expression patterns. 

285 At 24 h, the expression levels of LasaWRKY58, LasaWRKY39 and LasaWRKY55 increased 10-

286 fold, 3-fold and 2-fold, respectively; however, after 12 and 48 hours of treatment, the expression 

287 levels of LasaWRKY58, LasaWRKY39 and LasaWRKY55 were markedly decreased. 

288
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289 Expression levels of LasaWRKY TFs under treatment with phytohormone

290 Several hormone-responsive elements, such as GA, ABA and SA, were found in the promoter 

291 regions of LasaWRKY TFs (Fig. 3C), indicating that LasaWRKY TFs may respond to hormone 

292 treatment. The expression levels of 5 LasaWRKY TFs involved in different hormones (SA, ABA, 

293 and GA) were investigated (Fig. 8). The expression levels of both LasaWRKY16, LasaWRKY32 

294 and LasaWRKY58 were in response to ABA, GA and SA treatment at different times. After ABA 

295 treatment for 48 h, the expression levels of LasaWRKY16 and LasaWRKY32 increased about 40 

296 and 14 times, respectively. The expression levels of LasaWRKY39 increased about 3.5 folds (24 

297 h) in response to SA treatment. The expression level of LasaWRKY39 showed insensitive 

298 expression patterns after ABA and GA treatment. LasaWRKY55 showed insensitive response to 

299 ABA, SA, and GA treatment (Fig. 8).

300

301 Tissue-specific expression patterns of LasaWRKY TFs

302 To investigate the potential functions of LasaWRKY TFs during the development of L. sativa, 

303 the expression patterns of five genes in different organs (root, stem and leaf) were identified (Fig. 

304 9). The expression patterns of four LasaWRKY TFs (LasaWRKY16, LasaWRKY58, 

305 LasaWRKY39 and LasaWRKY55) were similar. These 4 genes had the highest expression levels 

306 in root as compared with stem and leaf. While the expression pattern of LasaWRKY32 in the leaf 

307 increased about 3.5 times more than the expression in stem and leaf. The preferential expression 

308 patterns of LasaWRKY TFs in different organs indicated that each LasaWRKY TFs might play a 

309 unique role in organ development or function.
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310

311 Expression profile of LasaWRKY TFs at different stages of stem development 

312 We used a heat map to analyze the expression patterns in different stages of L. sativa stem 

313 enlargement based on transcriptome data to explore the function of LasaWRKY TFs involved in 

314 the progression of stem development. As shown in Fig. 10, 43 of the 76 LasaWRKY TFs showed 

315 different expression levels. Several genes including LasaWRKY53, LasaWRKY49, LasaWRKY21, 

316 LasaWRKY28 and LasaWRKY58, showed upregulated expression profiles as lettuce stem 

317 enlargement progressed. While, the expression levels of some genes such as LasaWRKY17, 

318 LasaWRKY72, LasaWRKY66 and LasaWRKY08 were decreased, indicating that they may play 

319 negative regulatory roles in lettuce stem enlargement. Some genes, including LasaWRKY60, 

320 LasaWRKY14 and LasaWRKY02, showed wavy expression patterns. 

321 To explore the function of LasaWRKY TFs involved in lettuce development, RT-qPCR was 

322 used to examine the expression profiles of these 5 LasaWRKY genes (LasaWRKY16, 

323 LasaWRKY32, LasaWRKY58, LasaWRKY39 and LasaWRKY55) (Fig. 11). The heat map analysis 

324 revealed that the relative expression levels of these five genes except LasaWRKY55 increased, 

325 indicating that these genes were upregulated in the later stages of development. The results of 

326 RT-qPCR revealed that the expression patterns of LasaWRKY32 and LasaWRKY16 increased 

327 continuously during the progress of stem developmental stages. At the S4 stage, the expression 

328 of LasaWRKY32 and LasaWRKY16 increased about 10-fold and 27-fold, respectively. Although 

329 the expression level of LasaWRKY55 was reduced at the S2 stage, it increased by about 3-fold 

330 and 5.5-fold at S3 and S4 stages, respectively. At the S1 and S2 stages, no obvious fluctuations 
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331 were observed for LasaWRKY58, but at the S4 stage, the expression level increased about 12-

332 fold. 

333

334 DISCUSSION

335 Identification of WRKY TFs family in lettuce

336 As we know, the WRKY TFs family has been confirmed to take part in a variety of biological 

337 processes, including various environmental stresses, plant growth and development. Because of 

338 high-throughput sequencing technology advancement, the WRKY TFs family has been identified 

339 in numerous higher plants (Ishiguro & Nakamura 1994; Yang et al., 2020; Qu et al., 2021). 

340 However, the analysis of WRKY TFs family Asterales plant order was limited. Plants of this 

341 order, such as sunflower (Helianthus annuus L.), globe artichoke (Cynara cardunculus var. 

342 scolymus L.) and lettuce, are rich in vitamins, proteins, fats, and phenolic compounds. Guo et al. 

343 (2019) analyzed WRKY TFs in the plants of Asteraceae. There were 112, 60 and 74 WRKY TFs 

344 found in sunflower, globe artichoke and lettuce, respectively. In our study, 76 LasaWRKY TFs 

345 were identified in lettuce, and the difference could be attributed to the different E values used 

346 while screening the WRKY domain. Comparative analysis revealed that the number of WRKY 

347 TFs is unrelated to plant genome size. The genome size of Arabidopsis, tomato and lettuce was 

348 125 Mb, 900 Mb and 2.5 Gb, respectively, with a similar number of WRKY TFs (72 in 

349 Arabidopsis, 78 in tomato and 76 in lettuce) (Reyes-Chin-Wo et al., 2017) (Fig. S2). The number 

350 of WRKY TFs in both potato and Hevea brasiliensis was 81, but the potato genome size was 844 

351 Mb, and the Hevea brasiliensis genome size was 2.15 Gb. These results indicated that the plants' 
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352 genome size could not determine the numbers of WRKY TFs. 

353

354 Cis element and interaction network analysis of LasaWRKY TFs

355 Dehais et al. (1999) and Lescot et al. (2002) have found the cis-regulation element in the 

356 promoter region could regulate gene expression. The cis-elements found in the promoter region 

357 of 76 LasaWRKY TFs were investigated to analyze the potential function. As shown in Fig. 5, 

358 10 cis-elements were identified, including hormone-responsive element (SA, GA, ABA, auxin) 

359 and abiotic stress, indicating that the function of LasaWRKY TFs was related to the 

360 phytohormone-regulation pathway or stress-regulation pathway (Chaemyeong et al., 2021; Negi 

361 & Khurana, 2021). MYB binding sites were also found in the promoter regions of many WRKY 

362 TFs, such as LasaWRKY71, LasaWRKY74 and LasaWRKY62. The WRKY TFs binding site 

363 W-box element (C/TTGACT/C) was found in many LasaWRKY TFs, including LasaWRKY03 

364 and LasaWRKY06 LasaWRKY14, LasaWRKY20, LasaWRY36. The results suggested that 

365 LasaWRKY TFs could participate in various biological processes through self-regulation or 

366 cross-regulating with other genes.

367 The interaction network revealed that LasaWRKY TFs could interact with other proteins 

368 such as WRKY TFs, MPK and SIB to regulate different biological processes (Fig. 6). MAPK 

369 cascades, as an important signal transduction pathway, play vital roles in the progression of plant 

370 disease resistance (Horak 2020; Yao et al. 2020). WRKY TFs can be phosphorylated and 

371 activate MAPK, triggering downstream signaling pathways (Chi et al., 2013; Yao et al., 2020). 

372 After being directly phosphorylated by MPK3 and MPK6, AtWRKY33 played a major role in 
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373 the progression of fungus-induced camalexin accumulation (Mao et al., 2011). Yao et al. (2020) 

374 confirmed that WRKY TFs induced important defense response in tobacco resistance to whitefly 

375 after being phosphorylated by MAPK. VQ proteins (containing VQ motif FxxhVQxhTG) as a 

376 class of plant-specific transcriptional regulators could fine-tune the regulatory networks of plant-

377 growth or plant-stress by cooperating with their interacting partners, including WRKY TFs (Lai 

378 et al., 2011; Hu et al., 2013). Lai et al. (2011) found VQ proteins SIB1 and SIB2 could serve as 

379 transcriptional activators of WRKY33 in response to Botrytis cinerea. Hu et al. (2013) identified 

380 VQ9, in collaboration with WRKY8, can regulate the plant-salt stress response. All of the results 

381 showed a complex relational mechanism of LasaWRKY TFs during various biological growths, 

382 which may form complexes with other proteins such as SIB, MPK and WRKY TFs. 

383

384 The functions of LasaWRKY TFs

385 A large number of studies have confirmed the role of WRKY TFs in plant growth and 

386 development, pathogen defense, and abiotic stress (Dong et al., 2003; Rengasamy et al., 2008; 

387 Kouzai et al., 2020; Wei et al., 2021). The regulatory mechanisms of WRKY TFs in plant 

388 biological progresses are complex, because WRKY TFs can effectively combine with W-box 

389 found in the promoter regions of downstream target genes to regulate the expression of target 

390 genes or bind other acting elements to form protein complexes. Because the W-box element is 

391 present in many TFs, including the majority of WRKY TFs, WRKY TFs can combine with the 

392 W-box element in other WRKY TFs to form self-regulation or cross-regulation networks (Li et 

393 al., 2020; Zentgraf et al., 2010).
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394 Some valuable clues have revealed the roles of WRKY TFs in plant development, including 

395 seed development, senescence, seed dormancy, and germination (Sun et al., 2003; Luo et al., 

396 2005; Zhou et al., 2011). TTG2, as one of the WRKY TFs, was identified to play a role in organ 

397 development for the first time, including trichome outgrowth and seed coat morphogenesis 

398 (Johnson et al., 2002). Gene expression profiles are linked to gene function (Xu et al., 2015). 

399 Rice OsWRKY78 was confirmed to promote seed development and stem elongation (Zhang et al., 

400 2011). AtWRKY23 and AtWRKY12 were identified to regulate embryo development and 

401 secondary cell wall formation, respectively (Wang et al., 2010; Grunewald et al., 2013). 

402 According to RT-qPCR analysis, AcWRKY TFs may also play a role in specific pineapple 

403 physiological processes (Xie et al., 2018). Transcriptome data analysis revealed that 43 of 76 

404 LasaWRKY TFs had different expression patterns (Fig. 10). The expression levels of five 

405 LasaWRKY genes (LasaWRKY16, LasaWRKY32, LasaWRKY37, LasaWRKY39 and 

406 LasaWRKY55) were analyzed in different stages of stem development (Fig. 11), indicating that 

407 differently expressed WRKY TFs may be the key regulators of lettuce stem development.

408 The regulatory roles of WRKY TFs in response to abiotic stresses were also inferred. In 

409 Arabidopsis, 26 WRKY TFs responded to abiotic stress, and one WRKY TF participated in 

410 multiple stresses (Jiang & Deyholos, 2006). AtWRKY30 improved resistance to salt stress and 

411 oxidative stress (Scarpeci et al., 2013). OsWRKY76 improved the resistance of rice to cold stress 

412 (Naoki et al., 2013). WRKY TFs may improve tolerance to various abiotic stresses by increasing 

413 some material accumulation. For instance, the overexpression of Boea hygrometrica BhWRKY1 

414 in Nicotiana tabacum improved the seedling drought resistance by inducing the accumulation of 
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415 raffinose family oligosaccharides (Wang et al., 2009). WRKY TFs can improve tolerance to 

416 various abiotic stresses by directly regulating the expression of stress resistance-related genes. 

417 By binding W-box elements in the promoter of drought-resistant gene RD29A and NCED3, 

418 AtWRKY57 played a positive role in drought stress response (Zheng et al., 2020). Similarly, 

419 SbWRKY50 from Sorgnum bicolor participated in salt response by directly binding the promoters 

420 of SOS1 and HKT1 (Song et al., 2020). While, AtWRKY34 played negative roles in the CBF-

421 mediated cold response pathway (Zou et al., 2010).

422 The function of WRKY TFs in abiotic stress is often related to defense-associated 

423 phytohormones such as JA, SA, and ABA. As a major phytohormone, ABA has been shown to 

424 increase salt and drought tolerance (Yin et al., 2017). ABA could improve drought tolerance by 

425 attenuating the inhibition of OsWRKY5 to its downstream gene, such as OsMYB2 (Chaemyeong 

426 et al., 2021). Shang et al. (2010) found that AtWRKY18, AtWRKY40 and AtWRKY60 were 

427 involved in the ABA signaling pathway. Chrysanthemum morifolium CmWRKY1 participated in 

428 drought response by an ABA-mediated pathway (Fan et al., 2016). In addition to ABA, WRKY 

429 TFs play an important role in the SA signaling pathway. AtWRKY39 responded to high 

430 temperatures by collaboratively participating in SA and JA signaling pathways (Li et al., 2010). 

431 According to Kim et al. (2008), AtWRKY38 and AtWRKY62 inhibited the expression of the SA 

432 responsive gene AtPR1 and decreased tolerance to pathogens. The comprehensive expression 

433 analysis of LasaWRKY TFs revealed that LasaWRKY TFs could respond to different abiotic 

434 stresses (high salt, drought, low temperature, high temperature) by participating in the 

435 phytohormone signaling pathway.
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659 Figure Legends

660 Fig. 1: Growth of asparagus lettuce plants (A) and the cross section of asparagus lettuce stem (B).

661

662 Fig. 2: Phylogenetic analysis of LasaWRKY TFs among lettuce, Arabidopsis, tomato and tea 

663 plants by MEGA7.0.

664

665 Fig. 3: Phylogenetic relationship, exon-intron structure, conserved motifs and cis-element 

666 analysis of LasaWRKY genes in lettuce. (a) The phylogenetic tree created by MEGA 7.0 and 

667 exon-intron structures from online software GSDS. (b) Conserved motifs predicted in 

668 LasaWRKY protein. Ten motifs were identified by the MEME program, with each number of 

669 colored boxes representing a different motif. (c) Cis-element analysis in the promoter region of 

670 LasaWRKY genes. 

671

672 Fig. 4: Chromosomal distribution of LasaWRKY TFs.

673

674 Fig. 5: Comparative analysis of synteny between L. saliva and L.saligna.

675

676 Fig. 6: Interaction network analysis of LasaWRKY TFs.

677

678 Fig. 7: Relative expression of five LasaWRKY genes under different abiotic stresses.

679

680 Fig. 8: Relative expression of five LasaWRKY genes under hormone treatment.
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681

682 Fig. 9: Relative expression of five LasaWRKY genes at different tissues.

683

684 Fig. 10: Expression profiles of LasaWRKY genes by the transcriptome data analysis at different 

685 L. sativa stem enlargement periods.

686

687 Fig. 11: Expression profiles of five LasaWRKY genes at different L. sativa stem enlargement 

688 periods.

689

690 Supplementary Files

691 Supplementary File 1

692 Fig. S1: Alignment of the amino acid sequence of LasaWRKY TFs.

693

694 Supplementary File 2 

695 Fig. S2: WRKY family TFs members among different plant species.

696

697 Supplementary File 3 

698 Table S1: Primer sequences used in the text.

699 Table S2: Characteristic features of LasaWRKY TFs.

700 Table S3: The paralogs and orthologs of WRKY TFs between L. saliva and L.saligna.

701
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Figure 1
Growth of asparagus lettuce plants (A) and the cross section of asparagus lettuce stem
(B).
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Figure 2
Phylogenetic analysis of LasaWRKY TFs among lettuce, Arabidopsis, tomato and tea
plants by MEGA7.0.
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Figure 3
Phylogenetic relationship, exon-intron structure, conserved motifs and cis-element
analysis of LasaWRKY genes in lettuce.

(a) The phylogenetic tree created by MEGA 7.0 and exon-intron structures from online
software GSDS. (b) Conserved motifs predicted in LasaWRKY protein. Ten motifs were
identified by the MEME program, with each number of colored boxes representing a different
motif. (c) Cis-element analysis in the promoter region of LasaWRKY genes.
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Figure 4
Chromosomal distribution of LasaWRKY TFs.
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Figure 5
Comparative analysis of synteny between L. saliva and L.saligna.
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Figure 6
Interaction network analysis of LasaWRKY TFs.
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Figure 7
Relative expression of five LasaWRKY genes under different abiotic stresses.
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Figure 8
Relative expression of five LasaWRKY genes under hormone treatment.
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Figure 9
Relative expression of five LasaWRKY genes at different tissues.
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Figure 10
Expression profiles of LasaWRKY genes by the transcriptome data analysis at different
L. sativa stem enlargement periods.
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Figure 11
Expression profiles of five LasaWRKY genes at different L. sativa stem enlargement
periods.
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