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ABSTRACT
Background. Breast cancer is the second leading cause of cancer-related deaths
globally, and its prevalence rates are increasing daily. In the past, studies predicting
therapeutic drug targets for cancer therapy focused on the assumption that one gene
is responsible for producing one protein. Therefore, there is always an immense need
to find promising and novel anti-cancer drug targets. Furthermore, proteases have
an integral role in cell proliferation and growth because the proteolysis mechanism is
an irreversible process that aids in regulating cellular growth during tumorigenesis.
Therefore, an inactive rhomboid protease known as iRhom2 encoded by the gene
RHBDF2 can be considered an important target for cancer treatment. Speculatively,
previous studies on gene expression analysis of RHBDF2 showed heterogenous
behaviour during tumorigenesis. Consistent with this, several studies have reported
the antagonistic role of iRhom2 in tumorigenesis, i.e., either they are involved in
negative regulation of EGFR ligands via the ERAD pathway or positively regulate
EGFR ligands via the EGFR signalling pathway. Additionally, different opinions suggest
iRhom2 mediated cleavage of EGFR ligands takes place TACE dependently or TACE
independently. However, reconciling these seemingly opposing roles is still unclear and
might be attributed to more than one transcript isoform of iRhom2.
Methods. To observe the differences at isoform resolution, the current strategy
identified isoform switching in RHBDF2 via differential transcript usage using RNA-seq
data during breast cancer initiation and progression. Furthermore, interacting partners
were found via correlation and enriched to explain their antagonistic role.
Results. Isoform switching was observed at DCIS, grade 2 and grade 3, from canonical
to the cub isoform. Neither EGFR nor ERAD was found enriched. However, path-
ways leading to TACE-dependent EGFR signalling pathways were more observant,
specifically MAPK signalling pathways, GPCR signalling pathways, and toll-like
receptor pathways. Nevertheless, it was noteworthy that during CTCs, the cub isoform
switches back to the canonical isoform, and the proteasomal degradation pathway and
cytoplasmic ribosomal protein pathways were significantly enriched. Therefore, it could
be inferred that cub isoform functions during cancer initiation in EGFR signalling. In
contrast, during metastasis, where invasion is the primary task, the isoform switches
back to the canonical isoform.
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INTRODUCTION
Breast cancer is the second leading cause of cancer-related deaths globally, and its prevalence
rates are increasing day by day Azamjah, Soltan-Zadeh & Zayeri (2019). Unfortunately,
cancer treatment is challenging due to the inadequate availability of therapeutic targets
(Mansoori et al., 2017). In recent years, the introduction of next-generation sequencing
and new bioinformatics techniques in genomics and proteomics have made it possible to
interact with numerous cancerous genes. This has allowed researchers to see that a gene
may evolve into a different polypeptide by being modified at different levels, for example,
histone modification and splicing origins, which lead to different isoforms of the same
gene having completely altered functioning (Vitting-Seerup & Sandelin, 2017). Therefore,
there is always an immense need to find promising and novel anti-cancer therapeutic drug
targets.

Proteases have an integral role in cell proliferation and growth because the proteolysis
mechanism is an irreversible process that aids in regulating cellular growth during
tumourigenesis (Park, Dharmasivam & Richardson, 2020). Therefore, they can be
considered an important target for cancer treatment. Rhomboid proteases are part of
the family that hydrolyze the peptide bonds in other proteins and are almost found in all
kingdoms of life (Adrain & Cavadas, 2020). However, some members of the rhomboid
family lack the catalytic residues necessary for proteolysis, suggesting they cannot cleave
substrates. Instead, they can do so by complex formation with client proteins known as
inactive rhomboids or pseudoprotease (Bergbold & Lemberg, 2013). Mammals are reported
to have two inactive rhomboids, iRhom1 encoded by the RHBDF1 gene and iRhom2
encoded by the RHBDF2 gene. Both share highly conserved protein sequences, and the
distinction lies in the protein sequences of the cytosolic region, where they possess different
deletions and extensions. Knockout studies on iRhom2 showed more severe phenotypic
changes (Blaydon et al., 2012; Hosur et al., 2014; Dulloo, Muliyil & Freeman, 2019). Thus,
this makes RHBDF2 an interesting protein to study. RHBDF2 has developed a new pseudo
enzyme function regulating trafficking, orchestrating inflammatory response and growth
factor signalling by interacting with client proteins (Bergbold & Lemberg, 2013). Both active
and inactive rhomboids have many transcript isoforms in mammals, with several of them
that can code for alternative forms of proteins. Whereas iRhom2 have two functionally
important isoforms, ENST00000313080 (canonical) and ENST00000591885 (cub), which
are also reported in public databases (ENSEMBL andRefseq) alongwith 18 computationally
mapped transcript isoforms.

Several studies have reported the antagonistic role of iRhom2, i.e., either they are involved
in negative regulation of EGFR ligands via the ERAD (endoplasmic reticulum-associated
protein degradation) pathway or positively regulate EGFR ligands via the EGFR signalling
pathway. Different opinions suggest that the iRhom2 mediated cleavage of EGFR ligands
depends on TACE (TNF-α converting enzyme), also known as ADAM17 (Hosur et al.,
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2014; Künzel et al., 2018). In contrast, some research suggests that an independent pathway
of TNF-α exists. Therefore, iRhom2 may only serve as a catalyst for TNF secretion, or it
may be functionally redundant with other proteins (s) (Siggs et al., 2014). Furthermore,
evidence has shown that the onset of sleep-like phenotype inDrosophila melanogaster is due
to iRhoms being involved in the negative regulation of EGFR signalling through the ERAD
pathway in the nervous system (Lee, Nam & Choi, 2016).In contrast, active rhomboids
regulate the cleavage of EGFR membrane-bound precursors (Adrain & Freeman, 2012).
Some conservedmechanistic links exist betweenmammals and drosophila in the regulation
of EGFR signalling and inmaintaining cell quality controlmachinery for efficient trafficking
(Etheridge et al., 2013). iRhom2 can negatively regulate EGFR signalling via the breakdown
of EGF-like substrates. They increase ERAD activity by bringing clients passively by
delaying endoplasmic reticulum (ER) retention, enhancing the chance of exposure to
ERAD machinery (Lee, Nam & Choi, 2016). While the Freeman Research Group in 2011
suggested that they can perform thismechanismby specifically destabilizing some substrates
in ER, inhibiting their access to active rhomboids and leading to degradation (Zettl et al.,
2011). Apart from cancer, high expression of iRhom2 in renal tubules has been identified
as the target of PPAR γ , thus promoting EGF degradation via ERAD (Lyu et al., 2018).
Further work was done on TACE-independent mediated regulation of EGFR ligand (Hosur
et al., 2018). The study performed conditional deletion of ADAM17, in RHBDF2 impaired
amphiregulin (AREG)mediated sebaceous gland enlargement, wound healing and alopecia
suggesting ADAM17 is essential for shedding of EGFR ligand.

Studies on breast cancer have stated that iRhoms can regulate proliferation during
tumorigenesis via GPCR (G-protein coupled receptor) signalling by transactivation
of EGFR signalling (Christova et al., 2013). These pseudoproteases are essential for the
maturation and trafficking of ADAM17 to the plasma membrane from ER through the
Golgi apparatus and are also linked to the fates of TNF-α and EGFR ligands (Lee, Nam &
Choi, 2016). Consistent with this, in silico analysis of publicly available gene expression data-
sets on breast cancer showed heterogeneous expression behaviour of RHBDF2 according
to the intrinsic molecular subtypes and histopathological grading and staging (Canzoneri et
al., 2014). However, progression to carcinoma is not as simple, and we found no literature
for studying mRNA expression of RHBDF2 during neoplastic growth, i.e., cancer initiation
and progression. ICD-10 classifies neoplasms into four groups, benign neoplasm, in
situ neoplasm, malignant neoplasm and neoplasm of uncertain or unknown behaviour
(WHO, 2016). Studies state that an alternative splicing mechanism is pathologically altered
during neoplastic growth, impacting the cell behaviour and causing tissue-specific changes
(Lu et al., 2015; Chabot & Shkreta, 2016). Alternative splicing and its related proteins are
anticipated to be involved in the dynamic phenotypic changes in cancer cells (Chabot &
Shkreta, 2016). The importance of analyzing isoforms instead of genes has been highlighted
because cancer cell growth is directly linked to the aberrant use of one alternatively
spliced formed isoform over another under unfavourable circumstances (Soneson, Love &
Robinson, 2020). Hence, the isoform switching might explain the heterogenous expression
of iRhom2, which leads to its divergent roles as stated above in either the ERAD or EGFR
pathway.
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Proposed work
In the present study, we explore the antagonistic role and heterogenous expression
behaviour of RHBDF2 encoding iRhom2 during the neoplastic growth in the breast,
considering the bidirectional role that might be attributed to the presence of more than
one functionally important isoforms of RHBDF2 in mammals during tumorigenesis.

METHODS
Data Collection
The paired-end fastq files containing raw reads for samples in each dataset (GSE52194,
GSE130660, GSE69240, GSE110114, GSE45419, GSE51124, GSE148991) were downloaded
using an FTP link from EMBL-EBI (The European Bioinformatics Institute) and ENA
(European Nucleotide Archive), having accession numbers followed by the SRR acronym.
The datasets were classified as follows (GSE52194, GSE130660 for normal versus primary
tumour), (GSE69240 for normal versus ductal carcinoma in-situ DCIS), (GSE110114,
GSE45419 for normal versus invasive ductal carcinoma- IDC), (GSE148991 for normal
versus circulating tumour cells-CTCs) and (GSE51124 for normal versus grade2 and grade3)
also shown in Table S1.

Transcriptome reconstruction and quantification
The raw data were pre-processed for adapter sequences using fastp (Soneson, Love &
Robinson, 2020). The transcriptome data was then analyzed using the new tuxedo pipeline
(Pertea et al., 2016). First, the filtered reads were aligned on the reference genome GRch38
using Hisat2. Next, the mapped reads from each sample and the genome GTF file were
used to perform annotation-based transcriptome assembly using StringTie. The assemblies
were then compared and merged. The StringTie merge function creates a set of merged
transcripts comparable to the subsequent analysis.

Differential isoform expression
StringTie produces a set of reads or coverage tables/files of the quantified or abundance
data that were read into R version 3.6.2 for isoform expression analysis using Bioconductor
package IsoformSwitchAnalyzeR version 1.8.0. Importing data includes preparing a
transcript sequence FASTA file, a parent directory containing coverage table/files,
quantification files of the samples in GTF format, and a design file enlisting the phenotypic
data, i.e., sample ID and its corresponding condition. The FASTA sequence file for
transcripts was generated using a program utility called gffread (Pertea & Pertea, 2020). The
utility generates a FASTA file with DNA sequences for all the transcripts in the GTF file. The
inter-sample normalisationwas done using edgeR embedded in the importRdata() function
that concatenates all the information into SwitchAnalyzeRlist. This SwitchAnalyzeRlist is
an object containing all the data frames and phenotypic data related to the dataset. The
abundance files generated via StringTie are already normalised for intra-sampling using
the FPKM approach. The EdgeR works best for inter-sample normalisation via the TMM
(trimmed mean of M values) method on pre-normalised count data (Maza, 2016). The
normalised data were prefiltered to remove the uninterested data of transcripts and genes
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from the switch list object, such as non-expressed isoforms or genes and genes with
only one isoform. The differential isoform usage test was performed using the function
isoformswitchTestDEXSeq(), enabling the switch identification.

Annotating unknown transcript isoform
During the stringTie-merge step, transcripts are labelled as MSTRGs. These could
sometimes be either novel transcripts, false positives or valid transcripts that are left
unannotated. The transcripts with MSTRGs labels were annotated via BLASTp. To ensure
whether they are novel or already exist and are mislabeled. BLASTp checks the sequence
similarity of these MSTRGs to already annotated transcript sequences deposited in the
public databases. The input sequence of these MSTRGs for BLASTp was extracted via
the extract sequence function(). The MSTRGs were further considered for downstream
analysis based on E-value cut-off = 0, per cent identity; i.e., 100% and query length
matching the length of the already existing annotated transcript, i.e., the target sequence
length. For canonical transcript (ENST00000313080), it should be 856 aa; for cub transcript
(ENST000591885), it should be 827 aa. The final transcripts were analysed to predict their
functional consequences using external tools. CPC2 (Jian Kang et al., 2017) was used to
check the coding potential, and Pfam (Punta et al., 2012; Finn et al., 2016) to predict the
biological domains. The input FASTA files for the tools were manipulated using the Seqkit
(Shen et al., 2016) package according to the requirements of each tool.

Finding interacting partners via correlation
The interacting partners were found using Pearson correlation. prepDE.py python script
was used to obtain read count information from the quantification file generated via
StringTie.The count files were then subjected to differential analysis using DESeq2 (Love,
Huber & Anders, 2014). The normalised differential counts were then input for correlation
analysis. Pearson correlation was used to find the most correlated genes with RHBDF2 at
the significance level level p-value <0.05 and correlation cutoff ±0.7.

Enrichment
The most significant correlated partners were enriched using GSEA (gene set enrichment
analysis) following the protocol outlined earlier in Subramanian et al. (2005).

RESULTS
Annotation of MSTRGs via BLASTp
To ensure whether MSTRGs labelled transcripts are novel or already exist and are
mislabeled, BLASTp was used to annotate them Acland et al. (2013). If any of these
transcripts matched the already-annotated transcripts based on the query length, per
cent identity, and E-value, they would be merged with already-annotated transcripts for
further analysis. The MSTRG labelled transcripts (MSTRG.15617.1, MSTRG.15617.2,
MSTRG.15617.3) from the dataset GSE110114 of query length 827 amino acid (AA)
showed 100% identity with isoform-2 of RHBDF2 (accession id NP_001005498.2), i.e.,
length 827 AA exactly matching the query length, and E-value 0. Similarly, following

Masood et al. (2022), PeerJ, DOI 10.7717/peerj.14124 5/20

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= GSE110114
http://www.ncbi.nlm.nih.gov/nuccore/NP_001005498.2
http://dx.doi.org/10.7717/peerj.14124


MSTRG labelled transcripts fulfilled the above mentioned criteria: the transcripts
(MSTRG.20860.1, MSTRG.20860.2, MSTRG.20860.3, MSTRG.20860.4) from the
dataset GSE69240, the transcripts (MSTRG.17267.4 and MSTRG.17267.5) from the
dataset GSE52194, the transcripts (MSTRG.17431.2, MSTRG.17431.3, MSTRG.17431.4,
MSTRG.17431.5, MSTRG.17431.8, MSTRG.17431.9, MSTRG.17431.10) from the dataset
GSE45419, the transcript (MSTRG.15555.1) from the dataset GSE130660, the transcripts
(MSTRG.19489.1,MSTRG.19489.3, MSTRG.19489.4, MSTRG.19489.5, MSTRG.19489.8)
from the dataset GSE51124, the transcripts (MSTRG.22199.1, MSTRG.22199.5,
MSTRG.22199.7, MSTRG.22199.9) from the dataset GSE148991. These transcripts were
further selected for analysis also shown in Table 1.

Similarly, the following showed 100% identity with isoform-1 of RHBDF2 (accession
id NP_078875.4). From the dataset GSE52194, the transcript (MSTRG.17267.1), from the
dataset GSE45419, the transcripts (MSTRG.17431.1, MSTRG.17431.13), from the dataset
GSE148991, the transcripts (MSTRG.22199.2, MSTRG.22199.10) These transcripts were
further selected for analysis also shown in Table 2.

Cross-validation of BLASTp hit sequences
The MSTRGs transcripts showed 100% identity and similarity match hit with NCBI
sequences using BLASTp. The NCBI protein sequence database sources are RefSeq and
Genbank mainly. ENSEMBL gene sets are derived from multiple sources, partly from
RefSeq, partly from uniport and partly from Havana annotation. Although, as stated
above, the criteria have been set for matching query length using ENSEMBL annotated
transcripts, it was essential to find whether a transcript from ENSEMBL closely matches the
transcript from BLASTp hit. To cross-validate the ENSEMBL annotated sequences to the
corresponding BLASTp annotated sequences, multiple sequence alignment was performed
via CLUSTAL. The FASTA sequences were extracted from the NCBI for accession id
(NP_001005498.2 and NP_078875.4) corresponding to selected MSTRG transcripts. The
alignment showed 100% similarity between NP 001005498.2 and ENST0000591885 (cub)
and 100% similarity between NP 078875.4 and ENST0000313080 (canonical) shown in
File S1. Thus, selected MSTRGs were merged with annotated transcripts and used further
for calculations.

Isoform expression
Figure 1 shows the isoform expression via parameter isoform fraction of the two transcript
isoforms canonical and the cub across the two conditions, normal shown by green bars and
tumour shownby orange bars. Isoform fraction is calculated using the ratio between isoform
expression and gene expression values in each condition. The isoform expression in normal
versus primary tumour conditions (GSE52194 and GSE130660) of both the transcripts
(canonical and cub) significantly decreases. Whereas, for the dataset (GSE110114 and
GSE45419) where the comparison is between normal versus IDC conditions, the change
in the isoform expression is insignificant. Interestingly for the dataset (GSE69240) normal
versus DCIS, (GSE51124) normal versus grade 2 and grade 3, and (GSE148991) normal
versus CTCs, the change in isoform expression is statistically significant.
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Table 1 MSTRG labelled transcripts showing similarity match with cub isoform.

Dataset Similarity match with cub isoform

GSE52194 MSTRG.17267.4, MSTRG.17267.5
GSE130660 MSTRG.15555.1
GSE69240 MSTRG.20860.1, MSTRG.20860.2, MSTRG.20860.3,

MSTRG.20860.4
GSE110114 MSTRG.15617.1,MSTRG.15617.2,MSTRG.15617.3
GSE45419 MSTRG.17431.2, MSTRG.17431.3, MSTRG.17431.4, MSTRG.17431.5, MSTRG.17431.8

MSTRG.17431.9, MSTRG.17431.10
GSE51124 MSTRG.19489.1, MSTRG.19489.3, MSTRG.19489.4, MSTRG.19489.5,MSTRG.19489.8
GSE148991 MSTRG.22199.1, MSTRG.22199.5, MSTRG.22199.7, MSTRG.22199.9

Table 2 MSTRG labelled transcripts showing similarity match with canonical isoform.

Dataset Similarity match with
canonical isoform

GSE52194 MSTRG.17267.1
GSE45419 MSTRG.17431.1, MSTRG.17431.13
GSE148991 MSTRG.22199.2, MSTRG.22199.10
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Figure 1 Isoform fraction of canonical and cub transcript in normal and tumor condition. (A–H),
Normal condition is shown via green bars and tumor condition via orange bars. The normal versus pri-
mary tumor dataset shows that isoform fraction of both the isoforms canonical and cub are significantly
less in tumor state whereas in normal versus IDC the change in isoform fraction is insignificant. For nor-
mal versus DCIS, grade2 and grade3 isoform fraction of cub isoform in tumor state is significantly more
than canonical isoform. Interestingly, in normal versus CTCs cub isoform fraction start decreasing signifi-
cantly.

Full-size DOI: 10.7717/peerj.14124/fig-1
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Figure 2 Differential isoform fraction of canonical and cub transcript. The blue bar represent that
both the isoforms canonical and cub showed decreased usage. During DCIS (gray), grade2 (green), grade3
(dark blue) canonical isoform shows decreased usage whereas cub isoform shows increased usage. Dur-
ing IDC (yellow) although there is an opposite usage but unable to fulfill dIF cutoff. Interestingly, during
CTCs (brown bar) isoform expression is reverted where cub isoform shows decreased usage and canonical
isoform shows increased usage.

Full-size DOI: 10.7717/peerj.14124/fig-2

Differential isoform usage
Two parameters are considered for significant isoform switching, i.e., the statistical
significance and the effect size. Statistical significance is calculated via p-value, and it
should be <0.05. Whereas effect size tells the association between the two variables,
differential isoform fraction (dIF) measures the change in the isoform fractions of the pair
of isoforms across the condition. For isoform switching, the pair of isoforms in each dataset
should show an opposite increase or decrease in the isoform usage across the conditions. It
is calculated by taking the difference between the isoform fraction values. The cut-off for
dIF ≥ 0.05. Figure 2 shows that the isoform switches from canonical to the cub transcript
isoform at DCIS, grade2 and grade3, whereas it switches back to the canonical isoform at
CTCs.

Relative isoform fraction
The analyses were done on two primary tumour datasets and two IDC datasets, hence to
make a better inference, the isoform fraction (IF) values of the two primary tumour datasets
and two IDC datasets were merged by taking the average values. However, a meta-analysis
was not done as it has been seen in the literature that the merging approach also gives
comparable results after the list of DEGs has been obtained, in our case DTUs (Taminau
et al., 2014). Therefore, the final plot in Fig. 3 is constructed, showing the relative usage of
the isoform fractions of the two isoforms across conditions. Here, in normal vs primary
tumour, the relative change of the two isoforms across two conditions remains the same,
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Figure 3 The plot shows the relative isoform usage of the canonical and cub isoform in normal and tu-
mor conditions. The light green bar represents canonical isoform usage in normal conditions (Can-N),
and the dark green bar represents canonical isoform usage in tumor conditions (Can-T). In contrast, the
light orange bar represents cub isoform usage in normal condition (Cub-N) and the dark orange bar rep-
resents cub isoform usage in the tumor condition (Cub-T).

Full-size DOI: 10.7717/peerj.14124/fig-3

i.e., in normal conditions, canonical is 30%, and the cub is 70% similarly, in tumour
conditions, canonical is 30%, and the cub is 70%. However, in normal vs DCIS, it can be
seen that in normal conditions, the contribution of the canonical and cub transcript to the
overall gene expression is equal, i.e., 50%. In contrast, in tumour conditions, cub transcript
expression rises to 90% of the overall gene expression relative to the canonical transcript,
which is just 10%. Hence, it can be said that a switch in expression has occurred.

Surprisingly, the same trend can be seen in normal vs IDC, like normal vs primary
tumour. The relative change of the two isoforms across two conditions is the same, i.e.,
in normal conditions, canonical is 68%, and the cub is 32%. However, in normal vs
grade 2, in normal conditions, the relative usage of the canonical transcript is 22%, and
the cub transcript is 78%.In contrast, there is a drastic change in relative usage across
the conditions. Here, the cub transcript contributes 94% to the overall gene expression
compared to canonical, which is 6%. Similarly, in normal vs grade 3, in normal conditions,
the relative usage of the canonical transcript is 22%, and the cub transcript is 78%. In
comparison, in tumour conditions, the relative usage of the canonical transcript is 8%, and
the cub transcript is 92%. Finally, in normal vs CTCs, in normal conditions, the relative
usage of the canonical transcript is 9%, and the cub transcript is 91%. In comparison,
in tumour conditions, the relative usage of the canonical transcript is 28%, and the cub
transcript is 72%.
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Hence, it is clear from the plot that isoform switching from canonical to cub transcript
exists at DCIS, grade 2 and grade 3, while at CTCs, the transcript switches from cub to
canonical.

Finding interactive partners via correlation
Isoform switching was observed at DCIS, grade 2, grade 3 and CTCs, so it was essential
to find the interacting gene partners via correlation analysis. Correlation analysis
was performed at +0.7 to −0.7 cut-off to find the statistically significant correlated
gene partners. Interacting genes were then subjected to enrichment analysis via GSEA
(Subramanian et al., 2005). GSEA determines a defined set of genes and their biologically
meaningful interpretation across two conditions or phenotypes. Since our interacting
genes were already ranked according to the correlation criteria, the analysis was done
using pre-ranked GSEA. Pre-ranked GSEA was run on default parameters except for the
minimum gene set size parameter set to 5, i.e., gene sets smaller than five were excluded
from the analysis. First, the union of interacting gene partners and their correlation values
were taken as input for pre-ranked GSEA to improve the diverse genomic information;
secondly, canonical switched to the cub in all conditions. Since, during CTCs, the cub
isoform switches back to the canonical isoform in tumour conditions, a list of the ranked
gene for CTCs was made separately.

The biological and molecular processes corresponding to mitogen-activated protein
kinase (MAPK), G-protein coupled receptor (GPCR) and toll-like receptor-related
signalling pathways were most commonly observed among all the databases. Table 3
shows the GSEA results for the interacting partners for DCIS, G2 and G3 (Files S2 and S3)
and Table 4 shows for CTCs along with p-value and the number of the genes in an enriched
gene-set (Files S4 and S5).

Running leading edge analysis
Not all the members in a gene-set are particularly contributing to the biological pathway.
Therefore, extracting the core genes that contribute more to the enrichment score of the
significant biological pathways is often useful. The leading-edge subset in a gene set is those
genes that appear in the ranked list at or before the point at which enrichment score (ES)
reaches its maximum deviation from zero. After running GSEA, leading-edge analysis helps
to examine the genes in the leading-edge subsets of the enriched gene sets. A gene in many
leading-edge subsets is more likely to be of interest than a gene in only a few leading-edge
subsets. The subset of genes from the leading-edge analysis is shown in Fig. 4.

The heatmap shows the names of those gene subsets found mainly enriched in one or
all gene sets. For example, RELA, RELB, RRAS, GNA12, and PRKACA are the interesting
genes found in 2 out of 3 gene sets for DCIS, grade 2 and grade 3, whereas NFKB1 is the
only exciting gene found in two out of five gene sets for CTCs. Here, gene sets correspond
to the biological process that is enriched.

DISCUSSION
Breast cancer is the leading cause of oncologic mortality and morbidity among women
worldwide. Mostly all breast carcinomas appear to originate from the uncontrolled
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Table 3 Enriched biological processes for the most correlated genes with RHBDF2 during DCIS, grade
2 and grade 3.

Biological processes Size p-value

MAPK signaling pathway 38 0
G protein signaling pathways 12 0.008475
Toll-like receptor signaling pathway 6 0.00352

Table 4 Enriched biological processes for the most correlated genes with RHBDF2 during CTCs.

Biological processes Size p-value

MAPK signaling pathway 16 0.047
G protein signaling pathways 9 0.043
Toll-like receptor signaling pathway 5 0.006
Proteasome degradation 7 0.0026
Cytoplasmic ribosomal proteins 17 0.004
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Figure 4 The heat map shows the (clustered) genes in the leading-edge subsets.Heatmap (A) is for
DCIS, grade 2, and grade 3, whereas heatmap (B) is for CTCs. The range of colors (red, pink, light blue,
dark blue) shows the range of correlation values (high, moderate, low, lowest) in an enriched gene-set.

Full-size DOI: 10.7717/peerj.14124/fig-4

production of epithelial cells of breast tissues forming a lump, as shown in Fig. 5. When
normal epithelium begins to undergo malignant transition, the first progressive phase of
excessive proliferation known as hyperplasia occurs, followed by the appearance of aberrant
cells. At a later phase, known as carcinoma in situ, these cells acquire amalignant phenotype
but lack invasive properties due to the loss of cell motility. These cancer cells then grow into
a solid tumour, eventually causing new blood vessels to grow, undergoing angiogenesis. In
the final phase of progression, the cell undergoes complete morphological changes causing
the cells to break through basal membranes, thereby becoming invasive carcinoma (Allred,
Mohsin & Fuqua, 2001). Next, they invade through EMT (epithelial to mesenchymal
transition), a process called invasion, and enter the bloodstream (intravasation), leading
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Figure 5 Cancer initiation and progression. Steps in neoplastic growth during breast cancer.
Full-size DOI: 10.7717/peerj.14124/fig-5

to tumour metastasis. These circulating tumour cells are called CTCs (circulating tumour
cells) (Harbeck et al., 2019). This process is illustrated in Fig. 5 addition, studies have
shown that splicing is often pathologically altered, impacting cell behaviour during cancer
initiation and progression (Lu et al., 2015; Chabot & Shkreta, 2016).

More than 90% of the eukaryotic genes in mammals generate multiple isoforms, and
aberrant splicing has become the cause of many human diseases (Sorek, Shamir & Ast,
2004). Typically, coding genes have a transcript isoform expressed significantly higher than
other alternatively spliced transcript isoforms, often known as canonical isoforms.However,
under unfavourable circumstances like disease states, the dominance may completely shift
from canonical to the other alternative transcript isoforms (Di et al., 2018).

Several studies have reported the antagonistic role of iRhom2 in tumorigenesis and
other diseases, i.e., either they are involved in negative regulation of EGFR ligands via
the ERAD pathway or positively regulate EGFR ligands leading to the EGFR signalling
pathway. Furthermore, parallel studies suggest iRhom mediated cleavage of EGFR ligands
via TACE-dependent or TACE-independent pathway (Al-Salihi & Lang, 2020). Therefore,
it can be hypothesised that the controversial role may be attributed to more than one
active isoform of iRhom2 in performing alternative physiological activities in the cell. Our
study tested this hypothesis, and we report that isoform switches from canonical to the cub
transcript isoform at DCIS, grade 2, grade 3 and from cub to canonical transcript isoform
at CTCs during neoplastic growth. Gene enrichment and Pearson correlation showed that
during the isoform switching in DCIS, grade 2, grade 3, the biological processes leading
to TACE-dependent EGFR pathway were enriched, i.e., MAPK signalling pathway, GPCR
pathway and toll-like receptor pathways. Leading-edge analysis showed RELA, RELB,
RRAS, GNA12 and PRKACA were the gene found among 2/3 of the biological processes for
DCIS, grade 2 and grade 3. In contrast, NFKB1 was found in 2/5 of the biological processes
for CTCs.
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A tentative pathway is proposed to explain the role of iRhom2 from the analysis carried
out in Fig. 6. Previously it is known that TACE is synthesised in ER as an immature form
containing an inhibitory prodomain that prevents its proteolytic activity. iRhom2 forms
a complex with FRMD8 protein, which is its interacting protein. This complex, along
with enzyme furin, helps remove the prodomain and converts the TACE into an active
form in Golgi. The mature TACE traffics to the plasma membrane with iRhom2. The
binding of 14-3-3 proteins to the iRhom2 N-terminal domain weakens the interaction
with TACE at the cell surface. The TACE at the plasma membrane cleaves the EGFR
and TNF- α ligands via its sheddase activity, thereby mitigating the onset of signalling
and inflammatory pathways (Dulloo, Muliyil & Freeman, 2019). Without iRhoms, there
is no TACE maturation and no TACE activity. Mounting literature and evidence from
physiological and molecular data show that the alterations in TACE function are due to
evident mutations or deletions in N-terminal (Blaydon et al., 2012; Brooke et al., 2014; Siggs
et al., 2014; Li et al., 2015).

GPCR agonists activate ADAM metalloproteases (ADAM10, ADAM12, ADAM17)
to produce mature EGFR ligands leading to EFGR transactivation. It has been well
documented that EGFR transactivation via GPCR plays a crucial role in proliferation
and migration-associated physiological functions (Prenzel et al., 1999; Wang, 2016). The
GPCR signalling pathway begins with activating the receptors with suitable agonists (ligand
activation) and ends with the downstream regulation of various cellular processes such as
proliferation, migration, angiogenesis, differentiation, and survival. Activated via agonists
(lipids, proteins, amino acids, bio-amines, nucleotides, hormones, or neurotransmitters),
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GPCRs function by interactingwith intracellularG-proteins. They are formedby combining
three subunits, α,β and γ . They are identified via G α monomers and further grouped
into four families (G αs, G αi, G αq and G α12) (Smrcka, 2008; Senarath et al., 2018; Weis
& Kobilka, 2018; Wu & Gutkind, 2020).

PRKACA identified in this study helps in the phosphorylation of different enzymes
and proteins. cAMP-dependent phosphorylation of proteins is essential to many cellular
processes, including differentiation, proliferation, and apoptosis. Several mutations in this
gene promote various cancers (Moody et al., 2014). GNA12 is an α guanine nucleotide-
binding protein, and these heterotrimeric subunits link GPCRs to the nucleotide exchange
factors, which interact with Rho GTPases that regulate cell invasion in breast cancer
(Chia, Kumari & Casey, 2014). The research also states that the activation of GNA12
in BC stimulates the promotor activity via NF-κB binding of interleukins and matrix
metalloproteinase (MMP-2).

RELA, another correlated gene with iRhom2, is a protein-coding gene known as the
p65 transcription factor and NF-κB subunit. NF-κB is a transcription factor involved in
several biological processes like cell growth, inflammation, tumorigenesis, immunity and
apoptosis. It is ubiquitous, i.e., present in an inactive form in the cytoplasm by specific
inhibitors; upon degradation of these inhibitors, NF-κBmoves to the nucleus and regulates
specific genes. NF-κB comprises NF-κB1 or NF- κB2 bound to either subunit REL, RELA
or RELBChaturvedi et al. (2011). RELA-NF-κB1 appears to be themost abundant complex.
RELA is expressed in many cells like epithelial, neuronal, endothelial, and activation of this
gene is positively correlated with multiple cancers. Post-transcriptional modification like
methylation is associated with NF-κB1 in Breast cancer (Jeong, Oh & Choi, 2019). RELB
is found to be expressed at higher levels in Breast cancer in regulating the noncanonical
NF-κB pathway. It promotes cell proliferation and enhances cell motility by activating EMT
(Wang et al., 2020). These signaling pathways are initiated by the binding of extracellular
growth factors (ligands/ signaling molecules) to transmembrane receptor tyrosine kinases
(RTKs) such as EGFR. RTKs are linked indirectly to Ras via two proteins, GRB2 and
Sos. Ras cycles between an inactive GDP-bound form and active GTP-bound form. Ras
cycling requires the assistance of two proteins, GEF and GAP. The SH2 domain in GRB2,
an adapter protein, binds to specific phosphor-tyrosines in activated RTKs. The two SH3
domains in GRB2 then bind Sos, a guanine nucleotide exchange factor, thereby bringing
Sos close to membrane-bound Ras- GDP and activating its exchange function. Binding of
Sos to inactive Ras causes a large conformational change that permits release of GDP and
binding of GTP. RAS becomes active converting GDP to GTP leading to the activation of
RAF and MAPK signalling pathways (Cussac, Frech & Chardin, 1994).

RRAS correlated to the cub isoform of RHBDF2 is a small GTPase binding protein.
It is involved in angiogenesis, cell adhesion, neuronal regulation and vasculogenesis.
Recently, a negative association exists between activation of the RRAS gene and breast
cancer progression, and loss of activation of this gene leads to carcinogenesis (Song et
al., 2014). The Ras then leads to the activation of RAF and MAPK signaling pathway.
MAPK signaling pathway then phosphorylates the iRhom2 N-terminal domain. iRhom2
binding with ADAM17 controls several aspects of its activity, including stimulated shedding
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activity on the cell surface. ADAM17 shedding stimuli triggers MAP kinase-dependent
phosphorylation of iRhom2 N terminal cytoplasmic tail. The regulation of sheddase
activity at the cell surface is controlled via several stimulatory agents like G protein-coupled
receptors, toll-like receptors and phorbol esters (Cavadas et al., 2017;Bleibaum et al., 2019).
iRhom2 does not control the trafficking to the cell surface; rather, phosphorylated iRhom2
controls the rapid stimulation of TACE activity (Lee, Nam & Choi, 2016). Another study
showed that GPCR in histamine agonists triggers the TACE-dependent release of EGFR
ligands like TGF α and amphiregulin in an iRhom2 phosphorylation-dependent manner
(Grieve et al., 2017).

Thus, it can be anticipated that during DCIS, grade 2 and grade 3, the isoform switches
from canonical to cub isoform where the cells need to proliferate cancer growth via EGFR
signalling pathway and the pathway is upregulated by the indirect activation of TACE by
GPCR agonists. In contrast, this phenomenon decreases when cells undergo metastases,
where the primary task is invasion, and the isoform switches back to canonical, as observed
during CTCs.

CONCLUSIONS
In our study, pathways leading to TACE-dependent EGFR signalling pathways were more
observant; specifically, MAPK signalling pathways, GPCR signalling pathways, and toll-like
receptor pathways in DCIS, grade 2 and grade 3. However, no direct relationship was found
with EGFR or ERAD for iRhom2 or its interacting partners. Nevertheless, it is noteworthy
that during CTCs, the cub isoform switches back to the canonical isoform. Furthermore,
in addition to the processes mentioned above, the proteasomal degradation pathway and
cytoplasmic ribosomal protein pathways were significantly enriched. Therefore, it could be
inferred that both the isoforms have separate physiological roles during tumorigenesis.
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