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ABSTRACT
Defensive traits exhibited by plants vary widely across populations. Heritable
phenotypic differentiation is likely to be produced by genetic drift and spatially
restricted gene flow between populations. However, spatially variable selection
exerted by herbivores may also give rise to differences among populations. To ex-
plore to what extent these factors promote the among-population differentiation of
plant resistance of 13 populations of Datura stramonium, we compared the degree
of phenotypic differentiation (PST) of leaf resistance traits (trichome density, at-
ropine and scopolamine concentration) against neutral genetic differentiation (FST)
at microsatellite loci. Results showed that phenotypic differentiation in defensive
traits among-population is not consistent with divergence promoted by genetic
drift and restricted gene flow alone. Phenotypic differentiation in scopolamine con-
centration was significantly higher than FST across the range of trait heritability
values. In contrast, genetic differentiation in trichome density was different from FST

only when heritability was very low. On the other hand, differentiation in atropine
concentration differed from the neutral expectation when heritability was less than or
equal to 0.3. In addition, we did not find a significant correlation between pair-wise
neutral genetic distances and distances of phenotypic resistance traits. Our findings
reinforce previous evidence that divergent natural selection exerted by herbivores
has promoted the among-population phenotypic differentiation of defensive traits in
D. stramonium.

Subjects Ecology, Evolutionary Studies
Keywords Adaptive divergence, Tropane alkaloids, Leaf trichomes, Plant defense, PST–FST
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INTRODUCTION
Most species consist of a series of populations that are often phenotypically differenti-

ated (Rice & Jain, 1985; Thompson, 2005). Heritable phenotypic differentiation in multiple
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traits can be effectively produced by processes like genetic drift, mutation, founder effects

or population isolation (Gomulkiewicz et al., 2007). However, phenotypic differentiation

in traits that contribute to individuals’ fitness may also have a spatial structure caused by

varying selective regimes exerted by biotic and/or abiotic factors (Holsinger & Weir, 2009).

Furthermore, stabilizing selection may promote phenotypic similarity among populations

(Merilä & Crnokrak, 2001). Elucidating to what extent these processes promote character

differentiation among populations is central if we are to fully understand the prevalence

of among-population variation in the wild (Lynch, 1990; Althoff & Thompson, 1999;

Criscione, Blouin & Sunnucks, 2006; Kelly, 2006; Gomulkiewicz et al., 2007). Here we aimed

to determine if among-population variation in traits that confer resistance to herbivores in

the annual plant Datura stramonium is consistent with a scenario of varying selection or

genetic drift and restricted gene flow.

To infer whether natural selection explains the observed differentiation among

populations in putatively adaptive quantitative characters (QST), it is necessary to contrast

this hypothesis against a null model of differentiation at adaptively neutral loci (FST; Spitze,

1993; Martin, Chapuis & Goudet, 2008; Whitlock, 2008). The detection of a significant

difference between the estimators of differentiation, QST and FST, may imply adaptive

differentiation among populations. The comparison of the differentiation indices has

three possible outcomes each with a unique interpretation (see Table 1 in Merilä &

Crnokrak, 2001). When QST and FST are statistically equal, this implies that the degree

of differentiation in quantitative traits could be produced by drift alone. This does not

necessarily imply that genetic drift produced the observed phenotypic differentiation

but that the roles of selection and drift are indiscernible. When QST < FST, it means

that natural selection might be favoring the same phenotype across populations. Finally,

when QST significantly exceeds FST, it means that directional selection is favoring different

phenotypes in different populations. When QST and FST are equal, it is expected that

both indices, estimated among pairs of populations of the same species, will be positively

correlated, implying isolation by distance, restricted gene flow and genetic drift (although a

partial role of selection could be involved also), or high recombination between molecular

neutral marker loci and quantitative trait loci (Merilä & Crnokrak, 2001). In contrast, no

correlation between both indices of differentiation among local populations may implicate

a role of natural selection (see ‘Discussion’).

In order to explore the signals of non-neutral evolution in quantitative traits it is

necessary to estimate QST and FST. FST is commonly estimated by analyzing variance in

allele frequency (Wright, 1951) at molecular markers, like microsatellite loci. On the other

hand, to estimate QST it is necessary to know the amount of additive genetic variance

of quantitative traits in many local populations (Spitze, 1993). However, accomplishing

the latter objective is not feasible for a large number of populations because it requires

estimating the breeding values of genotypes (families) for a suite of phenotypic characters

in each local population. PST (degree of phenotypic differentiation index) is an analogous

index to QST (Leinonen et al., 2006; Leinonen et al., 2013), useful for exploring if

phenotypic differentiation among populations exceeds genetic differentiation in neutral

Castillo et al. (2015), PeerJ, DOI 10.7717/peerj.1411 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1411


markers (Merilä & Crnokrak, 2001). The use of PST instead of QST is justified when

estimates of additive genetic variance are not available (Leinonen et al., 2006; Leinonen

et al., 2013; Lehtonen et al., 2009). Estimation of additive genetic variation in traits makes

it necessary to obtain the phenotypic covariance between relatives (families) with an

experimental common garden and/or the use of reciprocal transplant experiments to rule

out the environmental effects on phenotypes. Hence, PST can be used as a surrogate of QST.

Resistance traits exhibited by plants (i.e., traits that prevent/reduce damage by natural

enemies) vary widely across populations (Núñez-Farfán, Fornoni & Valverde, 2007; Züst

et al., 2012). Selection exerted by herbivores is a major force driving the evolution of

plants’ resistance traits (Rausher, 2001; Anderson & Mitchell-Olds, 2011; Züst et al., 2012).

Thus, among-population differentiation in resistance traits is likely to be produced by

spatial variation in the local selective regimes exerted by herbivores. Such spatially variable

selection can be generated by among-population variation in the abundance, species

composition, feeding styles, and degree of dietary specialization of herbivores to their host

plants (Falconer & Mackay, 1996; Charlesworth, Nordborg & Charlesworth, 1997; Parchman

& Benkman, 2002; Arany et al., 2008; Hare, 2012). Datura stramonium (Solanaceae)

provides an optimal system for studying among-population differentiation in resistance

traits. Because of its wide distribution (Mexico, Canada, United States, and Europe),

D. stramonium is exposed to different environmental conditions and to a wide diversity

of herbivore species (Weaver & Warwick, 1984; Valverde, Fornoni & Núñez-Farfán, 2001;

Cuevas-Arias, Vargas & Rodŕıguez, 2008). Resistance against herbivores in D. stramonium

includes leaf trichomes (Valverde, Fornoni & Núñez-Farfán, 2001; Kariñho-Betancourt &

Núñez-Farfán, 2015) and tropane alkaloids (Shonle & Bergelson, 2000), of which atropine,

hyosciamine and scopolamine are the most abundant (Parr et al., 1990; Kariñho-Betancourt

et al., 2015). These secondary metabolites affect the activity of the neurotransmitter

acetylcholine (Roddick, 1991) with negative effects on insects and vertebrate herbivores

(Hsiao & Fraenkel, 1968; Krug & Proksch, 1993; Wink, 1993; Shonle, 1999; Mithöfer &

Boland, 2012). Recent studies have found ample geographic variation in leaf trichome

density and atropine and scopolamine concentration in central Mexico (Castillo et

al., 2013; Castillo et al., 2014). However, it is unclear if selection by herbivores or

neutral processes, among other factors, can account for the observed among-population

differentiation in these resistance traits.

Here, we assessed to what extent population differentiation in resistance leaf traits

(trichome density, atropine and scopolamine concentrations) of D. stramonium is

accounted by neutral processes (genetic drift and restricted gene flow) or divergent natural

selection. To do so, we compared the degree of phenotypic differentiation of resistance

traits by means of PST estimated for the whole range of values of heritability, with the

neutral expectation set by allelic divergence at microsatellite loci (FST). We expect that PST

of each resistance character would be significantly higher than the index of population

differentiation in neutral molecular markers (FST), since previous studies have detected

contrasting selection exerted by herbivores on the three characters.
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Figure 1 Sampled populations of Datura stramonium in central Mexico (see Table 1).

METHODS
Study system
Datura stramonium L. (Solanaceae) is an annual herb commonly found in roadsides,

cultivated areas and disturbed environments in Mexico, the United States, Canada, and

Europe (Valverde, Fornoni & Núñez-Farfán, 2001; Weaver, Dirks & Warwick, 1985; Van

Kleunen, Markus & Steven, 2007). In Mexico, leaves of D. stramonium are consumed by

a dietary specialist herbivore, the chrysomelid Lema trilineata (Nuñez-Farfan & Dirzo,

1994), the dietary oligophagous Epitrix parvula (Chrysomelidae), which also feeds from

other members of the Solanaceae family (Glass, 1940), and by the dietary generalist

grasshopper Sphenarium purpurascens (Nuñez-Farfan & Dirzo, 1994). Datura stramonium

features leaf trichomes and tropane alkaloids (atropine and scopolamine) as resistance

traits against herbivory. These traits have shown heritable basis (Shonle & Bergelson, 2000;

Valverde, Fornoni & Núñez-Farfán, 2001; Kariñho-Betancourt & Núñez-Farfán, 2015), and

are under selection by dietary specialist and generalist herbivores (Castillo et al., 2014).

Fieldwork
During August–September 2007 we sampled 13 natural populations of D. stramonium

in central Mexico (Fig. 1). Selected populations inhabit a wide range of habitat types.

The geographic location and habitat characteristics are shown in Table 1. From each

population we sampled 30 randomly chosen individual plants.
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Table 1 Vegetation type, latitude, longitude, altitude and population means of leaf trichome density, and atropine and scopolamine concentra-
tions of 13 populations of Datura stramonium in central Mexico.

Vegetation
type

Latitude Longitude Altitude
(m a.s.l.)

Trichome density
(2.5 × mm2)

Atropine
(mg/g)

Scopolamine
(mg/g)

1. Acatzingo DS −97.78 19.32 2,160 8.99 0.295 0.159

2. Atlixco DS −98.42 18.98 1,840 9.04 0.691 0.577

3. Esperanza DS −97.37 18.85 2,278 9.57 0.535 0.542

4. Patria Nueva DS −98.96 20.38 2,040 12.62 0.317 0.367

5. Taxco TDF −99.66 18.5 1,582 9.02 0.957 0.266

6. Teotihuacán DS −98.86 19.68 2,294 8.73 0.437 0.353

7. Ticumán TDF −99.2 18.86 1,210 6.6 0.938 1.889

8. Tlaxiaca DS −98.86 20.08 2,340 9.36 0.288 0.458

9. Tula DS −99.35 20.05 2,020 6.06 3.129 2.804

10. Tzin Tzun Tzan POF −101.58 19.63 2,050 4.29 0.994 2.995

11. Valsequillo DS −98.11 18.91 2,209 6.09 1.767 0.044

12. Xalmimilulco POF −98.38 19.2 1,200 4.66 2.688 2.513

13. Zirahuén POF −101.91 19.43 2,174 4.91 0.618 1.968

Notes.
DS, desert shrub; POF, Pine–Oak forest; TDF, tropical deciduous forest.

Resistance traits quantification
Following Valverde, Fornoni & Núñez-Farfán (2001), we estimated leaf trichome density

as the total number of trichomes in an observation field of 2.5 mm2 located in the central

basal region of the adaxial side of the leaf, using a stereoscopic microscope. Then we

averaged the trichome density per plant from a random sample of 20 fully expanded leaves.

We also quantified the concentration of atropine and scopolamine (two major alkaloids in

D. stramonium) from a sample of 20 leaves per plant by means of High Precision Liquid

Chromatography (HPLC). Details of the extraction method and HPLC conditions can be

found elsewhere (see Castillo et al., 2013).

Data analysis
We estimated the neutral genetic differentiation among populations of D. stramonium

using FST values obtained from five nuclear microsatellite markers designed specifically

for D. stramonium as reported by Andraca-Gómez (2009). FST values were calculated using

FSTAT 2.9.3.1 (Goudet, 2001) employing approximately 30 individuals per population.

In addition, we assessed the statistical power of our five microsatellites by means of

Wright–Fisher simulations as implemented in the program PowSim (Ryman & Palm,

2006). The program requires a divergence time and effective populations sizes so we tested

a number of feasible combinations.

Phenotypic divergence in resistance traits
We used the degree of among-population phenotypic divergence (PST) to explore if

restricted gene flow and genetic drift (FST) alone can account for this differentiation or

if there is a signal of differentiation promoted by divergent selection on resistance traits
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(Leinonen et al., 2006; Pujol et al., 2008). We estimated PST as

PST =
σ 2

GB

σ 2
GB + 2(h2 • σ 2

GW)
,

where σ 2
GB is the variance among populations, σ 2

GW is the variance within population, and

h2 is the trait heritability (Leinonen et al., 2006). Since this is not feasible for a large number

of populations we used an approximation by PST.

In order to obtain PST values for resistance traits, we simulated the whole range of

heritabilities (0 ≤ h2
≤ 1). To estimate PST values we fitted a linear model for each

resistance trait, under the assumption that the distribution of resistance traits was normally

distributed. The population term was considered as a random effect. To test the hypothesis

that PST is higher than FST, a Monte Carlo test was carried out, approaching a sample

of 10,000 deviates from both PST and FST by means of their estimated error. PST error

was estimated from the likelihood errors of its components (variances among- and

within-populations), while FST error was obtained by bootstrapping (Goudet, 2001).

The 10,000 random deviates of FST and PST were compared and the p-value was obtained

as the proportion of comparisons in which the FST was equal or higher than the PST (null

hypothesis).

We further evaluated the pair-wise Pearson’s correlation between FST and PST for

all populations. Neutral marker variation can be used as a neutral expectation against

which the phenotypic divergence of traits can be compared (Gomulkiewicz et al., 2007).

If resistance phenotypic differentiation between populations (PST) is the result of neutral

processes rather than selection, differentiation among populations in these traits should

correlate positively with differentiation in selectively neutral markers (FST) (Merilä &

Crnokrak, 2001; Gomulkiewicz et al., 2007; Lehtonen et al., 2009; Leinonen et al., 2013).

We evaluated the pair-wise correlation between the FST and PST for different scenarios of

heritability (h2
= 0.1, 0.25, 0.5, 0.75 and 1.0). Statistical analyses were performed using

JMP® version 9.0.0 (SAS Institute, Cary, NC, 1989–2007).

RESULTS
Among-population variation in resistance traits
A multivariate analysis of variance (MANOVA) detected significant multivariate

differences in the studied resistance traits of 13 populations of D. stramonium (Wilks’

λ = 0.091, F36,331.64 = 11.51, P < 0.0001). After the subsequent univariate ANOVAs

were applied, we found significant differences in trichome density (F12,126 = 5.10,

P < 0.0001), atropine (F12,126 = 7.85, P < 0.0001), and scopolamine concentration

(F12,126 = 23.33, P < 0.0001). Mean leaf trichome density and mean atropine and

scopolamine concentration per population are shown in Fig. 2 and Table 1.

Genetic differentiation between populations of D. stramonium
Genetic differentiation as estimated by differences in allele frequency at microsatellite loci

was moderate. FST was 0.228 (S.E. = 0.039), which is well above the minimum detectable

value (FST = 0.01) that our sample and markers allowed with a statistical power of 0.94.
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Figure 2 Among-populations variation in leaf trichome density (A), and atropine and scopolamine
concentration (B) in 13 populations of Datura stramonium in central Mexico. Bars represent average
value +1 SE.

Phenotypic divergence in resistance traits
Comparison of phenotypic (PST) and neutral genetic marker divergence (FST) showed

that PST values for scopolamine concentration were significantly higher than the FST in all

values of h2 (Fig. 3). However, PST for atropine concentration was significantly higher than

FST when 0 ≥ h2
≤ 0.3 (Fig. 2), whereas PST of leaf trichome density significantly exceeded

FST only when h2
≤ 0.1 (Fig. 2).
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Figure 3 PST values of putative defensive traits of Datura stramonium as a function of their genetic
variance (h2) among populations. Confidence intervals of 50% and 95% are indicated by bars and lines,
respectively. * Represents overall PST values that differ significantly from FST (the black bar at the right
end) after a Monte Carlo test (10,000 deviates from both PST and FST; see ‘Methods’).

Table 2 Correlation (r) between pair-wise PST of three resistance traits and pair-wise FST for all
populations of Datura stramonium, under different scenarios of heritability (h2 = 0.1, 0.25, 0.5, 0.75
and 1.0).

Resistance trait r

h2 = 0.1 h2 = 0.25 h2 = 0.5 h2 = 0.75 h2 = 1.0

Atropine −0.0644 −0.0671 −0.0655 −0.0642 −0.0637

Scopolamine 0.0264 0.0344 0.0348 0.0316 0.0278

Trichome density −0.135 −0.1218 −0.1053 −0.0939 −0.0855

Pair-wise correlation between FST and PST

We found no significant correlations between pair-wise FST and PST values among

populations for any of the three resistance characters (Table 2). Most correlation values

were small (i.e.,−0.135 ≤ r ≤ 0.034).

DISCUSSION
Results showed that phenotypic differentiation in resistance traits among population of

D. stramonium is not consistent with divergence promoted by genetic drift and restricted

gene flow alone (Pujol et al., 2008; Lehtonen et al., 2009). Phenotypic differentiation in

scopolamine concentration was significantly higher than FST across the range of h2.

In contrast, genetic differentiation in trichome density was different from FST only

when heritability was very low, and most phenotypic variation could be related to

major environmental factors, like annual mean precipitation and temperature. Likewise,
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differentiation in atropine concentration seems to differ from the neutral expectation only

at low values of h2. Furthermore, we did not find a correlation between pair-wise neutral

genetic distances and phenotypic distances of any of the three resistance traits. Taken

together, results suggest that natural selection could be involved in phenotypic divergence

on resistance traits among populations of D. stramonium.

Results indicate that populations of D. stramonium are differentiated in both pheno-

typic and neutral molecular markers. We found a moderate amount of differentiation

among populations at microsatellite loci (FST = 0.228). Using this FST value, the indirect

estimate of gene flow (Nm) is 0.846, suggesting restricted gene flow among populations

of D. stramonium, and not sufficient to prevent differentiation by genetic drift (Hedrick,

2000). This contrasts with differentiation at neutral loci reported for other organisms

where FST is generally lower than 0.228 (but see Merilä & Crnokrak, 2001). PST index

values statistically not different from this value of FST imply that quantitative phenotypic

characters follow a pattern of drift-induced divergence (Leinonen et al., 2006). Here,

we found that the PST index of scopolamine was significantly higher than FST for all

values of heritability considered (cf. Fig. 3). This result strongly suggests that phenotypic

differentiation among populations in scopolamine concentration is congruent with a

scenario of divergent selection exerted by herbivores among populations. However, PST

of atropine and leaf trichome density was higher than FST only when heritability was

≤0.3 and ≤0.1, respectively. This implies that the proportion of genetic variance among

populations from total genetic variance is high for these characters (Lehtonen et al., 2009;

Leinonen et al., 2013). When genetic variance within populations is low, as implied by

low values of heritability, there is a high opportunity to detect a significant PST given

that the among-population genetic variance component has a relevant weight in the total

phenotypic variance. Inversely, when heritability is high, the within-population genetic

component accounts for a high fraction of total genetic variance rendering PST very small.

These considerations may explain why PST of trichome density and atropine are different

from FST only at very low heritability.

Although PST is used as an analog of QST (genetic differentiation in quantitative char-

acters) when it is not possible to obtain the amount of additive genetic variation (variance

among families, within populations) (Merilä & Crnokrak, 2001), conclusions derived from

these estimations must be interpreted with caution since this index can be biased by all

environmental variation due to abiotic conditions among localities as well as environ-

mental deviations within populations, and non-additive genetic variation (v.gr., epistatic

interactions, dominance, linkage disequilibrium), among others (Pujol et al., 2008). Thus

is relevant to ask whether PST index obtained for the resistance traits in D. stramonium

posses genetic variance. Datura stramonium displays a great variation among populations

in trichome density and tropane alkaloids’ concentration in central Mexico (Castillo et

al., 2013). Phenotypic variation in alkaloid concentration, like other quantitative traits,

is governed by environmental physical factors and genetic variation (Castillo et al., 2013).

Previous studies in this species have detected narrow-sense h2 of general resistance to

herbivores of 0.49 and 0.41 in two natural populations of D. stramonium (Fornoni, Valverde

& Núñez-Farfán, 2003; note that general resistance may include physical and chemical

Castillo et al. (2015), PeerJ, DOI 10.7717/peerj.1411 9/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.1411


defenses). In addition, broad-sense h2 of general resistance and trichome density has been

estimated in 0.25 and 0.64, respectively (Kariñho-Betancourt & Núñez-Farfán, 2015). Also,

genetic variance in trichome density among-populations (Valverde, Fornoni & Núñez-

Farfán, 2001) and general resistance (Valverde, Fornoni & Núñez-Farfán, 2003; Carmona

& Fornoni, 2013) has been detected in D. stramonium. Finally, genetic variance in alkaloid

concentration (hyosciamine and scopolamine, and their ratio) has been detected previ-

ously by Shonle & Bergelson (2000). Thus, there is ample evidence of genetic basis of pheno-

typic variation in resistance of D. stramonium to support our estimation of PST values.

Because a PST index higher than FST means that divergent selection might be involved in

population differentiation of resistance traits, at least for scopolamine, it is relevant to ask

to what extent natural selection by herbivores is responsible for population differentiation

in this character. In D. stramonium, several lines of evidence strongly suggest that

differentiation in resistance is accounted by for herbivores. Differential and contrasting

selection gradients on resistance to herbivores were detected between two populations

of this species in a reciprocal transplant experiment (Fornoni, Valverde & Núñez-Farfán,

2004). Likewise, Shonle & Bergelson (2000) detected stabilizing selection on hyosciamine

and directional selection to reduce scopolamine concentration in D. stramonium. In a

recent study of eight populations of D. stramonium, Castillo et al. (2014) found that

atropine is selected against by the dietary specialist herbivores Epitrix parvula (in one

population) and Lema daturaphila (in two populations). In contrast, scopolamine was

positively selected in one population where the specialist Lema daturaphila was the main

herbivore, whereas trichome density was positively selected in two populations (one with

L. daturaphila and one with the generalist grasshopper Sphenarium puprurascens), and

negatively selected in one population with the E. parvula (Castillo et al., 2014). Thus,

although genetic drift and restricted gene flow could produce phenotypic variation in

plant resistance among populations, the available evidence of spatially variable selection

on resistance traits in D. stramonium and data presented here suggests that population

differentiation can be potentially adaptive.

Furthermore, we did not detect any significant correlation between the pair-wise

PST and FST among population across the whole range of heritability, suggesting

that differentiation at quantitative traits and neutral molecular loci is decoupled.

Theoretically, if the pace of differentiation is dictated by genetic drift only, it is expected

that differentiation indices will be perfectly and positively correlated (r = 1, PST = FST;

Fig. 4). If the correlation is positive but lower than 1, then genetic drift has a role but does

not explain all differentiation in quantitative traits. In the region above the diagonal in

Fig. 4, where PST > FST, any positive pair-wise correlation across populations, depicts

a scenario where differentiation in quantitative traits exceeds the neutral expectation

and suggests divergent selection (Fig. 4). On the other hand, in the region below the

diagonal, where PST < FST, any positive pair-wise correlation across populations, portrays

a scenario where differentiation at neutral molecular loci surpasses that of quantitative

characters suggesting a strong effect of genetic drift; however at moderate values of FST

stabilizing selection might be favoring the same phenotype across populations (Fig. 4).

When PST > FST and are uncorrelated (dotted line in Fig. 4) it shows another interesting
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Figure 4 Theoretical relationship between pair-wise PST and pair-wise FST across populations of a
species. The solid diagonal line indicates a perfect and positive correlation between both indices (r = 1,
PST = FST). Above the diagonal, blue points are pairs of populations where PST > FST. Below the
diagonal, orange points are pairs of populations where PST < FST. Dotted line indicates one possible
scenario where both indices are uncorrelated. At moderate values of FST stabilizing selection might be
promoting low phenotypic differentiation between a given pair of populations (big orange point).

scenario, as found here. This implies that genetic drift and restricted gene flow alone

cannot explain (Pujol et al., 2008) the pattern of differentiation among populations in

resistance traits in D. stramonium. Under this scenario there is opportunity for divergence

driven by selection in resistance traits. Our results suggest that the higher PST than FST

for scopolamine, together with spatial variation in resistance traits and the existence of a

selection mosaic detected previously by Castillo et al. (2014) are consistent with outcomes

predicted by the geographic mosaic of coevolution (Thompson, 2005).
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