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A major challenge in ecology is understanding what enables certain species to persist,
while others decline, in response to environmental change. Trait-based comparative
analyses are useful in this regard as they can help identify the key drivers of decline, and
highlight traits that promote resistance to change. Despite their popularity trait-based
comparative analyses tend to focus on explaining variation in range shift and extinction
risk, seldom being applied to actual measures of species decline. Furthermore they have
tended to be taxonomically restricted to birds, mammals, plants and butterflies. Here we
utilise a novel approach to estimate trends for the Odonata in Britain and Ireland, and
examine trait correlates of these trends using a recently available trait dataset. We found
the dragonfly fauna in Britain and Ireland has undergone considerable change between
1980 and 2012, with 33 and 39% of species showing significant declines and increases
respectively. Distribution type was the key trait associated with these trends, where
southern species showed significantly higher trends than widespread and northern
species. We believe this reflects the impact of climate change as the increased ambient
temperature in Britain and Ireland better suits species that are adapted to warmer
conditions. We conclude that northern species are particularly vulnerable to climate
change due to the combined pressures of a decline in climate suitability, and competition
from species that were previously limited by lower thermal tolerance.
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Abstract

A major challenge in ecology is understanding what enables certain species to 

persist, while others decline, in response to environmental change.  Trait-based 

comparative analyses are useful in this regard as they can help identify the key 

drivers of decline, and highlight traits that promote resistance to change.  Despite 

their popularity trait-based comparative analyses tend to focus on explaining 

variation in range shift and extinction risk, seldom being applied to actual measures 

of species decline.  Furthermore they have tended to be taxonomically restricted to 

birds, mammals, plants and butterflies.  Here we utilise a novel approach to 

estimate trends for the Odonata in Britain and Ireland, and examine trait correlates 

of these trends using a recently available trait dataset.  We found the dragonfly 

fauna in Britain and Ireland has undergone considerable change between 1980 and 
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2012, with 33 and 39% of species showing significant declines and increases 

respectively.  Distribution type was the key trait associated with these trends, where 

southern species showed significantly higher trends than widespread and northern 

species.  We believe this reflects the impact of climate change as the increased 

ambient temperature in Britain and Ireland better suits species that are adapted to 

warmer conditions.  We conclude that northern species are particularly vulnerable to

climate change due to the combined pressures of a decline in climate suitability, and

competition from species that were previously limited by lower thermal tolerance.

Introduction

Defaunation, the loss of species and populations (Dirzo et al., 2014), is occurring at 

an alarming rate with recent estimates suggesting that the current extinction rate is 

1000 times that of the historical natural background rate (De Vos et al., 2014).  

These declines are driven by environmental change, particularly habitat loss and 

climate change, and can be measured in a number of ways, e.g. changes in 

distribution and abundance (Thomas et al., 2004; Biesmeijer et al., 2006; Butchart 

et al., 2010; Chen et al., 2011).  Variation in species responses to environmental 

change has been found across broad taxonomic groups (Hickling et al., 2006; Angert

et al., 2011) but also within taxonomic groups, i.e. between species within an order 

(Hickling et al., 2005).  A major challenge in conservation ecology is to gain a better 

understanding of this interspecific variation in response to environmental change, 

i.e. what enables certain species to persist while others decline?   

Species traits play an important role in determining species’ ability to resist 

environmental change.  For example, several studies have shown that ecological 

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

PeerJ reviewing PDF | (v2014:11:3297:0:0:NEW 30 Nov 2014)

Reviewing Manuscript



generalists out-perform specialists (Walker & Preston, 2006; Ozinga et al., 2012; 

Newbold et al., 2013).  Such comparative trait-based analyses are popular, as the 

models help to identify the main drivers of change and allow the prediction of future 

biodiversity changes based on environmental forecasts (Fisher & Owens, 2004; 

Cardillo et al., 2006).  Previous comparative trait analyses have tended to focus on 

explaining variation in range shift (Angert et al., 2011; Mattila et al., 2011; Grewe et 

al., 2012) and extinction risk (Purvis et al., 2000; Koh et al., 2004; Cardillo et al., 

2008; Cooper et al., 2008; Fritz et al., 2009).  Despite its popularity, the comparative

trait-based approach has seldom been applied to direct measures of species’ 

changing status (i.e. rates of decline or increase).  Currently data on such measures 

of decline are rare, particularly at large (e.g. national) scales and across multiple 

species.  With the increase in public participation in biological recording, the 

availability of large-scale distribution datasets has increased (Silvertown, 2009).  

Such data tend to be collected without systematic protocols and thus contain many 

forms of sampling bias and noise, making it hard to detect genuine signals of 

change (Tingley & Beissinger, 2009; Hassall & Thompson, 2010; Isaac et al., 2014b).

However, recent advances in analytical approaches have improved our ability to 

estimate reliable trends from these unstructured biological records (Isaac et al., 

2014b).  In this study we utilise these novel approaches to estimate trends for the 

Odonata in Britain and Ireland, and use species traits to test hypotheses for the 

interspecific variation in trends.

We chose to examine Odonata for a number of reasons.  Firstly, previous trait-based 

comparative analyses have tended to focus on birds, mammals, plants and 

butterflies.  Despite being highly species rich and their crucial role across 

ecosystems, the non-butterfly invertebrate fauna are comparatively poorly studied 
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(IUCN, 2001; Dirzo et al., 2014).  Secondly, Odonata are thought to be excellent 

bioindicators as they are sensitive to degradation of water ecosystems (Samways & 

Steytler, 1996; Sahlén & Ekestubbe, 2001; Lee Foote & Rice Hornung, 2005).  

Thirdly, they provide a valuable ecosystem service as they feed on many insect 

pests (Brooks & Lewington, 2007).  Finally, the publication of a new atlas (Cham et 

al., 2014) and trait datasets (Powney et al., 2014) for British Odonata together 

constitute some of the best quality data of any non-butterfly invertebrate group. 

Previous research based on Odonata occurrence data has focussed on the impact of 

climate change on phenology and distribution.  For example Hassall et al., (2007) 

discovered that emergence from overwintering had significantly advanced over the 

past 50 years, while Hickling et al., (2005) showed that the upper latitudinal margin 

shifted north between 1960 and 1995.  Outside Britain, Bush et al., (2014) used 

species distribution models (SDMs) to predict which Australian odonates were under 

threat from climate change. 

Several studies have utilised traits to explain variation in several aspects of Odonata

ecology, but typically focus on explaining variation in species response to climate 

change.  In terms of phenological advancement, Hassall et al., (2007) noted that 

spring species and those without egg diapause exhibited increased phenological 

shifts.  Angert et al (2011) examined trait correlates of range shift across multiple 

taxonomic groups, finding that exophytic Odonata species in Britain shifted further 

north, on average, than endophytic species.  These insights, combined with 

extensive knowledge about their natural history (Brooks & Lewington, 2007), form 
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the basis of seven competing hypotheses (outlined below) that aim at explain the 

interspecific variation in the distribution trends among British Odonata. 

All traits included in the analysis have been shown to affect species’ ability to 

respond to environmental change.  Habitat breadth is frequently related to species 

trends, where habitat generalists outperform specialists due to their greater ability 

to adapt to novel environmental conditions (Fisher & Owens, 2004; Menéndez et al., 

2006; Botts et al., 2012).  Ball-Damerow et al., (2014) found evidence of the 

widespread expansion of habitat generalists which has led to biotic homogenization 

in the dragonfly fauna of California and Nevada over the last century.  We test the 

hypothesis that Odonata in Britain and Ireland follow the patterns outlined above, 

with generalists out-performing specialists.  Dispersal ability affects species’ ability 

to respond to environmental pressures, with higher dispersal ability linked to an 

enhanced ability to respond (Thomas et al., 2001; Pöyry et al., 2011; Grewe et al., 

2012).  Using SDMs, Hof et al., (2012) found lentic (i.e. pond and lake dwelling) 

species had a greater ability to track changes in their climatic niche.  This was linked

to greater dispersal ability, which is essential given the ephemeral nature of their 

breeding sites (Hof et al., 2006).  We predict lentic species will have higher (more 

positive) trend estimates than lotic species as their increased dispersal ability 

enables them to persist during times of environmental change through the efficient 

relocation to newly suitable areas.  Geographic range size and body size are both 

frequently used as surrogates for a whole host of traits associated with ecological 

specialism and competitive ability (Gittleman, 1985; Gaston, 2003; Angert et al., 

2011).  We predict that widespread species and the larger, therefore more 

competitive species, are likely to show positive trends.  Climate warming has 

increased the suitability of the landscape to those species that were previously 
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limited by their lower thermal tolerance threshold (Devictor et al., 2008; 

Dingemanse & Kalkman, 2008; Bellard et al., 2012), therefore we predict that 

southerly distributed species will show the highest trend estimates.  An additional 

aspect of climate change that has been linked with trends in Odonata is the increase

in flood events in Britain.  Species which overwinter as larvae are particularly 

vulnerable to flooding as they can be swept away from ideal habitat areas to 

unsuitable regions in which they cannot persist (Cham et al., 2014).  Alternatively, 

floods may aid the dispersal of such species that overwinter as larvae and therefore 

we may expect to see positive trends for such species.  Finally we test the 

hypothesis that flight period will be positively related with species’ trend.  Grewe et 

al., (2012) argued that species with longer flight periods have increased dispersal 

ability, and therefore have a greater capacity to adapt in response to environmental 

change. 

Materials & Methods

Occurrence trends

Trends were estimated from Odonata distribution records in Britain and Ireland 

collected by the Dragonfly Recording Network and coordinated by the British 

Dragonfly Society.  Our analyses are based on 895,022 records of 38 native species 

collected between 1980 and 2012 where the recording date is known and the 

location was recorded to 1 km2 precision or better.  As these occurrence records 

were collected without a specific sampling design they contain a variety of bias 

which inhibit their use in estimating reliable trends.  For example, the number of 

records collected each year has increased dramatically over time (Cham et al., 
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2014), such that simply counting the number of  occupied sites would produce 

biased trend estimates (Prendergast et al., 1993; Isaac et al., 2014b).  To account for

these biases we estimated species trends using a method known elsewhere as the 

‘well-sampled sites’ (Isaac et al., 2014a), which aims to remove the noise and bases 

the statistical inference on a ‘well-sampled’ subset of the data.  We first arranged 

the records into 239,392 visits, which are defined as unique combinations of date 

and 1 km2 grid cell (site). For each visit, each of the 38 species was coded as either 

recorded (1) or not-recorded (0).  We then removed all visits where less than three 

species were recorded, since these short lists probably represent incomplete 

sampling (van Strien et al., 2010).  We then selected sites with at least three years 

of data, ensuring we retained only the ‘well-sampled’ sites (Figure 1).  Our final 

dataset contains 357,654 records from 67,382 visits to 5,352 sites (30,481 site-year 

combinations).  Different thresholds for defining the well-sampled set (two species 

recorded and two years of data) produced qualitatively identical results (not shown).

For each species, we estimated a linear trend in the probability of being recorded on 

an average site visit.  This was achieved using binomial generalised linear mixed-

effects models (GLMMs), implemented by the R package lme4 (Bates et al., 2011), 

with the log odds of being recorded modelled as a linear function of a fixed effect for

year, and a random intercept for site.  We used the slope estimate for the fixed 

effect of year as our trend measure.

Traits

We included data on seven traits extracted from Powney et al. (2014) (Table 1).  Two 

traits were based on characteristics of a species’ distribution pattern, the first, 

species status, was measured as an ordinal variable based on distribution size, 
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moving from very rare through to very widespread.  Secondly, distribution type was 

a categorical variable that defined a species broad climatic restriction.  Species were

classified into one of four levels, northern, southern, oceanic or widespread based on

their distribution pattern.  We included a single morphological trait, thorax length 

(mm), which was taken as the mean of multiple measurements from museum 

specimens.  Flight period duration was measured as the number of months during 

which adults are typically recorded in flight.  We included two habitat based traits, 

habitat breadth measured the number of broad habitats a species can utilise, while 

breeding habitat classified species based on breeding habitat preference, lentic, lotic

or both.  Finally, we classified species based on their overwintering stage, either 

eggs, larvae or both.  Overwintering stage, breeding habitat and distribution type 

were coded as continuous variables: Overwintering stage (eggs = -1, both = 0, 

larvae = 1), breeding habitat (lentic = -1, both = 0, lotic = 1), distribution type (very

rare = -1.5, rare = -1, scarce = -0.5, local = 0.5, widespread = 1, very widespread =

1.5).  All continuous traits were centred on zero prior to the analysis and ordinal 

variables were treated as continuous.  Following the various exclusion criteria and 

the coverage of trait data, the final dataset used in this study covered 36 species.  

Trait analysis

We used the pgls function from the R package caper (Orme, 2012) to run 

phylogenetically informed linear models to examine trait-trend relationships while 

accounting for phylogenetic non-independence (Freckleton et al., 2002).  In all 

phylogenetically informed models, the level of phylogenetic correction (Pagel’s λ) 

was estimated via maximum likelihood (Pagel, 1999; Freckleton et al., 2002).  Due to

data limitations we used a phylogeny based on taxonomy for the analyses.  The 
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phylogeny was built using the as.phylo function from the R package ape (Paradis et 

al., 2005) with nodes based on Suborder, Family, Genus and Species, and all branch 

lengths were set to one.

The trend measures extracted from each species model formed the response 

variable for the trait-trend analysis.  While this year slope estimate is a useful 

measure of the direction and intensity of the temporal trend in occupancy in an 

average site, it does not account for uncertainty in its estimation.  We therefore 

repeated all trait analyses using the year slope estimate weighted by the inverse of 

its standard error and also the z-score of the fixed effect of year as the response 

variables.  These additional analyses enabled us to examine how robust our results 

were in relation to uncertainty in our trend estimates.  

To determine the main trait correlates of our species trends we utilised a multi-

model inference approach.  We applied the dredge function of the R package MuMIn 

(Barton, 2013) to fit models for all possible combinations of explanatory trait 

variables and then ranked them based on AICc.  We then extracted the model 

averaged coefficient for each trait that was present in at least one candidate model 

from the subset of top models.  In addition, we identified the importance of each 

trait based on its frequency in the subset of top models.  The importance scores and

the model averaged coefficients were used to determine the main traits for 

explaining species trends.  The set of candidate models was defined as models with 

ΔAIC ≤ 2.  Burnham et al. (2010) suggest there is often support for models where 

ΔAIC is < 7, however, we chose to use ΔAIC < 2 as the null model was the 3rd best 

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

PeerJ reviewing PDF | (v2014:11:3297:0:0:NEW 30 Nov 2014)

Reviewing Manuscript

fbscha
Highlight
This is a little bit troubling: your traits explain negligible variation in your response.



model with a ΔAIC of 1.12 and therefore increasing the ΔAIC threshold was simply 

adding noise (models with little evidence to support them) to the key result.  

A multi-model inference approach while accounting for phylogeny is not straight-

forward.  In our PGLS models, λ was estimated independently for each model and 

can therefore be different between the candidate models.  Using AIC to compare 

between these models could be misleading as we could not disentangle the 

influence of a difference in the evolutionary model (λ) from the influence caused by 

changing which traits were included in the model on AIC scores.  However, all of the 

models in the top subset had an estimated λ value of 0, implying that species trend 

in the UK is not phylogenetically-patterned.  Therefore ΔAIC was measuring the 

effect of the trait differences rather than any potential difference in the evolutionary 

model in this case.  All analyses were carried out using R 3.0.2 (R Core Team, 2013).

Results

We found significant trends for 72% of the species in this study: of these, 12 were 

decreasing and 14 species were increasing.  Species included that showed the 

greatest declines included: Ischnura pumilio, Leucorrhinia dubia and Sympetrum 

danae, while Libellula fulva, Erythromma najas and Brachytron pratense showed the 

greatest increases.  Using the fitted values from the species trend models we 

estimated the change in probability of observation over a ten year period for each 

species.  Each species was then categorised using these ten year changes (Figure 

2).  This figure illustrates the substantial variation in the trend estimates between 

species, and again highlights the large proportion declining species which is a cause 

for concern.  
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Six models containing various combinations of three traits (distribution type, flight 

period and thorax length) formed the top subset of models for explaining Odonata 

distribution trends (Table 2).  Of these three traits, distribution type was the most 

important (importance score = 0.6), and was present in three of the top models.  

The model averaged coefficients for distribution type reveal that southern species 

tend to have increased relative to the other categories and northern species have 

declined on average, with the other two categories (oceanic and widespread) 

intermediate (Figure 3).  Notable exceptions to this trend include the strong declines 

in Ischnura pumilio and Gomphus vulgatissimus both of which were classified as 

southern species.  Flight period was present in two of the top models and had an 

importance score of 0.34.  The coefficient was negative, suggesting that species 

with longer flight periods had a lower trend estimates (i.e. they declined relative to 

species with short flight periods).  Thorax length was also present in two of the top 

models but had the lowest importance score (0.24) of all traits present in the top 

model subset.  The model averaged slope for the relationship between thorax length

and trend estimate was marginally positive, which suggests that larger species were

faring better than smaller species.  We note that the 95% confidence intervals of 

both flight period and thorax length spanned zero, and that the null model was the 

third best model based on AICc.  The top two models explained a modest 13 and 

16% of the variation in species trend.

In general, the key trait-trend relationships and importance scores were robust 

across the different response variables and modelling approaches (Appendix 1 & 2). 

Distribution type was the most important trait for four of the five response/modelling
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approach combinations, while flight period and thorax length were consistently 

important (Appendix 3).  The model averaged coefficients for these three traits were

similar across approaches.  Other traits including habitat breadth, overwintering 

stage, breeding habitat and status, were retained in the top model subset for some 

of the other approaches.  However, the model averaged 95% confidence intervals 

spanned zero in the vast majority of cases for these additional traits (Appendix 2).

Discussion

We found that the dragonfly fauna in Britain and Ireland has undergone considerable

change during recent decades, with high levels of inter-specific variation in 

occurrence trends (Figure 2).  We found twelve species (33%) had significant 

negative trends, while 14 species (39%) showed significant increases.  Although 

more species increasing than decreasing is good news for conservation, this could 

be interpreted as a signal of biotic homogenization, i.e. the fauna becomes 

dominated by a small number of species, and local and regional difference between 

communities are eroded (Keith et al., 2009).  

We found distribution type was the key correlate of Odonata trends, with southern 

species tending to have higher trend estimates than the all other distribution types 

(Figure 3).  This result is in line with our hypothesis that increased temperatures has 

increased the climate suitability of Britain and Ireland for southerly distributed 

species.  A variety of studies have provided evidence of this relationship, i.e. 

Devictor et al. (2008) found bird communities in France between 1989 and 2006 

were increasingly dominated by species that prefer warmer conditions, while Lima 

et al. (2007) found evidence of northward range expansions in warm-water adapted 
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Portuguese algae.  Hickling et al. (2005) used distribution type to explain variation in

range shift and expansion in British Odonata, finding that southern species showed 

greater poleward shifts and expansions compared to northern species.  By contrast, 

Angert et al. (2011)  found no correlation between range shift and position of the 

northern range limit (which is related to our measure of distribution type).  Despite 

the wealth of evidence that points to climate change as the likely driver of increases

in southern species, we cannot ignore the role of improved water quality and 

standing water availability in southern Britain (Hickling et al., 2005; Cham et al., 

2014).  Not all southern species showed positive trend (notably Ischnura pumilio and

Gomphus vulgatissimus), this limited expansion in response to climate warming is 

likely due to availability of suitable habitat.

The lower trend estimates for northern species is likely to be the result of the 

combined pressures of a decline in climate suitability and competition from species 

that were previously limited by lower thermal tolerance (Myers et al., 2009; Thomas,

2010).  Evidence of the loss of northern species has been seen in a variety of 

taxonomic groups across a variety of geographic regions (Hill et al., 2002; Devictor 

et al., 2008; Myers et al., 2009; Foufopoulos et al., 2011), and with the persistent 

and increasing threat of anthropogenically induced climate change, northern species

and those reliant upon them are likely to become increasingly threatened.

We found no evidence for six other hypotheses about the drivers of species trends. 

Flight period and thorax length appeared marginally important but evidence for this 

was weak as the 95% CI of these traits spanned zero.  Additionally when these two 

traits were modelled against species trend individually they performed no better 
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than the null model.  Body size and flight period were used as surrogates for 

competitive ability and dispersal ability: it is plausible that more direct measures of 

these traits do predict the species in decline.  The reliability of the trait-trend results 

depend on the accuracy of the underlying trait data.  We note that within a given 

species, traits can vary spatially (i.e. habitat specificity can vary across a species 

range – Oliver et al., 2009), however here we use a single value per trait per 

species.  This is a common approach within the comparative analysis literature but 

is a potential source of noise in the results.  One problem with “well-sampled sites” 

approach is that it amplifies the spatial gradient in recording intensity, such that 

trends for northern species are estimated from a relatively small number of sites. 

This has implications for the precision of trend estimates for northern vs southern 

species, which is accounted-for in the weighted trait models (Appendix 1b).  Basing 

the trend on a small number of sites is unlikely, on its own, to bias the estimate 

(Isaac et al., 2014b), although we don’t know the degree to which trends on these 

sites (and others considered well-sampled) reflect changes in the wider countryside. 

We found no evidence of phylogenetic signal in our models, although our phylogeny 

was based on taxonomy.  Using a phylogeny constructed from sequence data would 

be more rigorous, but such genetic data are currently limited.  

In conclusion, we found variation in species distribution trends was best explained 

by distribution type, with southern species showing significantly higher trends than 

widespread and northern species.  We believe this reflects the impact of climate 

change as the increased ambient temperature in Britain and Ireland better suits 

species that are adapted to warmer conditions.  The lower trend estimates for 

northern species is a cause of conservation concern as this result combined with 

evidence in previous studies shows that northern species are shifting to higher 

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

PeerJ reviewing PDF | (v2014:11:3297:0:0:NEW 30 Nov 2014)

Reviewing Manuscript



latitudes and altitudes, are declining in range size and abundance, and are therefore

particularly vulnerable to the ever increasing threat of climate change.
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Table 1(on next page)

Table 1. An overview of the Odonata traits included in the comparative analysis.
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Trait Description
Species status Species categorised on distribution size: very widespread, 

widespread, local, scarce, rare, very rare.
Distribution 
type

Broad climatic categorisation of species: widespread, southern, 
northern or oceanic.

Thorax length Mean thorax length based on 10 museum specimens (mm).
Flight period The duration of the flight period in months.
Habitat breadth A count of the number of habitat types utilised by the species.
Breeding 
habitat

Species were classified on their preferred breeding habitat, either 
lentic, lotic or both.

Overwint. stage Species categorised as overwintering as larvae, eggs, or both.
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Table 2(on next page)

Table 2 Parameter estimates for the subset of best models.

For the categorical variable (distribution type) ● denotes that it was present in the selected

model, while the slope is displayed for the continuous traits present in the selected model.

The final column expresses the importance value for each trait included in the subset of best

models.
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 Model rank      
 1 2 3 4 5  6 Importance
Distribution ● ● ● 0.60
Flight 
period -0.022 -0.023 0.34
Thorax 
length 0.002 0.002 0.24

AICc -154.3 -153.7 -153.2 -153.1
-
153.0

-
152.5

ΔAIC 0 0.58 1.12 1.17 1.29 1.85
weight 0.263 0.197 0.150 0.147 0.138 0.104  
Adjusted R2 0.131 0.155 - 0.032 0.138 0.013
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Figure 1(on next page)

Figure 1 The distribution and density of monads from which the trend estimates were
derived.

The shading represents the number of unique monads within the hectad that were included

in the analysis, the “well-sampled sites”.
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Figure 2(on next page)

Figure 2 The proportion of species in each trend category.

Using the fitted values from the species models, trends were estimated as the percentage

change in probability of observation over a ten year period. Shades of red symbolises

declines while shades of green are used for increases, the intensity of colour reflects the

strength of the trend.
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Figure 3(on next page)

Figure 3 The model averaged coefficients for traits that were retained in the subset of
best models.

The reference distribution type was “southern”, which has a parameter estimate set to 0.
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