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ABSTRACT
A major challenge in ecology is understanding why certain species persist, while
others decline, in response to environmental change. Trait-based comparative
analyses are useful in this regard as they can help identify the key drivers of decline,
and highlight traits that promote resistance to change. Despite their popularity
trait-based comparative analyses tend to focus on explaining variation in range
shift and extinction risk, seldom being applied to actual measures of species decline.
Furthermore they have tended to be taxonomically restricted to birds, mammals,
plants and butterflies. Here we utilise a novel approach to estimate occurrence trends
for the Odonata in Britain and Ireland, and examine trait correlates of these trends
using a recently available trait dataset. We found the dragonfly fauna in Britain
and Ireland has undergone considerable change between 1980 and 2012, with 22
and 53% of species declining and increasing, respectively. Distribution region,
habitat specialism and range size were the key traits associated with these trends,
where habitat generalists that occupy southern Britain tend to have increased in
comparison to the declining narrow-ranged specialist species. In combination with
previous evidence, we conclude that the lower trend estimates for the narrow-ranged
specialists could be a sign of biotic homogenization with ecological specialists being
replaced by warm-adapted generalists.

Subjects Biodiversity, Conservation Biology, Ecology, Entomology
Keywords Dragonfly, Climate change, Comparative analysis, Range change,
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INTRODUCTION
Defaunation, the loss of species and populations (Dirzo et al., 2014), is occurring at an

alarming rate with recent estimates suggesting that the current extinction rate is 1,000

times that of the historical natural background rate (De Vos et al., 2014). These declines

are driven by environmental change, particularly habitat loss and climate change, and can

be measured in a number of ways, e.g., changes in distribution and abundance (Thomas

et al., 2004; Biesmeijer et al., 2006; Butchart et al., 2010; Chen et al., 2011). Variation in

species responses to environmental change has been found across broad taxonomic groups

(Hickling et al., 2006; Angert et al., 2011) but also within taxonomic groups, i.e., between

species within an order (Hickling et al., 2005). A major challenge in conservation ecology is
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to gain a better understanding of this interspecific variation in response to environmental

change, i.e., what enables certain species to persist while others decline?

Species traits play an important role in determining species’ ability to resist envi-

ronmental change. For example, several studies have shown that ecological generalists

out-perform specialists in times of environmental change (Walker & Preston, 2006; Ozinga

et al., 2012; Newbold et al., 2013). Such comparative trait-based analyses are popular, as

the models help to identify the main drivers of change and allow the prediction of future

biodiversity changes based on environmental forecasts (Fisher & Owens, 2004; Cardillo et

al., 2006). Previous comparative trait analyses have tended to focus on explaining variation

in range shift (Angert et al., 2011; Mattila et al., 2011; Grewe et al., 2012) and extinction

risk (Purvis et al., 2000; Koh, Sodhi & Brook, 2004; Cardillo et al., 2008; Cooper et al., 2008;

Fritz, Bininda-Emonds & Purvis, 2009). Despite its popularity, the comparative trait-based

approach has seldom been applied to direct measures of species’ changing status (i.e., rates

of decline or increase). Currently data on such measures of decline are rare, particularly

at large (e.g., national) scales and across multiple species. With the increase in public

participation in biological recording, the availability of large-scale distribution datasets has

increased (Silvertown, 2009). Such data tend to be collected without systematic protocols

and thus contain many forms of sampling bias and noise, making it hard to detect genuine

signals of change (Tingley & Beissinger, 2009; Hassall & Thompson, 2010; Isaac et al., 2014).

However, recent advances in analytical approaches have improved our ability to estimate

reliable trends from these unstructured biological records (Isaac et al., 2014). In this study,

we utilise these novel approaches to estimate trends in occurrence for the Odonata in

Britain and Ireland, and use species traits to test hypotheses for the interspecific variation

in trends.

We chose to examine Odonata for a number of reasons. Firstly, previous trait-based

comparative analyses have tended to focus on birds, mammals, plants and butterflies.

Despite being highly species rich and their crucial role across ecosystems, the non-butterfly

invertebrate fauna are comparatively poorly studied (ICUN, 2001; Dirzo et al., 2014).

Secondly, Odonata are thought to be excellent bioindicators as they are sensitive to

degradation of water ecosystems (Samways & Steytler, 1996; Sahlén & Ekestubbe, 2001;

Lee Foote & Rice Hornung, 2005). Thirdly, they provide a valuable ecosystem service as

they feed on many insect pests (Brooks & Lewington, 2007). Finally, the publication of a

new atlas (Cham et al., 2014) and trait datasets (Powney et al., 2014) for British Odonata

together constitute some of the best quality data of any non-butterfly invertebrate group.

Previous research based on Odonata occurrence data has focussed on the impact of climate

change on phenology and distribution. For example, Hassall et al. (2007) discovered that

emergence from overwintering had significantly advanced over the past 50 years, while

Hickling et al. (2005) showed that the upper latitudinal margin shifted north between 1960

and 1995. Outside Britain, Bush et al. (2014) used species distribution models (SDMs) to

predict which Australian odonates were under threat from climate change.

Several studies have utilised traits to explain variation in several aspects of Odonata

ecology, but typically focus on explaining variation in species response to climate change.
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In terms of phenological advancement, Hassall et al. (2007) noted that spring species and

those without egg diapause exhibited increased phenological shifts. Angert et al. (2011)

examined trait correlates of range shift across multiple taxonomic groups, finding that

exophytic Odonata species in Britain shifted further north, on average, than endophytic

species. These insights, combined with extensive knowledge about their natural history

(Brooks & Lewington, 2007), form the basis of seven competing hypotheses (outlined

below) that aim to explain the interspecific variation in the distribution trends among

British Odonata.

All traits included in the analysis have been shown to affect species’ ability to respond

to environmental change. Habitat breadth is frequently related to species trends, where

habitat generalists outperform specialists due to their greater ability to adapt to novel

environmental conditions (Fisher & Owens, 2004; Menéndez et al., 2006; Botts, Erasmus

& Alexander, 2012). Ball-Damerow, M’Gonigle & Resh (2014) found evidence of the

widespread expansion of habitat generalists which has led to biotic homogenization

in the dragonfly fauna of California and Nevada over the last century. We test the

hypothesis that Odonata in Britain and Ireland follow the patterns outlined above, with

generalists out-performing specialists. Dispersal ability affects species’ ability to respond

to environmental pressures, with higher dispersal ability linked to an enhanced ability

to respond (Thomas et al., 2001; Pöyry et al., 2011; Grewe et al., 2012). Using SDMs, Hof

et al. (2012) found lentic (i.e., pond and lake dwelling) species had a greater ability to

track changes in their climatic niche. This was linked to greater dispersal ability, which is

essential given the ephemeral nature of their breeding sites (Hof, Brandle & Brandl, 2006).

We predict lentic species will have higher (more positive) trend estimates than lotic species

as their increased dispersal ability enables them to persist during times of environmental

change through the efficient relocation to newly suitable areas. Geographic range size and

body size are both frequently used as surrogates for a whole host of traits associated with

ecological specialism and competitive ability (Gittleman, 1985; Gaston, 2003; Angert et

al., 2011). We predict that widespread species and the larger, therefore more competitive

species, are likely to show positive trends. Climate warming has increased the suitability of

the landscape to those species that were previously limited by their lower thermal tolerance

threshold (Devictor et al., 2008; Dingemanse & Kalkman, 2008; Bellard et al., 2012), and

evidence of the loss of northern species has been seen in a variety of taxonomic groups

across a variety of geographic regions (Hill et al., 2002; Devictor et al., 2008; Myers et al.,

2009; Foufopoulos, Kilpatrick & Ives, 2011). We therefore predict that southerly distributed

species will show the most positive trend estimates. An additional aspect of climate change

that has been linked with trends in Odonata is the increase in flood events in Britain.

Species which overwinter as larvae are particularly vulnerable to flooding as they can be

swept away from ideal habitat areas to unsuitable regions in which they cannot persist

(Cham et al., 2014). As a result, we predict species that overwinter as larvae will have

undergone the greatest declines. Finally we test the hypothesis that flight period will be

positively related with species’ trend. Grewe et al. (2012) argued that species with longer
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flight periods have increased dispersal ability, and therefore have a greater capacity to adapt

in response to environmental change.

MATERIALS & METHODS
Occurrence trends
Trends were estimated from Odonata distribution records in Britain and Ireland collected

by the Dragonfly Recording Network and coordinated by the British Dragonfly Society.

Our analyses are based on 588,480 records of 36 native species collected between 1980

and 2012 where the recording date is known and the location was recorded to 1 km2

precision or better. As these occurrence records were collected without a specific sampling

design they contain a variety of bias which inhibit their use in estimating reliable trends.

For example, the number of records collected each year has increased dramatically over

time (Cham et al., 2014), such that simply counting the number of occupied sites would

produce biased trend estimates (Prendergast et al., 1993; Isaac et al., 2014). To account for

these biases we estimated species trends using an approach based on Bayesian occupancy

modelling (Van Strien, Van Swaay & Termaat, 2013; Isaac et al., 2014). We first arranged

the records into 212,574 visits, which were defined as unique combinations of date and 1

km2 grid cell (site). For each visit, each of the 36 species was coded as either recorded (1)

or not-recorded (0). We then selected sites with at least three years of data, ensuring we

retained only the well-sampled sites (Fig. 1). Our final dataset contains 467,899 records

from 157,507 visits to 11,435 sites (64,005 site-year combinations). We ran occupancy

models for each species based on the methodology of Van Strien, Van Swaay & Termaat

(2013) and Isaac et al. (2014). The approach uses two hierarchically coupled sub-models,

one, the state model, governs the true presence/absence of a species at a site in a given year,

the second, the observation model, governs the probably of detecting that species given

its presence or absence, and is therefore conditional on the state model. The detection

probability per visit is a function of the number of species recorded on that visit (the ‘list

length’: see Appendix S1 for detailed model description). For each site-year combination

the model estimates presence or absence for the species in question given variation

in detection probability: from this the proportion of occupied sites (‘occupancy’) was

estimated for each year. Finally, within the Bayesian framework, a linear trend was fitted to

these annual proportions to identify a temporal trend in species occupancy. The slope of

this regression of occupancy against year was used as the species-specific trend measure in

the cross-species comparative analysis.

Species’ trait data
We included data on seven traits extracted from Powney et al. (2014) (Table 1). Two traits

were based on characteristics of a species’ distribution pattern, the first, species status, was

measured as an ordinal variable based on distribution size, moving from very rare through

to very widespread. Secondly, distribution region was a categorical variable that defined a

species broad climatic restriction, with species classified into one of four levels, northern,

southern (which included continental species from the original classification), oceanic
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Figure 1 The distribution and density of sites (monads) from which the trend estimates were de-
rived. The shading represents the number of unique sites within the hectad that were included in the
analysis.

or widespread based on their distribution pattern. We included a single morphological

trait, thorax length (mm), which was taken as the mean of multiple measurements from

museum specimens. Flight period duration was measured as the number of months during

which adults are typically recorded in flight. We included two habitat based traits, habitat

breadth measured the number of broad habitats a species can utilise (maximum of 6),

while breeding habitat classified species based on breeding habitat preference, lentic, lotic

or both. Finally, we classified species based on their overwintering stage, either eggs, larvae

or both. Distribution status was coded as an ordinal variable: very rare = −1.5, rare = −1,

scarce = −0.5, local = 0.5, widespread = 1, very widespread = 1.5, and modelled as a

Powney et al. (2015), PeerJ, DOI 10.7717/peerj.1410 5/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.1410


Table 1 An overview of the Odonata traits included in the comparative analysis.

Trait Description Class

Species status Species categorised on distribution size: very widespread, widespread, local, scarce, rare, and very rare. Ordinal

Distribution region Broad climatic categorisation of species: widespread, southern, northern or oceanic. Categorical

Thorax length Mean thorax length based on 10 adult (5 male and 5 female) museum specimens (mm). Continuous

Flight period The duration of the flight period in months. Continuous

Habitat breadth A count of the number of habitat types utilised by the species. Continuous

Breeding habitat Species were classified on their preferred breeding habitat, either lentic, lotic or both. Categorical

Overwint. stage Species categorised as overwintering as larvae, eggs, or both. Categorical

continuous term in the analysis (as opposed to a factor). All continuous traits were centred

on zero prior to the analysis.

Comparative analysis
We used the pgls function from the R package caper (Orme, 2012) to run phylogenetically

informed linear models to examine trait-trend relationships while accounting for

phylogenetic non-independence (Freckleton, Harvey & Pagel, 2002). In all phylogenetically

informed models, the level of phylogenetic correction (Pagel’s λ) was estimated via maxi-

mum likelihood (Pagel, 1999; Freckleton, Harvey & Pagel, 2002). Due to data limitations, we

used a phylogeny based on taxonomy for the analyses. The phylogeny was built using the

as.phylo function from the R package ape (Paradis, Claude & Strimmer, 2004) with nodes

based on Suborder, Family, Genus and Species, and all branch lengths were set to one.

We tested seven hypotheses about the drivers of species’ trends whilst incorporating

uncertainty in the trend estimates of each species. To do this, we fitted 10,000 trait-trend

models: in each model we selected, at random, one value from the posterior distribution of

trend estimates for each species. In all 10,000 models, we estimated the coefficients for each

of the seven traits (described above) as fixed effects. From these models, we then calculated

the mean and 95% confidence intervals for the trait-trend parameter estimates across all

iterations.

RESULTS
We found substantial variation in the trend estimates between species. Of 36 species

included in the analysis, 8 had negative trends and 19 had positive trends where the 95

percentiles (2.5 and 97.5 percentiles) did not bridge zero (Appendix S2). Species that

showed the greatest declines included: Aeshna juncea and Sympetrum danae, while Anax

imperator and Aeshna mixta showed the greatest increases.

Key results from the comparative trait-analysis (Table 2 and Fig. 2) showed distribution

status, habitat breadth and thorax length were positively associated with species trend,

while species with longer flight periods tended to have lower trend estimates (i.e., they

declined relative to species with short flight periods). Distribution region was an important

predictor of species trend, where southern species increased relative to oceanic and

widespread species. Notable exceptions to this trend include the declines in Ischnura
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Table 2 The mean and 95 percentiles of the trait coefficients estimated from 10,000 model itera-
tions. The coefficients for the categorical variables (overwintering stage, region and breeding habitat)
are shown as contrasts to the reference category (eggs, southern and lentic, respectively). The mean level
of phylogenetic signal (λ) across the 10,000 iterations is presented alongside its 95 percentiles.

95 percentile

Parameter Mean coef. 0.025 0.975

Thorax length 4.87 × 10−4 4.15 × 10−4 5.65 × 10−4

Overwintering stage—both −0.005 −0.006 −0.004

Overwintering stage—larvae −2.82 × 10−4
−9.58 × 10−4 6.78 × 10−4

Flight period duration −0.004 −0.005 −0.002

Distribution status 0.003 0.002 0.003

Region—northern 0.003 0.001 0.004

Region—oceanic −0.007 −0.007 −0.006

Region—widespread −0.005 −0.007 −0.005

Habitat breadth 0.001 0.001 0.001

Breeding habitat—both 0.003 0.002 0.003

Breeding habitat—lotic 0.004 0.003 0.004

λ (phylo. signal) 0.035 <0.001 0.36

pumilio and Gomphus vulgatissimus both of which were classified as southern species.

Northern species showed the largest increases, although this result is highly uncertain

(reflected in the wide 95% CI across the 10,000 iterations). Lentic species tended to have

lower trend estimates than lotic species and those species that utilise both breeding habitat

strategies. Finally, there appeared to be little evidence of an influence of overwintering stage

on species trend. Trends tended to be similar between species that overwinter as eggs and

those that overwinter as larvae. Species that can overwinter as both eggs and larvae had

the lowest average trend estimates, however this category was comprised of four species

only. In general, the phylogenetic signal across the model iterations was low, with a mean of

0.035 (0.0–0.36).

DISCUSSION
We found that the dragonfly fauna in Britain and Ireland has undergone considerable

change during recent decades, with high levels of interspecific variation in occurrence

trends. We found 8 species (22%) had declined, whereas 19 species (53%) showed

increasing trends. The large number of species with positive trends is likely to reflect

the recovery of dragonfly populations in response to increased water quality in Britain

since the mid-20th century. Although a greater number of species increasing than declining

is good news for conservation, this could reflect biotic homogenization, i.e., the fauna

becoming dominated by a certain group of species, leading to the erosion of local and

regional difference between communities (Keith et al., 2009).

We found distribution region was a key correlate of Odonata occurrence trends, with

southern species tending to have higher trend estimates than the oceanic and widespread

species (Fig. 2). This result is in line with our hypothesis that increased temperatures has

increased the climate suitability of Britain and Ireland for southerly distributed species.
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Figure 2 The mean and 95 percentiles of the trait coefficients across 10,000 model iterations. Each
categorical variable had a reference category which had a parameter estimate set to 0. The reference
categories were as follows: region, “southern”; breeding habitat, “lentic”; and for overwintering stage,
“eggs.”

A variety of studies have provided evidence of this relationship, i.e., Devictor et al. (2008)

found bird communities in France between 1989 and 2006 were increasingly dominated

by species that prefer warmer conditions, while Lima et al. (2007) found evidence of

northward range expansions in warm-water adapted Portuguese algae. Hickling et al.

(2005) used distribution region to explain variation in range shift and expansion in British

Odonata, finding that southern species showed greater poleward shifts and expansions

compared to northern species. We found little evidence of a difference between northern

and southern species, however this is likely due the low number of northern species (n = 4)

included in our dataset. Interestingly, Angert et al. (2011) found no correlation between

range shift and position of the northern range limit (which is related to our measure of

distribution region). Despite the wealth of evidence that points to climate change as the

likely driver of increases in southern species, we cannot ignore the role of improved water

quality and standing water availability in southern Britain (Hickling et al., 2005; Vaughan

& Ormerod, 2012; Cham et al., 2014). Durance & Ormerod (2009) noted that improved

water quality can confound attempts to detect the impact of climate change on freshwater

macroinvertebrates. Southern species are likely to have benefitted from both the increased

water quality in southern Britain and improved climate suitability, while the former was

the main positive driver for widespread species, this could explain the greater increases in

southern compared to widespread species. Not all southern species showed positive trends

(notably Ischnura pumilio and Gomphus vulgatissimus); here the limited expansion is likely

due to a lack of suitable habitat.

Numerous studies have related habitat breadth to species trends and tend to find that

habitat generalists outperform specialists (Fisher & Owens, 2004; Menéndez et al., 2006;

Powney et al. (2015), PeerJ, DOI 10.7717/peerj.1410 8/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.1410


Botts, Erasmus & Alexander, 2012). Much of the evidence of this relationship is based on

studies of terrestrial organisms (Biesmeijer et al., 2006; Ozinga et al., 2012; Newbold et al.,

2013), with a notable exception from Ball-Damerow, M’Gonigle & Resh (2014). Here, we

found that the relationship holds in the Odonata fauna of the UK as habitat breadth was

positively correlated with occurrence trend. The likely cause of this relationship is that

habitat generalists have a greater ability to adapt to novel environmental conditions, which

is particularly important in our current climate of anthropogenically driven environmental

change (Travis, 2003; Newbold et al., 2013). Thorax length and distribution status (used

here as a measure of range size) were positively related to occurrence trends, i.e., narrow

ranged, “rare,” small sized species tended to have lower trend estimates than wider ranging,

larger species. Geographic range size and thorax length are often used as surrogates for

traits associated with ecological specialism and competitive ability (Gittleman, 1985;

Gaston, 2003; Angert et al., 2011). Therefore, as with habitat specialism above, we believe

this result is driven by the greater ability of competitive ecological generalists to adapt to

environmental change than specialists.

Hof et al. (2012) found lentic (i.e., pond and lake dwelling) species had a greater ability

to track changes in their climatic niche due to their greater dispersal ability, essential given

the ephemeral nature of their breeding sites. We hypothesised that the greater dispersal

ability of lentic species would promote their resilience to environmental change leading to

a higher average trend estimate than lotic species. The results in this study do not support

our hypothesis as lentic species tended to have lower trend estimates than lotic species.

Differences in mean trend between lentic and lotic species are likely due to differences

in the impact environmental stressors (e.g., climate change, eutrophication and other

forms of habitat degradation), interactions between them and subsequent restoration

between rivers and lakes (Vaughan & Ormerod, 2012). A study aimed at improving our

understanding of the variation between lentic and lotic species is a prime candidate for

future work.

Finally, we found that flight period was negatively related to occurrence trend, a result

contrary to expectations. As with the lentic/lotic hypothesis, initially we suspected that

species with greater dispersal ability would show higher trends as increased dispersal

capacity increases the ability to mitigate the negative effects of environmental. We used

flight period as a surrogate of dispersal ability on the premise that the longer the flight

season the more time a species has to disperse (Grewe et al., 2012). It is plausible that

the use of a more direct measure of dispersal ability would have produced a result that

is consistent with the literature on dispersal ability and species trends. It is worth noting

that the reliability of the trait-trend results depend on the accuracy of the underlying trait

and trend data, and we note that within a given species, traits can vary spatially. One such

plastic trait includes flight period that has been shown to vary with latitude (Corbet, 2004).

Summarising this variation into a single value per trait per species is a common approach

but can create noise in model results.

In conclusion, we found that a large number of dragonfly species have increased in the

UK between 1980 and 2012, and is likely a response to increased water quality. We found
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that habitat generalists that occupy southern Britain tend to have increased in comparison

to the narrow-ranged specialist species of dragonfly. We believe this reflects the impact of

environmental change, particularly climate change, as the increased ambient temperature

in Britain and Ireland better suits species that are adapted to warmer conditions. The

lower trend estimates for specialist species is a cause of conservation concern as this result

combined with evidence in previous studies could be a sign of biotic homogenization with

ecological specialists being replaced by warm-adapted generalists.
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