

New craniodental remains of *Wakaleo alcootaensis* (Diprotodontia: Thylacoleonidae) a carnivorous marsupial from the late Miocene Alcoota Local Fauna of the Northern Territory, Australia

Adam M Yates

New jaws and teeth referable to the rare thylacoleonid marsupial $Wakaleo\ alcootaensis$ are figured and described. The species is the geologically youngest known member of the genus and is only known from the late Miocene Alcoota Local Fauna of the Northern Territory, Australia. A revised diagnosis of the species is presented which is found to be morphologically distinct from its congeners. $W.\ alcootaensis$ can be distinguished from other species of Wakaleo by its greater size, deeply recessed masseteric fossa, more steeply angled I_1 , loss of P_2 , greater P_3 to M_1 ratio and loss of M_3 . Several characters of $W.\ alcootaensis$, including the increase in size, steeply angled I_1 , increase of the relative size of P_3 , and reduction of the molar row are present in at least some species of Thylacoleo. Phylogenetic analysis suggests that these character states are convergences and that there was parallel evolution in these two thylacoleonid lineages.

- 1 Adam M. Yates
- 2 Museum and Art Gallery of the Northern Territory
- 3 Museum of Central Australia, P.O. Box 831, Alice Springs, Northern Territory, 0871
- 4 Australia
- 5 Corresponding author: Adam M. Yates, Museum of Central Australia, P.O. Box 831, Alice
- 6 Springs, Northern Territory, 0871, Australia, ph. +61 (08) 89511148, email:
- 7 adamm.yates@nt.gov.au

Introduction

1	-	`
ı	1	1
L	•	,

- 11 Thylacoleonids, or 'marsupial lions' are a group of small to large-bodied diprotodontian
- marsupials that range from the size of small house cat in *Priscileo roskellyae* (Wroe et al. 2003)
- up to the size of a lion in *Thylacoleo carnifex* (Wroe et al. 1999, 2003). They are characterised
- by the development of the third premolar pair into large shearing blades. Although there has been
- much debate about the diet of these creatures in the past, it is now largely accepted that Sir
- 16 Richard Owen was correct in 1859 when he described the eponymous *Thylacoleo carnifex* as
- 17 "one of the fellest and most destructive of predatory beasts" (Owen 1859, pg. 319).
- Wakaleo is a genus of thylacoleonids that ranges from the late Oligocene through to the late
- 19 Miocene (Gillespie 2007). It differs from the Plio-Pleistocene genus, *Thylacoleo*, by having
- 20 highly reduced to absent anterior premolars, a P³ that broadens posteriorly, a cuspule-like
- 21 anterolingual crest on the P³, less reduced molars, lack of a fronto-squamosal suture and no
- 22 postorbital bar amongst other features (Murray, Wells and Plane 1987; Gillespie et al. 2014).
- 23 The described species of *Wakaleo* form an apparent evolutionary sequence that matches their
- stratigraphic occurrence (Archer and Dawson 1982, Murray and Megirian 1990) and it has been
- 25 suggested that the genus is one of the more usefull mammalian lineages for biochronolgy of
- 26 Australian mammal-bearing deposits (Megirian et al. 2010, Arena et al. 2015).
- 27 The oldest of the described species currently placed in *Wakaleo* is the type species, *W. oldfieldi*
- 28 Clemens and Plane, 1974 which was based on specimens from the Kutjamparpu Local Fauna of
- 29 the Wipijiri Formation at Lake Ngapakaldi, South Australia. The Kutjamarpu Local Fauna has
- 30 had various age estimates but it is most securely correlated with Faunal Zone B local fanaus from
- 31 the Riversleigh World Heritage Area which have recently produced radiometric dates of 16.5 to
- 32 18.2 ma, i.e. early Miocene. W. vanderleueri Clemens and Plane, 1974 is a younger and slightly
- 33 larger species based on remains from the Bullock Creek Local Fauna of the Northern Territory.
- Apart from its larger size it can be distinguished from W. oldfieldi by its larger P_3 to M_1 ratio
- 35 (Clemens and Plane 1974) and the loss of the talonid shelf on M₃ (Gillespie et al. 2014). The
- 36 Bullock Creek Local Fauna has been consistently regarded as middle Miocene in age and
- 37 correlated with Faunal Zone C local faunas of Riversleigh. Recent radiometric dating of Faunal

- Zone C sites has produced dates of 13.5-15.1 ma, confirming their middle Miocene age. Both of
- 39 these species have recently been reported from the Riversleigh World Heritage area. Some of the
- 40 W. oldfieldi fossils are from Faunal Zone B sites, as is to be expected, while the bulk of the W.
- 41 *vanderleueri* specimens come from the even younger Faunal Zone D Encore Site, upholding the
- 42 stratigraphic separation of the two species. However both species have been found in Riversleigh
- 43 Faunal Zone C sites. Nevertheless they do not co-occur in the same local faunas. The
- 44 biochronologically important diprotodontid genus, *Neohelos*, also displays a species turnover
- 45 within Faunal Zone C, indicating that the zone spans a biochronologically significant length of
- 46 time (Arena et al. 2015). Indeed, Arena et al. (2015) were able to divide System C site into three
- 47 faunal intervals based on mammalian lineages. The sites bearing *W. oldfieldi* belong to the older
- 48 two intervals while the only Faunal Zone C site that bears W. vanderleueri, Golden Steph Site,
- 49 belongs to the youngest of the three intervals (Arena et al. 2015).
- 50 The youngest, and largest, known member of *Wakaleo* is *W. alcootaensis* Archer and Rich, 1982,
- from the late Miocene Alcoota Local Fauna of central Australia (Murray and Megirian 1992;
- 52 Fig. 1). This species has measurements that exceed W. vanderleueri by up to a third (Archer and
- Rich 1982, this paper). Given that Wroe et al. (1999) estimated the size range of 44 56 kg for
- W. vanderleueri we can tentatively estimate a weight range of up to 96 123 kg for W.
- 55 alcootaensis assuming geometric similitude between the two species. The Alcoota Local Fauna
- 56 is dominated by large browsing herbivores, both mammalian and avian (Murray and Megirian
- 57 1992), whereas mammalian carnivores are exceptionally rare. At approximately the size of a
- 58 small lioness, W. alcootaensis was the largest of these. Unfortunately the species has remained
- 59 extremely rare and poorly known. Indeed, anatomical knowledge of the species is so poor that it
- 60 could only be diagnosed by its larger size relative to other species of Wakaleo, leaving open the
- 61 question of its validity as a distinct taxon even though it has not been raised in the literature. The
- 62 species was established for a single cranial fragment that was unfortunately badly damaged while
- 63 trenching around a plastered block of dense bone bed material (Archer and Rich 1982). Very few
- other specimens of this species have been found. One of them is a dentary fragment bearing two
- 65 molars (UCMP 65621) that was recovered during an initial investigation of Alcoota in 1962 (Fig.
- 66 2). This specimen was initially described as a possible giant perameloid (Woodburne 1967).
- 67 Gavin Prideaux (pers. comm. 2012) first suggested that this specimen was actually a
- 68 misidentified Wakaleo specimen, a reidentification that is supported in the present work. The

- only other positively attributable specimens that came to light prior to 2013 are a few isolated
- teeth and a few postcranial elements, none of which have been described in the scientific
- 71 literature.
- 72 During the 2013 field season a new pit was opened at Alcoota, on the same stratigraphic level as
- 73 the other pits that quarry the Alcoota Local Fauna. This new pit, named 'Shattered Dreams',
- 74 proved to be exceptionally densely packed with fragmented bones, interspersed with occasional
- 75 complete, or near complete specimens. Not only was the volume of fossil bone extraordinarily
- high but so was the diversity, with virtually all known taxa from the Alcoota Local Fauna
- 77 recovered from an area of less than two square meters. Included among these was a dentary
- 78 belonging to W. alcootaensis (Fig. 3, 4, 5). This is the first substantial cranial specimen of this
- 79 species found since the holotype was recovered 39 years previously. W. alcootaensis is now
- 80 known from all of the main quarries of the Alcoota Local Fauna.
- 81 In this paper all craniodental material of *W. alcootaensis* identified subsequent to the description
- of the holotype is described and illustrated. The diagnosis of *W. alcootaensis* is revised and new
- 83 morphological character traits identified that place the diagnosis on a firmer footing.

Geological Setting

- 86 The known fossils of W. alcootaensis all come from a dense bone bed in the lower part of the
- Waite Formation, cropping out on Alcoota Station, 110 km NE of Alice Springs in south central
- 88 Northern Territory (Woodburne 1967). The Waite Formation is a late Cenozoic sequence of
- 89 fluviatile beds filling the Waite Basin, a small intermontane basin, surrounded by crystalline
- 90 rocks of the Arunta Block (Woodburne 1967). The Waite Formation consists of a basal series of
- overbank silts that were previously interpreted as lacustrine sediments (Woodburne 1967) with
- 92 interspersed and discontinuous carbonate-rich beds. The lower overbank beds are overlain by a
- 93 coarser sequence of channel deposits, consisting of calcareous sandstones grading up into coarse
- 94 red sandstones that contain a localised, silty, incised channel fill that is notable for containing the
- 95 Ongeva Local Fauna (Megirian, Murray and Wells 1996). The entire sequence is capped by a
- 96 layer of silcrete. The bone bed that has produced the Alcoota Local Fauna and the W.
- 97 alcootaensis fossils occurs in the lower overbank deposits, within a greyish-yellow silt unit that

98	is interpreted as a crevasse-splay. The bone bed covers an area of approximately 25000 m ² ,
99	although its density and thickness varies considerably within that area (Megirian 2000). The bulk
100	of the known fossil material has been obtained from four pits: Paine Quarry, South Pit, Main Pit
101	and Shattered Dreams (Fig. 1). The bone bed usually lies 90 cm below the present soil surface,
102	underneath a reddish, weathered horizon (Murray and Megirian 1992). It contains the unsorted
103	but disarticulated and jumbled remains of many hundreds, if not thousands, of animals that
104	appear to have perished in a mass death event, probably caused by severe drought (Murray and
105	Vickers-Rich 2004). Most of the in situ bones appear to be complete and show no signs of
106	weathering prior to burial. Nevertheless the bones have undergone extensive fracturing due to the
107	movements of the unconsolidated, clay-rich sediment that hosts them (Murray and Megirian
108	1992).
109	Despite the apparently complete condition of most of the in situ bones, the known remains of W .
110	alcootaensis are highly fragmented. In the case of the holotype the damage can be explained by
111	the unfortunate circumstances of its discovery (Archer and Rich 1982). In the case of the two
112	dentary specimens it appears that both had weathered out of the primary bone bed and were
113	broken up during their passage through the mobile cracking clays of the soil horizon that overlies
114	the site.
115	It is thought that the fauna is late Miocene in age based on stage of evolution correlation using
116	diprotodontid marsupials, (Stirton, Woodburne and Plane 1967; Murray and Megirian 1992), and
117	its age lies between 5 and 12 ma (Megirian et al. 2010).
118	Institutional abbreviations
119	CPC, Commonwealth Palaeontological Collection, Geoscience Australia, Canberra; NTM,
120	Museum and Art Gallery of the Northern Territory, Darwin and Alice Springs; SAM, South
121	Australian Museum, Adelaide; UCMP, Museum of Paleontology, University of California,
122	Berkeley.
123 124	Methods

Terminology 125 Serial designation of the cheek dentition follows Flower (1867) and Luckett (1993). Standard 126 nomenclature for mammalian tooth cusp anatomy is followed. Standard abbreviations for teeth 127 128 are used: I, incisor; P, premolar; M, molar, with superscripts or subscripts representing upper or 129 lower dentitions, respectively. Anterior and posterior are used as anatomical directions in the description of the dentition (instead of mesial and distal, respectively). 130 131 Measurements Linear measurements were made with digital vernier callipers. Angular measurements were 132 made with a protractor on a two-dimensional image taken normal to the plane of the angle being 133 measured. The angle of the posterodorsal wall of the alveolus for I₁ was measured by affixing a 134 135 wooden splint flush against this wall with a small amount of petroleum jelly and measuring the angle of the protruding section. 136 137 **Cladistic Analysis** The broader intrafamilial relationships of Thylacoleonidae, particularly its basal branches are not 138 examined here as the question has been comprehensively examined by Gillespie (2007) and will 139 140 form the basis of a future publication. The present analysis is designed soley to test whether the 141 new data provided here are enough to affect the position of W. alcootaensis, particularly in light of several derived conditions that are shared with the genus *Thylacoleo*. Only a single basal 142 thylacoleonid, *Priscileo roskellyae*, is included to help polarise character states that vary between 143 Wakaleo and Thylacoleo. Character state scores for this taxon were restricted to those that could 144 be determined from available published descriptions and illustrations (Gillespie 1997). The three 145 146 named and currently accepted species of both Wakaleo (W. oldfieldi, W. vanderleueri and W. 147 alcootaensis) and Thylacoleo (T. hilli, T. crassidentatus, and T. carnifex) form the rest of the ingroup (data sources in Table 1). 148 149 Three taxa were chosen to serve as serially distant outgroups: *Namilamadeta albivenator*, 150 Nimiokoala greystanesi and Pseudocheirus peregrinus. Namilamadeta albivenator was chosen 151 as a reasonably well-known, basal, non-thylacoleonid vombatimorphian (the sister group of Thylacoleonidae, Aplin and Archer 1987). Nimiokoala grevstenesi was selected as a basal 152 member of Phascolarctimorphia, the sister group of Vombatimorphia. Pseudocheirus peregrinus 153 154 is selected as a representative of Phalangerida, the sister group of Vombatiformes.

155	All ten terminal taxa were scored for 34 characters that were found to vary informatively within
156	the restricted ingroup (Appendix 1). Characters were taken from Archer and Dawson (1982) and
157	Gillespie (2007), with the addition of two novel characters.
158	Multistate characters that form obvious transformation series, such as the progressive
159	enlargement of P ₃ , were treated as ordered.
160	The resulting matrix was subjected to a maximum parsimony analysis in PAUP 4.0b (Swofford
161	2002) using the following settings: heuristic search; random addition sequence with 500
162	replicates; and TBR branch-swapping algorithm. The strength of the internal nodes was tested
163	with a decay analysis using the same settings.
164 165	Systematic palaeontology
166	DIPROTODONTIA Owen, 1866
167	VOMBATIFORMES Woodburne, 1984
168	THYLACOLEONIDAE Gill, 1872
169	Wakaleo alcootaensis Archer and Rich, 1982
170	Holotype. NTM P1, a fragment of a left maxilla, with P3 and fragments of M1 and M2. Found
171	adjacent to Paine Quarry (Archer and Rich 1982).
172	Referred material. NTM P4325, incomplete right dentary with broken P ₃ from Shattered Dreams
173	that was originally assigned the unofficial field number BHP 12 (Fig. 3-5); NTM P4462, isolated
174	right C ¹ from Main Pit (Fig. 6); NTM P4463; isolated right C ¹ from South Pit (Fig. 7); NTM
175	P4328, isolated right M^2 from Main Pit (Fig. 8); UCMP 65621, right dentary fragment with M_1
176	and M ₂ from Paine Quarry (Fig. 2).
177	Emended diagnosis
178	A species of Wakaleo distinguished from all others by: larger size (dental dimensions between 16
179	and 35% greater than the next largest species, W. vanderleueri, Table 2); anterior end of the
180	masseteric fossa deeply recessed; long axis of I_1 inclined at an angle greater than 50° to the

181 horizontal ramus of the dentary; loss of P₂; P₃:M₁ ratio of approximately 1.5; loss of M₃, steeplyangled 182 183 **Description** Dentary. NTM P4325 (Figs. 3, 4, 5) is similar in size and shape to the larger dentaries of W. 184 185 vanderleueri (e.g. NTM P87108-6). The horizontal ramus deepens anteriorly to reach a maximum depth under the midlength of the P₃. The ventral border forms a straight line for its 186 entire length. It is moderately thick buccolingually, with a midlength width of 14.1 mm and a 187 mild dorsoventral convexity on the buccal surface. Species of Wakaleo bear a large anterior 188 189 mental foramen on the buccal surface of the dentary adjacent to the incisor, and one or two 190 smaller accessory mental foramina posterior to it. The external opening of the anterior mental 191 foramen in NTM P4325 is missing due to damage but a single small posterior mental foramen is present, ventral to the posterior root of P₃. The lingual surface of the dentary bears a shallow, 192 193 narrowly triangular, digastric fossa impressed upon the posterior half of the horizontal ramus. Only the posterior end of the symphyseal surface is present, it extends posteriorly to the level of 194 195 the middle of P₃. In occlusal view the longitudinal axis of the horizontal ramus is inclined at an angle of 20° to the symphyseal plane. 196 Although the anterior end of the dentary is missing, the posterodorsal wall of the alveolus for I₁ 197 is preserved. It indicates that the incisor projected at an angle of 54° from the longitudinal axis of 198 199 the dentary. A very short diastema separates this alveolus from the alveolus for P₃. There is no 200 alveolus for any rudimentary teeth between I₁ and P₃. The P₃ dominates the dentary, occupying 201 45% of the total length of the cheek tooth row, or 35% of the distance from the anterior margin of the masseteric fossa to the anterior end of the P₃. Unfortunately the crown is largely broken 202 203 away, preventing description of this tooth beyond its size. In occlusal view the anterior end of the 204 P₃ can be seen to be angled lingually so that the distance between the symphyseal plane and the 205 anterior end of P₃ is less than the distance from the symphyseal plane to the posterior end of P₃ (8.2 mm vs. 12.8 mm). Four alveolar sockets follow the P₃ in a linear row without any 206 207 diastemata. Since the lower molars of Wakaleo are known to be double rooted, it is clear that there were only two molars present behind P₃. Thus, M₃ was absent in this species. Although the 208 209 buccal alveolar margin of NTM P4325 is partially eroded, it is clear that the lingual margin was higher and the alveoli were canted to face slightly buccally. This is reflected in the molar crowns 210

f P ₃ to the second root socket of the only known lower molars of the only known lower molars of the only known lower molars of these are heavily worn and ies in having a subrectangular of the talonid. The lingual present in other <i>Wakaleo</i> species that rises lingually to meet this ior length of the talonid is posterior margin in occlusal view nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and dalonid root has an
These are heavily worn and ies in having a subrectangular of from the talonid. The lingual present in other <i>Wakaleo</i> species, that rises lingually to meet this ior length of the talonid is posterior margin in occlusal view nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
ies in having a subrectangular of from the talonid. The lingual present in other <i>Wakaleo</i> species, that rises lingually to meet this ior length of the talonid is posterior margin in occlusal view nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
If from the talonid. The lingual present in other <i>Wakaleo</i> species, that rises lingually to meet this for length of the talonid is posterior margin in occlusal viewnall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
present in other <i>Wakaleo</i> species. that rises lingually to meet this for length of the talonid is posterior margin in occlusal viewnall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
that rises lingually to meet this ior length of the talonid is posterior margin in occlusal view nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
posterior margin in occlusal view nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
posterior margin in occlusal view nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
nall well of enamel remaining in out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
out may be too small and worn to trigonid and talonid are teroposteriorly compressed and
trigonid and talonid are teroposteriorly compressed and
teroposteriorly compressed and
d talonid root has an
d is less strongly raised than in
has a rounded posterior margin.
pproximately the same as that of
vell of enamel with a smooth
e ascending ramus, with almost
ng process is deeply excavated by
eteric fossa is recessed for
et. This recess is deeper than in
et. This recess is deeper than in ag process is supported by a spar-
•
ng process is supported by a spar-
ng process is supported by a spar-

241	with the lingual side of the crown in occlusal view (NTM P4463, Fig. 7) or overhangs it (NTM
242	P4462, Fig. 6). The long axis of the crown in buccal view is angled posteriorly relative to the
243	root, it is lingually inclined in anterior and posterior views. The root is complete in NTM P4463
244	(Fig. 7). It is roughly banana-shaped and is approximately four times longer than the crown. It
245	tapers to point at its base and expands to a maximum thickness of 10 mm, at 17 mm from the
246	base. It is gently constricted below the base of the crown, forming a neck that is slightly
247	narrower than the base of the crown in buccal and lingual view.
248	The crown is spade-shaped in buccal view with a bluntly-rounded apex. The height of the crown
249	is approximately equal its anteroposterior basal length. The anterior and posterior margins bear
250	carinae that extend from the base to the apex, meeting at its tip and dividing the crown into
251	distinct buccal and lingual faces. The buccal face is more distinctly convex in transverse section
252	than the flattened lingual face. The measurements of these canine crowns (Table 4) match those
253	reported for W. vanderleueri (Gillespie 2007), and are smaller than the canine alveolar
254	dimensions of CPC 26604. Given that all other dental specimens of W. alcootaensis show that it
255	had dimensions in excess of those of W. vanderleueri, it would appear that the canines of W.
256	alcootaensis were reduced relative to its other teeth in comparison to the former species.
257	The second upper molar of the holotype is only represented by broken roots in the alveolus but
258	an isolated left M^2 is now known (Fig. 8). It is slightly larger than the M^2 of the holotype. Note
259	that the anteroposterior length of the buccal side appears to be significantly greater than the
260	measurement reported in Archer and Rich (1984), but this is because the crown is wider than the
261	roots. The crown of M² is missing in the holotype and the length measurement was obtained
262	from the distance between the anterior and posterior roots . When the same measurement is taken
263	on NTM P4328, the difference in length between the two specimens is less than 12% (Table 3).
264	The crown is distinctly trigonal and tritubercular. The occlusal outline of the tooth is nearly
265	equilateral with its buccolingual width similar to its anteroposterior length. This differs from the
266	M^2 of W . vanderleueri in which the width is distinctly greater than the length. Note that because
267	of the equilateral nature of NTM P4328, no side is significantly longer than any other and this
268	difference cannot be explained by a misinterpretation in the orientation of the tooth. A very weak
269	flexus causes a slight emargination on the anterolingual side of the crown in occlusal view,
270	possibly where the posterior margin of M^1 impinged upon M^2 as it does in W . vanderleueri

271	(Murray, Wells and Plane, 1987, fig. 8). A small depression, containing some grains of adherent
272	matrix lies close to the anterobuccal margin, just anterior and slightly buccal to the metacone,
273	and is interpreted as a vestigial stylar basin. A low cusp is developed at each corner of the crown.
274	These three cusps are the paracone, metacone and protocone. There is no trace of a metaconule.
275	Of these three cusps the paracone is the tallest, represented by a low peaked ridge. The peak is
276	inset from the buccal margin, and the crown is expanded laterally between the roots and the peak
277	of the paracone. However abrasion of the enamel along the buccal margin means that it is not
278	possible to see if the lateral bulge above the paracone is as well developed as it is in W .
279	vanderleueri (Gillespie 2007). The height of the cusp is not as great relative to the other cusps as
280	it is in in W. vanderleueri where the paracone forms a tall peak, even in worn specimens (e.g.
281	NTM P87103-9). Indeed the entire buccal margin is of a similar depth to the lingual margin,
282	unlike the condition in W. oldfieldi and W. vanderleueri where the buccal margin is distinctly
283	deeper than the lingual margin (Gillespie 2007). Both the protocone and the metacone of NTM
284	P4328 have been worn virtually flat. Low rounded crests connect each cusp and define a
285	triangular, smooth trigon basin that dominates the occlusal surface of the tooth. No crenulations
286	are present in this basin. The deepest point of the basin is slightly off-centre and located closer to
287	the posterolingual rim than the other two sides. A poorly defined shallow trough that extends
288	along the inside of the anterolingual rim of the trigon basin is interpreted as a feature caused by
289	wear. The crown is supported by three subequal roots developed at each of the corners of the
290	trigon. The roots are directed posteriorly and lingually relative to the plane of the crown as in
291	Wakaleo vanderleuri (NTM P87103-9). The root orientation and presence of a vestigial stylar
292	shelf indicate that this equilateral and almost triradially symmetric tooth has been correctly
293	oriented.

Discussion

- 295 Referral of the new material to Wakaleo alcootaensis
- 296 The dentaries described here can be referred to Thylacoleonidae on the basis of the enlarged P₃
- 297 (NTM P4325), strong reduction in the size of the posterior molars (UCMP 65621 and NTM
- 298 P4325) and posterior narrowing of the lower molars (UCMP 65621). Within Thylacoleonidae the
- specimens can be referred to *Wakaleo* by the loss of the anterior premolars (NTM P4325). Both
- of these specimens exceed the size of W. vanderleueri and W. oldfieldi and have apparently lost

301	M ₃ , excluding them from either species. They can be referred to W. alcootaensis on the basis of
302	matching large size and co-occurrence with the holotype.
303	The simple, flattened tritubercular and triangular upper molar (NTM P4328), lacking a
304	metaconule and with only a vestigial trace of a stylar shelf, strongly resembles the more posterior
305	upper molars of other species of Wakaleo as opposed to the more rectangular molars of Priscileo
306	and Thylacoleo. As in the dentaries, the matching size of this specimen (Table 3) and its co-
307	occurrence with the holotype of <i>W. alcootaensis</i> , indicate that it can be referred to this species.
308	As yet, no descriptions of the canines of other Wakaleo species have been published.
309	Nonetheless canines are known for an unnamed, primitive species of Wakaleo and W.
310	vanderleueri both of which have been described in an unpublished PhD thesis (Gillespie, 2007).
311	Those specimens agree with the canines described here in all salient features, including the
312	rounded apex, gentle recurvature and carinate anterior and posterior edges dividing a more
313	convex buccal face from a flatter lingual face. No other mammal known from the Alcoota Local
314	Fauna has a tooth with this combination of features. Thus these isolated specimens can be
315	referred to Wakaleo. They can be referred to the species W. alcootaensis on the basis of co-
316	occurrence.
317	It remains a far simpler explanation of the data that all of the large-sized Wakaleo fossils at
318	Alcoota belong to a single species rather than to posit multiple large-bodied thylacoleonid taxa
319	for which there is no evidence. In other assemblages where there are two co-occurring
320	thylacoleonid species there is always a large size difference between them. For example the
321	small house cat sized Priscileo roskellyae co-occurs with the leopard sized Wakaleo oldfieldi in
322	the middle Miocene Cleft of Ages Local Fauna of Riversleigh (Archer et al. 2006, Gillespie
323	2007) and Thylacoleo hilli has dental dimensions half those of T. crassidentatus with which it
324	co-occurs in the Pliocene Bow Local Fauna (Archer and Dawson 1982). Furthermore, most of
325	the specimens discussed here show characteristics that are diagnostic of the genus Wakaleo.
326	Since no more than one Wakaleo species is ever present in any one local fauna (Gillespie 2007),
327	this observation adds further support to the hypothesis that the entire sample belongs to a single
328	species.

329	Diagnostic characters of W. alcootaensis
330	Wakaleo alcootaensis was originally diagnosed as distinct from W. oldfieldi and W. vanderleueri
331	on the basis of size, with the P ³ reaching approximately twice the length of <i>W. oldfieldi</i> (Archer
332	and Rich 1982) and maxillary dimensions that are about 30% larger than those of W.
333	vanderleueri (Murray and Megirian 1990). Murray and Megirian (1990) suggested that apart
334	from its larger size, W. alcootaensis lacks any significant morphological differences from the
335	smaller, older species of Wakaleo. With the addition of further specimens, including lower jaws,
336	the diagnosis of W. alcootaensis can be expanded. Several characters can now be seen to
337	differentiate the admittedly meagre W. alcootaensis material from the other two named species
338	of the genus (Fig. 9). These are listed briefly above and, given that some interpretation is
339	required, discussed in more detail here:
340	Larger size. As can be seen from the measurements in Table 2 and the discussion on variation
341	below, the size of all known specimens of W. alcootaensis exceeds the known range of W.
342	vanderleueri and W. oldfieldi in almost all dimensions. The only measurement for which NTM
343	P4325 falls within the range of W. vanderleueri is dentary height (measured as the dorso-ventral
344	height of the dentary at the posterior end of M ₂), indicating that the species, or at least this
345	individual, was somewhat slender jawed when compared to the most robust individuals of W .
346	vanderleueri (e.g. NTM P87108-6).
347	Deeply recessed masseteric fossa. The anterior margin of the masseteric fossa of W. vanderleuer
348	varies from a gentle change in slope of the buccal surface of the dentary resulting in a bevelled
349	margin (e.g. NTM P87108-6) to a sharply impressed fossa with the anterior margin forming low
350	walls perpendicular to the buccal surface. In NTM P4325 the nature of the fossa resembles the
351	latter condition but the anterior end of the fossa is recessed under its rim, forming a blind pocket
352	(Fig. 3A). The same condition was described in the holotype of W. oldfieldi (Clemens and Plane
353	1974), although inspection of this specimen by the author reveals that the recess is barely
354	developed and much shallower than it is in NTM P4325.
355	Steeply-angled I_1 . The basal section of the lower incisor of the holotype of W . oldfieldi projects
356	anterodorsally at an angle of 27° from the long axis of the horizontal ramus of the dentary before
357	the apical region of the tooth curves dorsally (Fig. 10). The only I ₁ of W. vanderleueri in place in
358	a jaw (NTM P87108-5) is similarly procumbent with an angle of 31°. In other specimens where

359 the I₁ is missing (NTM P9273-3, P85553-4, P8695-97, P87108-6) the angle of the posterodorsal wall of the alveolus can be measured. This angle ranges from 30 to 38° in these specimens with a 360 361 mean of 34.8°, indicating the posterodorsal wall of the alveolus is an acceptable proxy for the angle of procumbency of I_1 . In contrast the posterodorsal wall of the alveolus for I_1 of W. 362 alcootaensis (NTM P4325) is far more steeply-angled at close to 54° from the long axis of the 363 364 horizontal ramus (Fig. 10). 365 Loss of P₂. The holotype of W. oldfieldi and all specimens of W. vanderleueri that preserve the bone between I₁ and P₃ retain a rudimentary single cusped tooth, or an alveolus for such a tooth 366 (Clemens and Plane, 1974; Megirian, 1986; NTM P927-3, NTM P8695-97, NTM P-87108-6). 367 This tooth is usually identified as P₂ (e.g. Megirian, 1986; Murray, Wells and Plane, 1987) 368 369 although other identifications, such as P₁ or a canine, are possible. Although the presence of an upper anterior premolar is variable within W. vanderleueri (Murray and Megirian, 1990) it would 370 371 appear that a lower tooth in this position is invariably present. The Alcoota dentary lacks any alveolus between I₁ and P₃ (Fig. 3A, C) indicating the complete loss of all lower cheek teeth 372 373 anterior to P₃. Larger P_3 relative to M_1 . The P_3 : M_1 length ratio for W. oldfieldi is 1.19 in the holotype and 1.16 374 in a specimen from Riversleigh (Gillespie et al. 2014). This ratio ranges from 1.18 to 1.40 in the 375 Bullock Creek sample of W. vanderleueri (SAM P17925, NTM P2970-26, NTM P87108-5, 376 NTM P87108-6, NTM P85553-4). The precise ratio in NTM P4325 cannot be obtained because 377 M₁ is missing and its length has to be taken from that of its alveolus. If this is done, a ratio of 378 1.50 is obtained. Thus, even allowing for estimation errors, it is clear that W. alcootaensis has a 379 distinctly larger P₃ to M₁ ratio than W. oldfieldi and one that lies outside the range of variation 380 381 seen in W. vanderleueri. Although the length of M₁ has to be estimated in NTM P4325 it is possible to compare the size of P₃ with a measureable proxy for total jaw size. If P₃ is compared 382 383 to the distance from the anterior margin of the alveolus for P₃ to the anteriormost point of the masseteric fossa, similar results to the comparison of P₃ and M₁ are obtained. P₃ is 30.7 % of the 384 385 jaw size proxy in the holotype of W. oldfieldi, while it ranges from 31.5 % to 36.0 % in W. vanderleueri and is 36.4 % in NTM P4325. Thus W. alcootaensis has a distinctly enlarged P₃ in 386 387 comparison with W. oldfieldi and a slightly enlarged P₃ in comparison with W. vanderleueri.

388	Loss of M_3 . The lower jaws of W . oldfieldi and W . vanderleueri bear three double-rooted molars
389	behind the enlarged P ₃ (Clemens and Plane 1974; Megirian 1986; Gillespie et al. 2014). The new
390	Alcoota dentary (NTM P4325) bears just four sockets (Fig. 5), indicating only two double-rooted
391	molars. An alternative interpretation was suggested during the review of this paper. In this
392	interpretation the tall peak of alveolar bone observed at the anterior end of NTM P4325 is taken
393	to mark the boundary between the last premolar and the first molar. This allows a linear row of
394	five sockets for the roots of the molar teeth which would presumably be interpreted as receiving
395	two double rooted molars and a posterior single rooted molar. However such an interpretation
396	can be dismissed because the broken roots in the first two alveolar sockets form a contiguous
397	broken surface over the peak of alveolar bone (Figs 4C, 5, 11), indicating conclusively that they
398	are the anterior and posterior roots of the same large premolar. Furthermore the tall peak of
399	alveolar bone matches precisely the peak that occurs between the anterior and posterior roots of
400	P ₃ in W. vanderleueri (Fig. 11). That the four remaining alveolar sockets equate to two double
401	rooted molar teeth is supported by the presence of two roots in all known Wakaleo lower molars,
402	including the reduced M ₃ of W. vanderleueri (Clemens and Plane 1974, Gillespie et al. 2014).
403	This interpretation is further supported by the dentary fragment UCMP 65621, which preserves
404	its last two molars. These molars would appear to be homologous with M_1 and M_2 of W .
405	vanderleueri, indicating that M ₃ was absent in this specimen as well. The posterior molar of
406	UCMP 65621 is identified as M ₂ rather than M ₃ because it is much larger than the reduced M ₃ of
407	other Wakaleo species both in terms of absolute size and relative size compared to the preceding
408	molar. It also retains distinct trigonid and talonid moieties unlike the M ₃ of W. oldfieldi or W.
409	vanderleueri. In W. oldfieldi the talonid basin occupies most of the occlusal surface of the tooth,
410	with the trigonid reduced to a raised anterior edge or absent altogether, while in W. vanderleueri
411	reduction of M ₃ has proceeded to the point that it is a simple basinless nubbin.
412	Variation within Wakaleo alcootaensis
413	As there is very little overlap between the new specimens and the holotype any discussion of
414	variation within W. alcootaensis is restricted to size variation. The holotype has dental
415	measurements that are about one third larger than those of W. vanderleueri. Similarly the new
416	dentary has dental measurements that range from 16 to 35 $\%$ greater than the mean value for W .
417	vanderleueri (Table 2). However the dentary fragment UCMP 65621 is not so large, with the
418	combined length of M ₁ and M ₂ only exceeding the mean value for W. vanderleueri by just over

10 % (Table 2). In contrast, the isolated M² is slightly larger than that of the holotype of W. 419 alcootaensis, although the difference is less than 15% of the linear measurements. These 420 421 observations indicate that, like W. vanderleueri, W. alcootaensis displayed a modest range of 422 size variation. 423 **Evolution within Thylacoleonidae** Members of the genus Wakaleo, including W. alcootaensis, display several derived features not 424 425 seen in species of *Thylacoleo* such as loss of the first premolar in the upper and lower jaws, presence of an anterolingual cuspule on the third upper premolar and triangular upper molars 426 427 (Gillespie 2007). These suggest that *Wakaleo* forms a clade to the exclusion of *Thylacoleo* as suggested by Clemens and Plane (1974). Nonetheless W. alcootaensis displays several derived 428 429 states not present in earlier Wakaleo species but are present in Thylacoleo. These include: larger size; steeply-angled lower incisors; increased size of P₃ relative to other teeth; and reduction in 430 the number of molar teeth. To test whether or not these character states are sufficient to remove 431 W. alcootaensis from Wakaleo, or to nest Thylacoleo within Wakaleo as the sister taxon of W. 432 433 alcootaensis, a cladistic analysis was performed. The search produced three most parsimonious trees with a length of 63 steps. The strict consensus of these trees upholds Wakalaeo as a clade 434 435 including W. alcootaensis (Fig. 12). Of the features shared between W. alcootaensis and Thylacoleo that were included in the analysis 436 (that is all except absolute size) were optimised as convergences between W. alcootaensis and a 437 subset of Thylacoleo (T. crassidentatus + T. carnifex), or T. carnifex alone, at least in delayed 438 439 transformation optimisation. None of them were found to be synapomorphies linking W. alcootaensis to Thylacoleo. The enlargement of P₃ and the loss of M₃ were interpreted as 440 441 synapomorphies of Thylacoleonidae that were reversed in W. oldfieldi and W. vanderleueri when 442 acctran optimisation was in place. This optimisation, although equally parsimonious within the 443 narrow parameters of the present analysis, is incongruent with stratigraphy and is almost certainly an artefact of the high amounts of missing data for basal thylacoleonids. As new data 444 445 for Priscileo roskellyae and other basal thylacoleonids become available it is likely that the ambiguity will be resolved in favour of the deltran optimisation. Thus the interpretation that the 446 447 similarities between W. alcootaensis and Thylacoleo are convergent is supported by the analysis, although the strength of this support is lessened by missing data. This indicates that there has 448

49	probably been a certain amount of iterative evolution in Thylacoleomaae with some character
50	traits evolving in the late Miocene of the Wakaleo clade and again, independently, in the Plio-
51	Pleistocene Thylacoleo clade. What selective force may be driving this convergence is unknown,
52	although the increased size of both W. alcootaensis and later Thylacoleo, relative to other
53	thylacoleonids hints that it may be a specialisation towards hypercarnivory and increasing prey
54	size.
55	The new anatomical information and the phylogenetic analysis also allow us to revisit the
56	position of W. alcootaensis within Wakaleo. Previous hypotheses had suggested that Wakaleo
57	consisted of a single anagenetic lineage passing from W. oldfieldi to W. vanderleueri and finally
58	W. alcootaensis. This hypothesis is supported by the stratigraphic succession of these taxa and
59	the apparent morphoclinal trends that they exhibit. 'Apparent' is an appropriate qualifier because
60	the incompleteness of both W. oldfieldi and W. alcootaensis meant that no single anatomical
61	structure could be traced through all three species. With the addition of upper jaw material for W
62	oldfieldi (Gillespie et al. 2014) and lower jaw material for W. alcootaensis (this paper) these
63	morphoclinal trends can be re-examined. The following character trends are found to be
64	congruent with an anagenetic lineage: increasing absolute size; increasing P_3 to M_1 ratio; and
65	progressive reduction and eventual loss of M3. We might also add an increasingly steeply
66	inclined I_1 if it can be shown that like the holotype other W . oldfieldi individuals have a highly
67	procumbent I_1 set at a lower angle to those of W . $vanderleueri$. However other characters are
68	incongruent with this morphoclinal trend. Incongruent characters include the buccal height of M2
69	relative to its lingual height and the excavation of the anterior margin of the masseteric fossa. W.
70	oldfieldi and W. vanderleueri show increasing height of the buccal side of M2 relative to the
71	lingual side so there is a steep buccolingual gradient across the tooth. In contrast the buccal side
72	of the M ² of W. alcootaensis is barely any taller than the lingual side (NTM P4328). The
73	masseteric fossa is recessed under its anterior rim in W. oldfieldi and W. alcootaensis whereas
74	there is no recess in W. vanderleueri. These characters may be simply represent small-scale
75	reversals within an anagentic lineage or may be indicative of a more complex branching
76	arrangement within Wakaleo.
77	Although simple cladistics analysis is incapable of testing for anagenesis, with each operational
78	taxonomic unit treated as a terminal branch, we can expect that anagenetic lineages appear as a

470	
179	pectinate arrangement with the constituent taxa appearing in sequence. This does not occur
480	within the Wakaleo clade of the present analysis, casting some doubt upon the hypothesis of an
481	anagenetic lineage in this genus. According to the analysis W. alcootaensis branched off prior to
482	the split between W. oldfieldi and W. vanderleueri. This implies a ghost lineage for W.
483	alcootaensis extending back to the early Miocene, for which we have no physical evidence.
484	However an examination of the synapomorphies supporting the W. oldfieldi + W. vanderleueri
485	clade shows that they are mostly plesiomorphic characters that have been optimised as reversals
486	in this analysis. This may well be an artefact of the poor representation of basal thylacoleonids in
487	the analysis and will likely change with the addition of new, currently unpublished, basal
488	thylacoleonid material (Gillespie 2007).
489	In summary, W. alcootensis would appear to be correctly placed in Wakaleo, which is supported
490	as monophyletic but an evaluation of evolution within the genus is dependent upon the addition
491	of new data, much of which should be forthcoming.
192	
493 494	Acknowledgements
194	
195	The new dentary which form the basis of this paper was discovered in a new pit ('Shattered
196	Dreams') which was opened thanks to the generous loan of a backhoe and licensed operator from
197	Central Desert Regional Council, Northern Territory. I am deeply indebted to Glenn Marshall for
498	making this loan possible. I also wish to thank Ben McHenry of the South Australian Museum
199	for allowing me access to thylacoleonid specimens in his care. The photographs in figures 2 to 5
500	were taken by Steven Jackson. Jay Nair assisted in the location of some literature. The
501	manuscript was greatly improved by thorough reviews from Kenny Travouillon, Maria Amelia
502	
002	Chemisquy, Graciela Piñeiro and an anonymous reviewer.

References

- Aplin K and Archer M. 1987. Recent advances in marsupial systematics with a new syncretic
- classification. In: Archer M, ed. Possums and Opossums: studies in evolution. Sydney: Royal
- 507 Zoological Society of New South Wales, xv-lxxii.
- Archer M, Arena DA, Bassarova M, Beck RMD, Black K, Boles WE, Brewer P, Cooke BN,
- 509 Crosby K, Gillespie A, Godthelp H, Hand SJ, Kear BP, Louys J, Morrell A, Muirhead J, Roberts
- 510 KK, Scanlon JD, Travouillon KJ and Wroe S. 2006. Current status of species-level
- representation in faunas from selected fossil localities in the Riversleigh World Heritage Area,
- 512 northwestern Queensland. *Alcheringa Special Issue* 1: 1–18.
- Archer M and Dawson L. 1982. Revision of marsupial lions of the genus *Thylacoleo* Gervais
- 514 (Thylacoleonidae, Marsupialia) and thylacoleonid evolution in the late Cainozoic. In: Archer M,
- ed. Carnivorous Marsupials. Sydney: Royal Zoological Society of New South Wales, 477–494.
- Archer M and Rich TH. 1982. Results of the Ray E. Lemley expeditions. Wakaleo alcootaensis
- 517 n. sp. (Thylacoleonidae, Marsupialia), a new marsupial lion from the Miocene of the Northern
- Territory with a consideration of early radiation in the family. In: Archer M, ed. *Carnivorous*
- 519 Marsupials. Sydney: Royal Zoological Society of New South Wales, 495–502.
- 520 Arena DA, Travouillon KJ, Beck RMD, Black KH, Gillespie AK, Myers TJ, Archer M and Hand
- 521 SJ. 2015. Mammalian lineages and the biostratigraphy and biochronology of Cenozoic faunas
- from the Riversleigh World Heritage Area, Australia. Lethaia, DOI: 10.1111/let.12131.
- Bartholomai A. 1962. A new species of *Thylacoleo* and notes on some caudal vertebrae of
- 524 Palorchestes azael. Memoirs of the Queensland Museum 14: 33–40.
- 525 Black K and Archer M. 1997. Nimiokoala gen. nov. (Marsupialia, Phascolarctidae) from
- Riversleigh, northwestern Queensland, with a revision of *Litokoala*. Memoirs of the Queensland
- 527 Museum 41: 209–228.
- 528 Clemens WA, Plane M. 1974. Mid-Tertiary Thylacoleonidae (Marsupialia, Mammalia). *Journal*
- 529 of Paleontology 48: 652–660.
- Flower, WH. 1867. On the development and succession of the teeth in the Marsupialia.
- *Philosophical Transactions of the Royal Society of London* 157: 631–641.Gill T. 1872.
- Arrangement of the families of mammals with analytical tables. *Smithsonian Miscellaneous*
- 533 *Collections* 2: 1–98.
- 634 Gillespie AK. 1997. *Priscileo roskellyae* sp. nov. (Thylacoleonidae, Marsupialia) from the
- 535 Oligocene-Miocene of Riversleigh, northwestern Queensland. Memoirs of the Queensland
- 536 Museum 41: 321–327.

- 537 Gillespie AK. 2007. Diversity and systematics of marsupial lions from the Riversleigh World
- Heritage Area and the evolution of the Thylacoleonidae. Ph.D. dissertation, University of New
- 539 South Wales, Sydney. 394 pp.
- 540 Gillespie AK, Archer M, Hand SJ, Black K. 2014. New material referable to Wakaleo
- 541 (Marsupialia: Thylacoleonidae) from the Riversleigh World Heritage Area, northwestern
- Queensland: revising species boundaries and distributions in Oligo/Miocene marsupial lions.
- 543 *Alcheringa* 38: 513–527.
- Luckett, WP. 1993. An ontogenetic assessment of dental homologies in therian mammals. In:
- 545 Szalay FS, Novacek MJ & McKenna MC, eds. Mammal phylogeny. New York: Springer, 182–
- 546 204.
- Megirian D. 1986. The dentary of *Wakaleo vanderleueri* (Thylacoleonidae: Marsupialia). *The*
- 548 Beagle, Occasional Papers of the Northern Territory Museum of Arts and Sciences. 3: 71–79.
- Megirian D. 2000. Report on shallow augering at the MAGNT Alcoota fossil reserve, June and
- 550 August, 1998. MAGNT Research Report 7: 1–19.
- Megirian D, Murray PF and Wells R. 1997. The late Miocene Ongeva Local Fauna of central
- Australia. The Beagle, Records of the Museums and Art Galleries of the Northern Territory, 13:
- 553 9–38.
- Megirian D, Prideaux GJ, Murray PF and Smit N. 2010. An Australian land mammal age
- biochronological scheme. *Paleobiology* 36: 658-671.
- Murray PF and Megirian D. 1990. Further observations on the morphology of *Wakaleo*
- 557 vanderleueri (Marsupialia: Thylacoleonidae) from the Mid-Miocene Camfield Beds, Northern
- 558 Territory. The Beagle: Records of the Museums and Art Galleries of the Northern Territory 7:
- 559 91–102.
- Murray PF and Megirian D. 1992. Continuity and contrast in middle and late Miocene vertebrate
- 561 communities from the Northern Territory. *The Beagle: Records of the Museums and Art*
- 562 Galleries of the Northern Territory 9: 195–218.
- Murray PF and Vickers-Rich P. 2004.. *Magnificent Mihirungs: the Colossal Flightless Birds of*
- 564 the Australian Dreamtime. Bloomington: Indiana University Press. Murray P, Wells R, and Plane
- 565 M. 1987. The cranium of the Miocene thylacoleonid, Wakaleo vanderleueri: click go the shears-
- a fresh bite at thylacoleonid systematics. In: Archer M, ed. Possums and Opossums: Studies in
- 567 Evolution. Sydney: Surrey Beatty and Sons and the Royal Zoological Society of New South
- 568 Wales, 433-466
- Owen R. 1859. On the fossil mammals of Australia. 1. Description of a mutilated skull of a large
- 570 marsupial carnivore (*Thylacoleo carnifex* Owen) from a calcareous conglomerate stratum, eighty

- 571 miles s.w. of Melbourne, Victoria. Philosophical Transactions of the Royal Society of London
- 572 149: 309–322.
- 573 Owen R. 1866. On the Anatomy of Vertebrates, Vol. II. London: Longmans, Green.
- Owen R. 1871. On the fossil mammals of Australia. 4. Dentition and Mandible of *Thylacoleo*
- 575 carnifex, with remarks on the arguments for its herbivority. Philosophical Transactions of the
- 576 *Royal Society of London* 161: 213-266, pls. 11–14.
- Owen R. 1887. Additional evidence of the affinities of the extinct marsupial quadruped
- 578 Thylacoleo carnifex (Owen). Philosophical Transactions of the Royal Society of London 178: 1-
- 579 3, pl. 1.
- Pledge NS. 1977. A new species of *Thylacoleo* (Marsupialia: Thylacoleonidae) with notes on the
- occurences and distribution of Thylacoleonidae in South Australia. Records of the South
- 582 *Australian Museum* 17: 277–283.
- Pledge NS. 2005. The Riversleigh wynyardiids. Memoirs of the Queensland Museum 51: 135–
- 584 169.
- 585 Stirton RA, Woodburne MO and Plane MD. 1967. A phylogeny of the Tertiary Diprotodontidae
- and its significance in correlation. Bulletin of the Bureau of Mineral Resources, Geology and
- 587 *Geophysics, Australia* 85: 149–160.
- 588 Swofford DL. 2002. *PAUP* phylogenetic analysis using parsimony (* and other methods)*.
- Version 4. Sunderland: Sinauer Associates.
- 590 Woodburne MO. 1967. The Alcoota Fauna, central Australia. Bulletin of the Bureau of Mineral
- 591 Resources Geology and Geophysics, Australia 87: 1–187
- Woodburne MO. 1984. Families of marsupials: relationships, evolution and biogeography. In:
- 593 Broadhead TW, ed. Mammals: Notes for a short course. University of Tennessee Department of
- 594 Geological Science, Studies in Geology 8: 48–71.
- Wroe S, Myers TJ, Wells RT and Gillespie A. 1999. Estimating the weight of the Pleistocene
- 596 marsupial lion, *Thylacoleo carnifex* (Thylacoleonidae: Marsupialia): implications for the
- ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian
- 598 marsupial carnivore faunas. *Australian Journal of Zoology* 47: 489–498.
- Wroe S, Myers T, Seebacher F, Kear B, Gillespie A, Crowther M and Salisbury S. 2003. An
- alternative method for predicting body mass: the case of the Pleistocene marsupial lion.
- 601 *Paleobiology* 29: 403–411.

Appendix 1. Character list

604

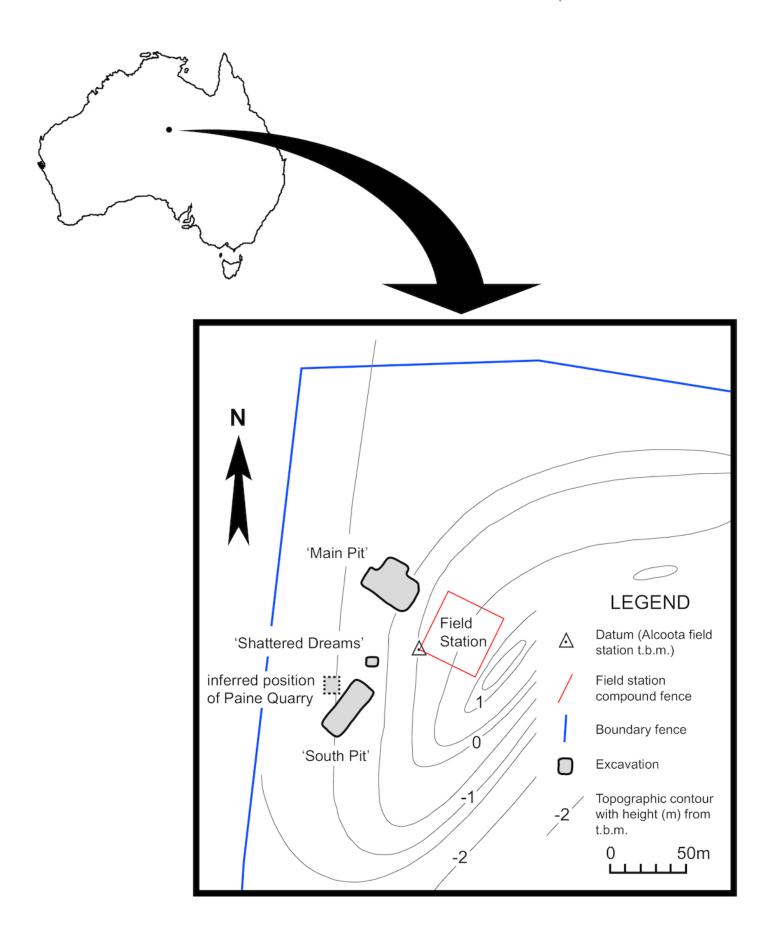
- 1. Number of alveoli between P₃ and I₁: no alveoli (0); one alveolus (1); two alveoli (2)
- 606 (modified from characters 1 and 2 of Gillespie 2007). Character is treated as ordered. Given the
- difficulty in determining the homology of the reduced anterior teeth between the first incisor and
- the third premolar in diprotodontians, this character is simplified here and simply codes the
- variable number of alveoli present between these teeth.
- 2. Ratio of the length of P₃ to the length of M₁: less than 1.0 (0); between 1 and 1.1 (1); between
- 1.1 and 1.5 (2); 1.5 or greater (3) (modified from Clemens and Plane 1974). The character is
- 612 treated as ordered.
- 3. Development of a posterolingual crest on P₃: weakly developed to absent (0); well-developed
- 614 (1) (modified from character 7 in Gillespie 2007). The character here is simplified by subsuming
- 615 the state of 'weakly developed' into the plesiomorphic state.
- 4. Presence or absence of of a weak anterobuccal crest on P₃: absent (0); present (1) (modified
- from character 9 in Gillespie 2007). The character here is treated as a simple presence or absence
- character, rather than distinguishing between weakly and moderately developed derived states.
- 5. Molar cusp morphology: selenodont (0); bunolophodont (1); bunodont (2) (from Gillespie
- 620 2007).
- 621 6. Height of the trigonid relative to the talonid in M_1 : trigonid subequal or lower than the talonid
- height (0); trigonid distinctly taller than the talonid (1); trigonid more than twice the height of the
- talonid (2) (modified from character 12 in Gillespie 2007). Character is ordered.
- 7. Width of talonid basin of M_1 : width nearly equal to width of the crown (0); width less than
- 625 70% of the width of the crown (1); width reduced to less than 30% of the width of the crown, or
- 626 near absence (2) (modified from character 13 in Gillespie 2007). Character is ordered.
- 8. Width of the talonid moiety relative to the trigonid moiety in M₁: Talonid wider than the
- trigonid (0); talonid between 70% and 100% the width of the trigonid (1); talonid less then 70%

- of the width of the trigonid (2) (character modified from character 14 in Gillespie 2007).
- 630 Character is ordered.
- 9. Height of the trigonid relative to the talonid in M₂: trigonid slightly taller than the talonid
- height (0); trigonid greater than 1.3 times taller than the talonid (1) (modified from character 16
- 633 in Gillespie 2007).
- 10. Presence or absence of the talonid in M₂: present (0); absent (1) (modified from character 17
- 635 in Gillespie 2007).
- 11. Presence or absence of M₃: present (0); absent (1) (from Archer and Dawson 1982).
- 637 12. Presence or absence of M₄: present (0); absent (1) (from Archer and Dawson 1982).
- 13. Ratio of the length of P³ to M¹: less than 1.0 (0); between 1 and 1.5 (1); between 1.5 and 1.9
- 639 (2); greater than 1.9 (3) (modified from character 23 in Gillespie 2007). Character is ordered.
- 14. Length of the longitudinal blade of P³ relative to the total length of the tooth: less than 50%
- (0); between 50 and 70% (1); greater than 70 % (2) (from Gillespie 2007). Character is ordered.
- 15. Orientation of posterior longitudinal blade of P³: steeply inclined (0); gently bowed and
- 643 horizontal (1); absent (2) (from Gillespie 2007).
- 16. Presence or absence of a mid crown constriction of P³: absent (0); present (1) (from Gillespie
- 645 2007).
- 17. Presence or absence of a posterobuccal crest on P³: absent (0); present (1) (from Gillespie
- 647 2007).
- 18. Shape of the prominence below the anterior cusp of P³ on its lingual side: elongate crest
- 649 joining anterior cusp (0); cuspule sepparated from anterior cusp (1) (from Gillespie 2007).
- 19. Posterior width of P³ relative to anterior width: greater than anterior width (0); less than
- anterior width (1) (from Gillespie 2007).
- 20. Occlusal outline of M¹: square to rectangular (0); triangular (1) (from Gillespie 2007).

- 21. Development of the metaconule of M¹: present and well-developed (0); barely developed or
- absent altogether (1) (from Gillespie 2007).
- 22. Presence or absence of P¹: present (0); absent (1) (from Gillespie 2007).
- 23. Presence or absence of P²: present (0); absent (1) (from Gillespie 2007).
- 24. Shape of longitudinal crest of P³ in occlusal view: straight (0); longitudinally bowed (1)
- 658 (from Gillespie 2007).
- 25. Shape of posterobuccal margin of M¹ and relationship to M²: not elongated and not
- overlapping M² (0); posteriorly elongated and overlapping M² in lateral view (1) (modified from
- character 33 in Gillespie 2007).
- 26. Anteroposterior depth gradient of the buccal side of the crown of M¹: no gradient, anterior
- and posterior ends of the crown of equal depth (0), weak gradient with anterior end slightly taller
- 664 than the posterior end (1), strong gradient with anterior end much taller than the posterior end (2)
- 665 (from Gillespie 2007). Character is ordered.
- 27. Occlusal outline of M²: rectangular (0); subtriangular (1); fully triangular (2) (from Gillespie
- 667 2007). Character is ordered.
- 28. Presence or absence of a metaconule on M²: present (0); absent (1) (from Gillespie 2007).
- 29. Presence or absence of a lateral bulge of the buccal margin of the crown, adjacent to the
- paracone of M²: absent (0); present (1) (from Gillespie 2007).
- 30. Presence or absence of M³: present (0); absent (1) (from Archer and Dawson 1982).
- 31. Angle of the long axis of I₁ to the long axis of the horizontal ramus of the dentary: less than
- 40° (0); greater than 40° (1). Character is new.
- 674 32. Development of the masseteric fossa: fossa is not recessed under the anterior margin (0);
- 675 fossa is recessed under the anterior margin (1). Character is new.
- 33. Presence or absence of palatal ridges: absent (0); present (1) (from Gillespie 2007).

34. Depth of buccal margin of M² in comparison to the lingual margin: buccal and lingual 677 margins of similar height (0); buccal margin raised relative to the lingual margin (1) (from 678 679 Gillespie 2007). 680 **Appendix 2. Tree Description** 681 682 The second of two most-parsimonious-trees (where *Thylacoleo hilli* is resolved as the sister 683 taxon of T, crassidentatus + T, carnifex) is described, however only ingroup clades that are 684 present in the strict consensus tree are described. State changes are given in brackets. An asterisk 685 denotes a state change that occurs once, without homoplasy. 686 Clade 1. Thylacoleonidae 687 *Unambiguous synapomorphies.* Character 5 (1 to 2, or 0 to 2)*, bunodont molar cusps. Acctran 688 optimisation supports the state change from bunolophodont to bunodont (1 to 2), whereas deltran 689 optimisation interprets the state change as selenodont to bunodont (0 to 2). In either case the 690 691 change to bunodonty is unambiguously tied to this clade and is an unambiguous synapomorphy of Thylacoleonidae. Character 15 (0 to 1)*: posterior longitudinal blade of P³ is nearly horizontal 692 and bowed. Character 24 (0 to 1)*: Main sectorial blade of P³ is longitudinally bowed. Character 693 26 (0 to 1)*: an anteroposterior gradient on the buccal side of M¹ with a taller anterior end. 694 Character 29 (0 to 1)*: presence of a lateral bulge of the buccal margin of M² adjacent to the 695 696 paracone. 697 Ambiguous synapomorphies under acctran optimisation. Character 2 (1 to 3): A P₃ to M₁ ratio of 1.5 or more. Unknown in *Priscileo roskellyae* and reversed in *Wakaleo oldfieldi + Wakaleo* 698 vanderleueri. Deltran optimisation interprets this chacter state as a convergence between 699 Wakaleo alcootaensis and Thylacoleo crassidentatus + Thylacoleo carnifex. With the inclusion 700 701 of new data from basal thylacoleonids this ambiguity will almost certainly resolve in favour of the deltran optimisation. Character 3 (0 to 1): Presence of a well-developed posterolingual crest 702 on P₃ (reversed in *Thylacoleo crassidentatus* + *Thylacoleo carnifex*). Deltran optimisation 703 interprets this character as a convergence between Wakaleo oldfieldi + Wakaleo vanderleueri and 704 Thylacoleo hilli. Character 6 (0 to 1)*: trigonids of lower molars taller than the talonids. 705

- Ambiguous due to missing published information on the lower molars of *Priscileo roskellyae*.
- 707 Deltran optimisation finds this character state change on the branch supporting Wakaleo +
- 708 Thylacoleo. Character 7 (0 to 1)*: talonid basins of lower molars distinctly narrower than the
- crown. Ambiguous due to missing published information on the lower molars of *Priscileo*
- 710 roskellyae. Deltran optimisation finds this character state change on the branch supporting
- 711 Wakaleo + Thylacoleo. Character 8 (0 to 1)*: talonid moiety of M₁ narrower than the trigonid
- 712 moiety. Ambiguous due to missing published information on the lower molars of *Priscileo*
- 713 roskellyae. Deltran optimisation finds this character state change on the branch supporting
- 714 Wakaleo + Thylacoleo. Character 9 (0 to 1)*: Trigonid of M₂ much higher than its talonid.
- Ambiguous due to missing published information on the lower molars of *Priscileo roskellvae*.
- 716 Deltran optimisation finds this character state change on the branch supporting Wakaleo (the
- state cannot be determined in *Thylacoleo* due to loss of the talonid in M₂). Character 11 (0 to 1):
- 718 loss of M₃ (reversed in *Wakaleo oldfieldi + Wakaleo vanderleueri*). Deltran optimisation
- 719 interprets this chacter state as a convergence between Wakaleo alcootaensis and Thylacoleo
- 720 crassidentatus + Thylacoleo carnifex. With the inclusion of new data from basal thylacoleonids
- 721 this ambiguity will almost certainly resolve in favour of the deltran optimisation. Character 12 (0
- 722 to 1)*: loss of M₄. Ambiguous due to missing data for *Priscileo roskellyae*, with deltran
- optimisation finding this character to be a synapomorphy of Wakaleo + Thylacoleo. Given that
- 724 the upper tooth row of *Priscileo roskellyae* retains M⁴, it is probable that the lower tooth row
- retained M₄. If this is found to be the case then the ambiguity will resolve in favour of the deltran
- 726 optimisation.
- 727 Clade 2. Wakaleo + Thylacoleo
- 728 Unambiguous synapomorphies. Character 13 (1 to 2): P³ to M¹ ratio greater than 1.5. Reversed in
- 729 Wakaleo oldfieldi. Character 14 (0 to 1)*: Central longitudinal blade of P³ longer than 50% of
- total tooth length. Character 21 (0 to 1)*: Metaconule of M¹ reduced to the point that it is barely
- developed or is lost altogether. Character 26 (1 to 2)*: an extremely strong anteroposterior
- gradient on the buccal side of M¹ with a very tall anterior end. Character 33 (0 to 1)*: palatal
- ridges present.


- 734 Ambiguous synapomorphies under acctran optimisation. Character 28 (0 to 1)*: Loss of
- metaconule on M². Ambiguous due to missing data in *Thylacoleo*. This character state change is
- a synapomorphy of *Wakaleo* in delayed transformation.
- 737 Ambiguous synapomorphies under deltran optimisation. Character 2 (1 to 2): A P₃ to M₁ ratio
- greater than 1.1. See discussion of this character above. Character 6 (0 to 1)*: Trigonids of lower
- molars taller than the talonids. See discussion of this character above. Character 7 (0 to 1)*:
- talonid basins of lower molars distinctly narrower than the crown. See discussion of this
- 741 character above.
- 742 Clade 3. Wakaleo
- 743 Unambiguous synapomorphies. Character 18 (0 to 1)*: Presence of a lingual cuspule below the
- anterior cusp of P³. Character 20 (0 to 1)*: Triangular occlusal outline of M¹. Character 22 (0 to
- 1): Loss of P¹. The absence of the P¹ in two of the outgroup taxa (*Nimiokoala greystanesi* and
- 746 Namilamadeta albivenator) renders the optimisation of this character at the base of the tree
- ambiguous. Nevertheless this tooth is present basally in Thylacoleonidae and its loss can be
- unambiguously tied to *Wakaleo* within Thylacoleonidae. Character 25 (0 to 1)*: posterobuccal
- margin of M¹ lengthened and overlapping M² in lateral view. Character 27 (0 to 1): Occlusal
- outline of M² subtriangular to triangular.
- 751 Ambiguous synapomorphies under acctran optimisation. Character 3 (0 to 1): Well-developed
- 752 posterolingual crest on P₃. Convergent in *Thylacoleo hilli*. Ambiguous due to missing data in W.
- 753 alcootaensis. Deltran optimisation places this character state change on the branch supporting W.
- 754 oldfieldi + W. vanderleueri. Character 23 (0 to 1): Loss of P². Ambiguous due to lack of data in
- 755 W. oldfieldi and polymorphism in W. vanderleueri. Deltran optimisation interprets the loss of this
- tooth as an autapomorphy of *W. alcootaensis*, convergently acquired in some *W. vanderleueri*.
- 757 Character 32 (0 to 1): Recessed masseteric fossa. Reversed in W. vanderleueri. Deltran
- optimisation interprets this character state change as convergently evolved in W. oldfieldi and W.
- 759 alcootaensis.
- 760 Ambiguous synapomorphies under deltran optimisation. Character 9 (0 to 1)*: Trigonid of M₂
- much higher than its talonid. See discussion of this character above. Character 28 (0 to 1)*: Loss
- of metaconule on M². See discussion of this character above.

- 763 Clade 4. Wakaleo oldfieldi + Wakaleo vanderleurei
- 764 Unambiguous synapomorphies. Character 1 (0 to 1): Presence of one alveolus between I₁ and P₃.
- Although it may seem likely that the single tooth present in this position in *W. oldfieldi* and *W.*
- vanderleueri is a primitive retention, it is interpreted here as a derived reacquisition due to the
- lack of teeth in this position in two of the outgroup taxa and the scarcity of data for basal
- 768 thylacoleonids in this analysis. Character 34 (0 to 1)*: Buccal margin of M² much deeper than
- 769 lingual margin.
- 770 Ambiguous synapomorphies under acctran optimisation. Character 2 (3 to 2): Reversal to a P₃:
- M_1 less than 1.5. Character 11 (1 to 0): Reversal to the presence of M_3 . See discussion of this
- character above.
- Ambiguous synapomorphies under deltran optimisation. Character 3 (0 to 1): presence of a well-
- developed posterolingual crest on P₃. Convergent in *Thylacoleo hilli*. See discussion of the
- character above.
- 776 Clade 5. Thylacoleo
- 777 Unambiguous synapomorphies. Character 1 (0 to 2): Presence of two alveoli between I₁ and P₃.
- Although it may seem likely that the character state displayed by *Thylacoleo* is a primitive
- retention, it is interpreted here as a derived reacquisition due to the lack of teeth in this position
- 780 in two of the outgroup taxa and the scarcity of data for basal thylacoleonids in this analysis.
- 781 Character 4 (1 to 0): Loss of anterobuccal crest on P₃. Convergent in *Pseudocheirus peregrinus*.
- 782 Character 14 (1 to 2)*: Very long longitudinal blade of P³ more than 70% of total tooth length.
- 783 Character 15 (1 to 2)*: Loss of the posterior longitudinal blade of P³. Character 16 (1 to 0): Loss
- of a mid-crown constriction of P₃ in occlusal view. Convergent in *Nimiokoala grevstanesi*.
- 785 Character 17 (1 to 0): Loss of a posterobuccal crest on P³. A reversal of a character that evolved
- on the branch leading to Vombatimorphia. Character 19 (0 to 1)*: Posterior width of P³ less than
- 787 the anterior width.
- 788 Ambiguous synapomorphies under acctran optimisation. Character 10 (0 to 1)*: talonid of M₂
- 789 lost. Ambiguous due to missing data for *Thylacoleo hilli*. Deltran interprets this chacter as a
- 790 synapomorphy of *Thylacoleo crassidentatus* + *Thylacoleo carnifex*.

1

Map of north-west corner of Alcoota Fossil Reserve showing the principal excavation sites of the Alcoota Local Fauna.

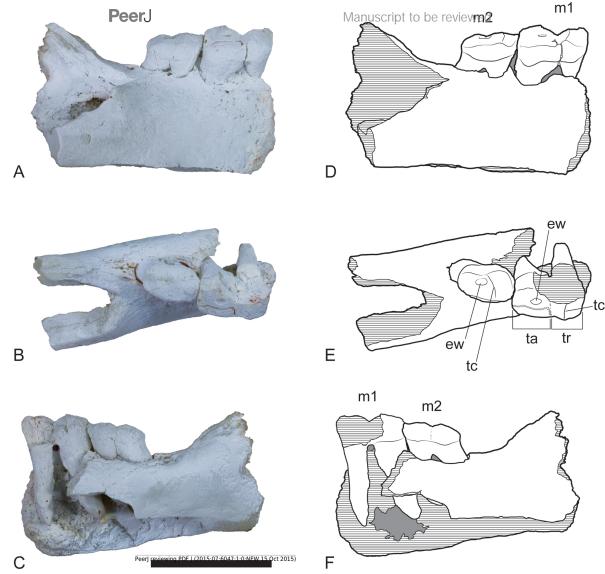


Figure 2(on next page)

Wakaleo alcootaensis, right dentary fragment (cast of UCMP 65621).

A, Buccal view. B, Occlusal view. C, Lingual view. D, E, F, Interpretive line drawings of A, B, C, respectively. Note that specimen in A-C has been whitened with ammonium chloride.

Abbreviations: ew, remnant enamel well; m1, first lower molar; m2, second lower molar; ta, talonid; tc, transverse crest; tr, trigonid. Scale bar = 20 mm.

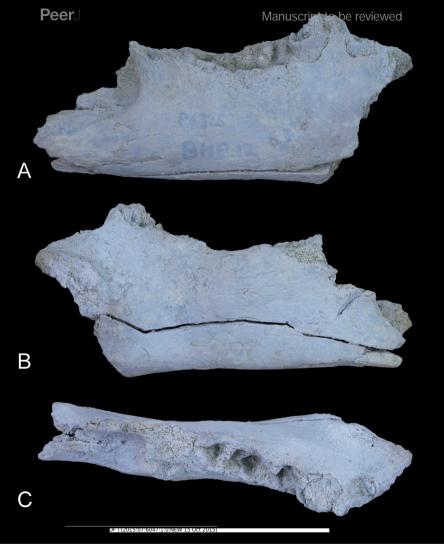
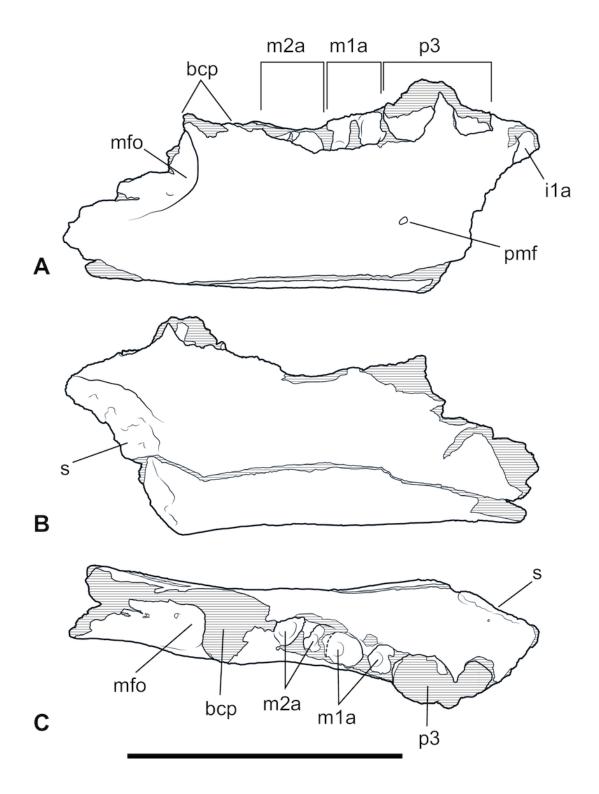


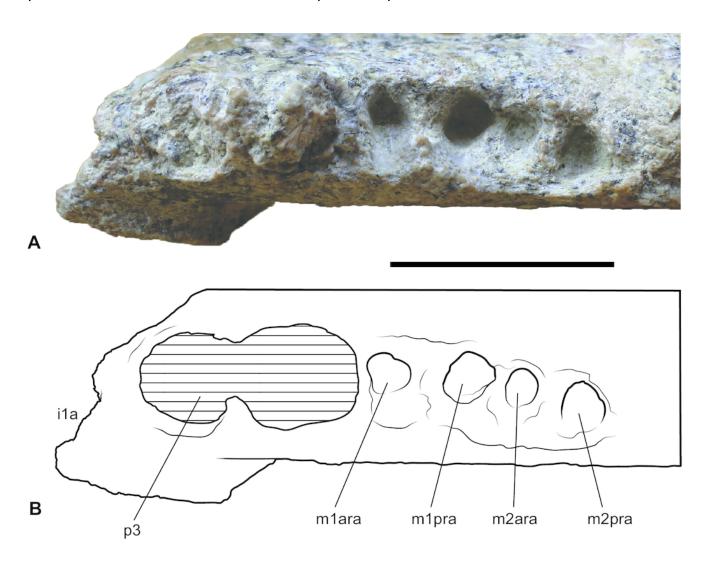
Figure 3(on next page)

Wakaleo alcootaensis, incomplete right dentary, NTM P4325.

Photographs of the specimen after whitening with ammonium chloride. A, buccal view. B, lingual view. C, occlusal view. Scale bar = 50 mm.



4


Wakaleo alcootaensis, incomplete right dentary, NTM P4325.

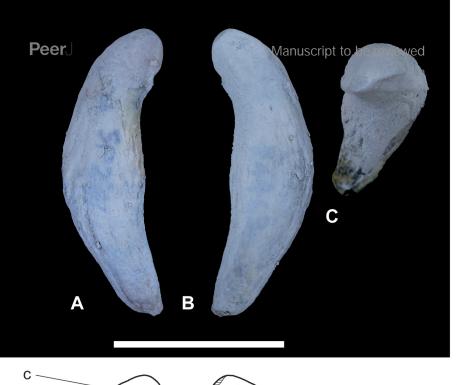
Interpretive drawings of the photographs in figure 3. A, buccal view. B, lingual view. C, occlusal view. Abbreviations: bcp, base of the coronoid process; i1a, alveolus for first lower incisor; m1a, alveolus for first lower molar; m2a, alveolus for second lower molar; mfo, masseteric fossa; p3, third lower premolar; pmf, posterior mental foramen; s, symphyseal surface. Scale bar = 50 mm.

Wakaleo alcootaensis, right lower tooth row in occlusal view, NTM P4325.

A, photograph. B, interpretive drawing. Abbreviations: i1a, alveolus for first lower incisor; m1ara, alveolus for anterior root of first lower molar; m1pra, alveolus for posterior root of first lower molar; m2ara, alveolus for anterior root of second lower molar; m2pra, alveolus for posterior root of second lower molar; p3, third premolar. Scale bar = 20 mm.

Wakaleo alcootaensis, photographs of isolated right upper canine, NTM P4462.

A, buccal view. B, anterior view. C, lingual view. D, posterior view. Scale bar = 10 mm.



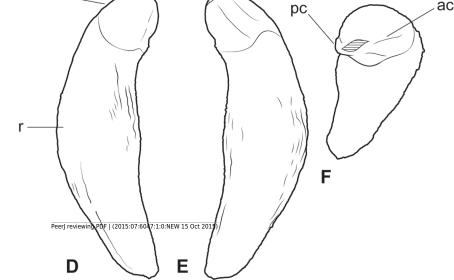
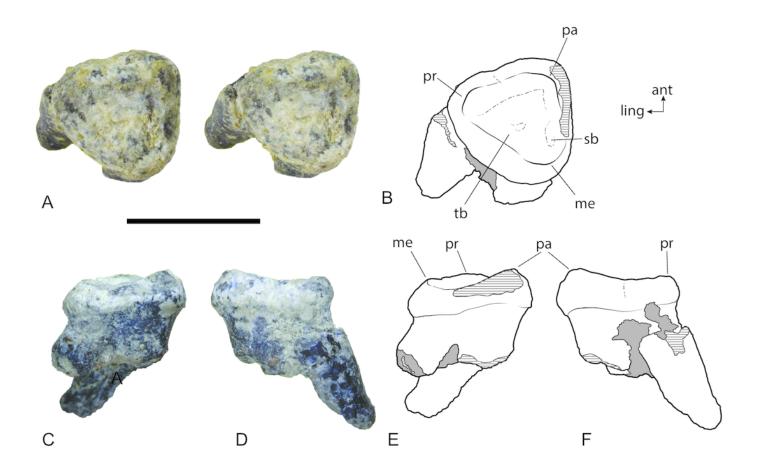
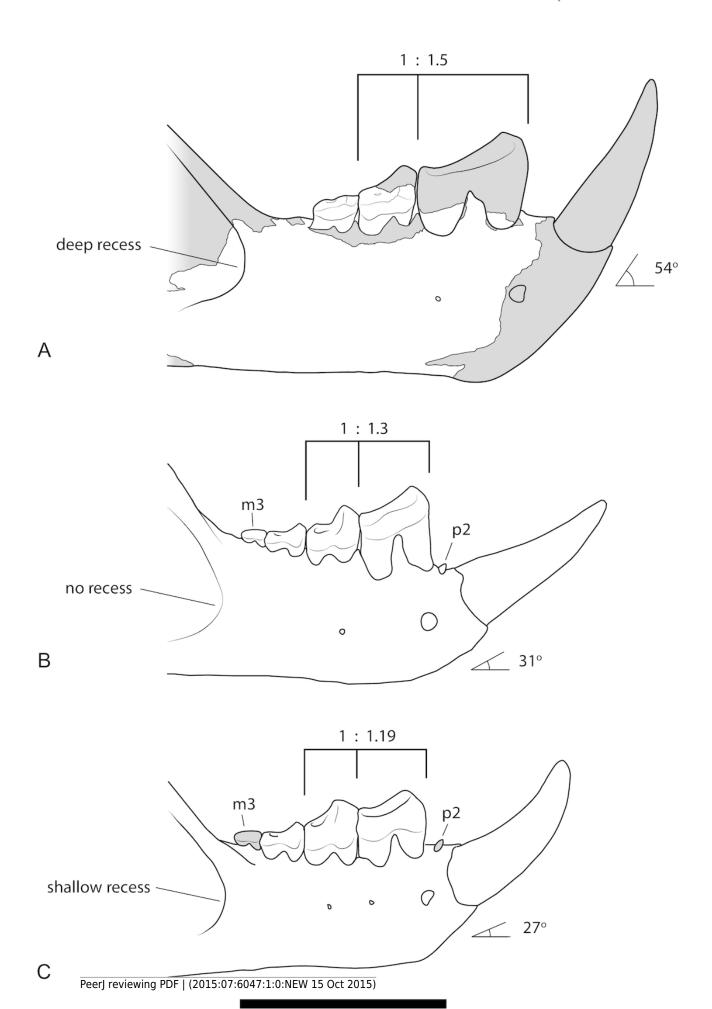


Figure 7(on next page)

Wakaleo alcootaensis, isolated right upper canine, NTM P4463.

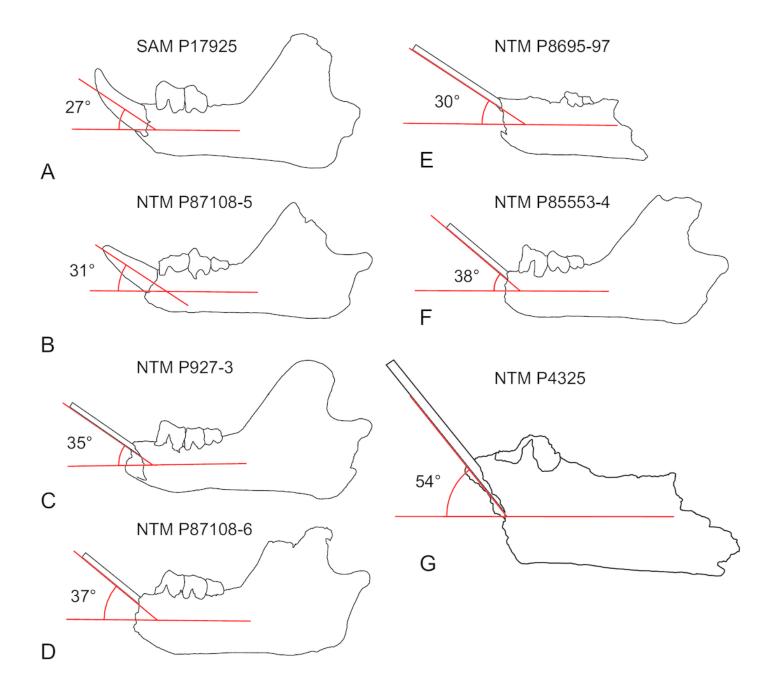

A, photograph in buccal view. B, photograph in lingual view. C, photograph in occlusal view. D, interpretive drawing of A. E, interpretive drawing of B.F, interpretive drawing of C. Abbreviations: ac, anterior carina; c, crown; pc, posterior carina; r, root. Specimen was photographed after being whitened with ammonium chloride. Scale bar = 20 mm.


Wakaleo alcootaensis, isolated left M2, NTM P4328.

A, photograph (stereopair) in occlusal view. B, interpretive drawing of occlusal view (note that this drawing was based on an earlier photograph and does not precisely match the photograph).C, photograph in buccal view. D, photograph in anterior view. E, interpretive drawing of C. F, interpretive drawing of D. Abbreviations: ant, anterior; ling, lingual; me, metacone; pa, paracone; pr, protocone; sb, vestigial stylar basin; tb, trigon basin. Scale bar = 10 mm.

Comparison of the dentaries of Wakaleo species.

A. W. alcootaensis. B. W. vanderleueri. C. W. oldfieldi. Differences between the species illustrated are: the depth of the anterior recess of the masseteric fossa; the presence or absence of P_2 and P_3 , the ratio of the length of P_3 , and the angle of the base of P_4 relative to the horizontal axis of the dentary. A is reconstructed from NTM P4325 and UCMP 65621. B. reconstructed from NTM P87108-5 and NTM P87108-6. C redrawn from Clemens and Plane (1974, fig. 1a, reversed for comparison). Scale bar = 40 mm.

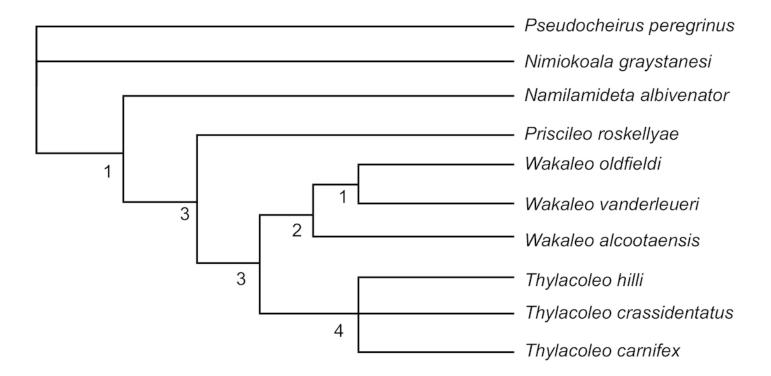


Inclination of the first lower incisor in Wakaleo dentaries.

A, Wakaleo oldfieldi, B, C, D, E, F, Wakaleo vanderleueri. G, Wakaleo alcootaensis. E and G reversed for comparison. Specimens missing the first lower incisor have a splint affixed to the posterodorsal wall of the alveolus. Note the steep inclination in *W. alcootaensis*. Drawings from photographic images, not to scale.

PeerJ

Comparison of Wakaleo dentaries showing P₃.


A. Anterior end of left dentary of *W. vanderleueri* (NTM P927-3) in buccal view. B. Anterior end of right dentary of *W. alcootaensis* (NTM P4325) in buccal view (reversed for comparison). Long arrows point to tall process of alveolar bone dividing the anterior and posterior roots of P3. Short arrow in B represents continuation of broken dentine over the top of the process demonstrating that the first two sockets belong to the same tooth. Scale bars = 20 mm.

Strict consensus tree of two most-parsimonious-trees obtained from cladistic analysis of thylacoleonid interrelationships.

Source trees have a length of 63 steps. Numbers with node represent decay index values.

Table 1(on next page)

Terminal taxa used in the cladistic analysis

Outgroup and ingroup taxa with their sources for character data.

Taxon	Specimens Examined	Literature used
Pseudocheirus	NTM U7839, U7840, U7841,	
peregrinus	U7843, U7846	
Nimiokoala		Black and Archer 1997
greystanesi		
Namilamadeta		Pledge 2005
albivenator		
Priscileo roskellyae		Gillespie 1997
Wakaleo oldfieldi	SAM P17925	Clemens and Plane 1974, Gillespie et al. 2014
Wakaleo	NTM P927-3, P8555-3,	Megirian 1986, Murray, Wells and Plane 1987,
vanderleueri	P8695-97, P87108-5,	Murray and Megirian 1990, Gillespie et al 2014
	P87108-6	
Wakaleo	NTM P1, P4325, P4328,	Archer and Rich 1982
alcootaensis	UCMP 65621 (c)	
Thylacoleo hilli		Pledge 1977, Archer and Dawson 1982
Thylacoleo		Bartholomai 1962, Archer and Dawson 1982
crassidentatus		
Thylacoleo carnifex		Owen 1871, 1887, Archer and Dawson 1982

Table 2(on next page)

Measurements of dentaries and lower dentition of Wakaleo.

Measurements in mm. Abbreviations: L, anteroposterior length of crown; W, maximum buccolingual width of the crown; DH, dentary height measured at the level of the posterior margin of M_2 ; P_3 -MF, distance from the posterior margin of the P_3 to the anterior rim of the masseteric fossa; P_3 - M_2 , length of the tooth row from the anterior margin of P_3 to the posterior margin of P_3 , combined length of P_3 and P_3 .

	P ₃ L	P ₃ W	M ₁ L	DH	P ₃ -MF	P ₃ -M ₂	M_1 - M_2
W. alcootaensis							
NTM P4325	19.6	(8.8)	~13.1	30.4	53.8	42.0	24.0
UCMP 65621	-	-	11.5	-	-	-	21.3
W. vanderleueri							
NTM P85553-4	14.6	-	10.4	30.7	40.6	31.3	18.4
NTM P8695-97	~14.3	-	~10.6	29.5	45.4	33.5	19.6
NTM P87108-6	14.5	7.8	11.3	34.3	~45.7	33.7	20.0
NTM P87108-5	14.1	7.3	12.0	29.8	40.0	34.5	19.8
NTM P9969-4	14.6	7.6		32.9	45.8	35.8	-
NTM P2970-26	~14.6	-	~10.8	-	44.2	34.3	18.5
Mean W. vanderleueri	14.5	7.6	11.0	31.4	43.6	33.9	19.3
W. oldfieldi							
SAM P17925	12.5	7.8	10.5	26.8	39.2	31.8	-

Table 3(on next page)

Measurements of the second upper molar of Wakaleo alcootaensis and W. vanderleueri.

Measurements in mm. Abbreviations: L, maximum anteroposterior length of the crown; L(roots), minimum anteroposterior length, measured at the constriction below the crown; W, maximum buccolingual width of the crown.

PeerJ

1

	M ² L	M ² L (roots)	M ² W
W. alcootaensis			
NTM P1	-	7.2	9.0
NTM P4328	9.4	8.0	9.1
W. vanderleueri			
NTM P87103-9	7.5	6.7	8.4
CPC 26604	7.0	-	9.5

2

Table 4(on next page)

Measurements of the upper canine of Wakaleo alcootaensis.

Measurements in mm. Abbreviations: L, maximum anteroposterior length of the crown; W, buccolingual width of the crown at its base; H, height of the crown from base to apex; RootL, length of the root from its tip to the base of the crown.

2

	L	W	Н	RootL
NTM P4462	7.0	4.9	7.1	-
NTM P4463	7.9	5.8	7.4	25.9

PeerJ reviewing PDF | (2015:07:6047:1:0:NEW 15 Oct 2015)