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ABSTRACT
North American minnows of the Shiner Clade, within the family Leuciscidae,
represent one of the most taxonomically complex clades of the order Cypriniformes
due to the large number of taxa coupled with conserved morphologies. Species within
this clade were moved between genera and subgenera until the community decided to
lump many of the unclassified taxa with similar morphologies into one genus,
Notropis, which has held up to 325 species. Despite phylogentic studies that began to
re-elevate some genera merged into Notropis, such as Cyprinella, Luxilus, Lythrurus,
and Pteronotropis, the large genus Notropis remained as a taxonomic repository for
many shiners of uncertain placement. Recent molecular advances in sequencing
technologies have provided the opportunity to re-examine the Shiner Clade using
phylogenomic markers. Using a fish probe kit, we sequenced 90 specimens in 87
species representing 16 genera included in the Shiner Clade, with a resulting dataset
of 1,004 loci and 286,455 base pairs. Despite the large dataset, only 32,349 bp
(11.29%) were phylogenetically informative. In our maximum likelihood tree, 78% of
nodes are 100% bootstrap supported demonstrating the utility of the phylogenomic
markers at lower taxonomic levels. Unsurprisingly, species within Notropis as well as
Hudsonius, Luxilus, and Alburnops are not resolved as monophyletic groups.
Cyprinella is monophyletic if Cyprinella callistia is excluded, and Pteronotropis is
monophyletic if it includes Hudsonius cummingsae. Taxonomic changes we propose
are: restriction of species included in Alburnops and Notropis, elevation of the
subgenus Hydrophlox, expansion of species included in Miniellus, movement of
Hudsonius cummingsae to Pteronotropis, and resurrection of the genera Coccotis and
Paranotropis. We additionally had two specimens of three species, Notropis
atherinoides, Ericymba amplamala, and Pimephales vigilax and found signficant
differences between the localities (1,086, 1,424, and 845 nucleotides respectively).
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INTRODUCTION
Among North American cyprinoids, the shiners and related minnows have been among
the most taxonomically complex groups of fishes. The group is currently placed in the
Leuciscidae, subfamily Pogonichthyinae after the elevation of subfamilies to family rank in
cyprinoids (Schönhuth et al., 2018; Tan & Armbruster, 2018). Ichthyologists tasked with
assembling species into meaningful genera initially described a dizzying array of genera
and subgenera of minnows. Species were moved between various categories (genera,
subgenera, tribes) based primarily on phenetic similarity; many leuciscid genera remained
relatively stable but one, Notropis (and many taxa formally placed in this genus), has
continued to be difficult. A search of the Catalog of Fishes (Fricke, Eschmeyer & van der
Laan, 2022) for ‘Notropis’ results in 325 species, representing a considerable bulk of
nominal species of North American freshwater fishes.

Starting with Mayden (1989) comprehensive morphological phylogenetic analysis of
Cyprinella and other North American taxa, a large monophyletic group was recognized as
the Open Posterior Myodome clade (OPM). This clade includes most of the eastern North
American leuciscids including Notropis and related genera.Mayden (1989) concluded that
Notropis is an artificial group due to convergence of morphological characters and
classification by phenetic similarity, and enacted nomenclatural changes elevating some
subgenera in Notropis, such as Cyprinella, Luxilus, Lythrurus, and Pteronotropis,
recognized other genera and reallocated species. He moved some species from Notropis to
Hybopsis (including N. boucardi, N. calientis, N. dorsalis, N. longirostris, N. sabinae, N.
alborus, N. bifrenatus), and differentiated six species of Notropis (i.e. N. topeka,
N. mekistocolas, N. atrocaudalis, N. stramineus, N. chihuahua and N. procne) from the
large clade that included all of the genera previously included in Notropis. A few now
recognized genera were then not recognized (i.e. Codoma was within Cyprinella;
Opsopoedus was within Notropis). Still, Notropis remained as a “taxonomic repository for
small, silvery fishes of unknown relationship” (Gidmark & Simons, 2014: 379; see also
Mayden et al., 2006) with approximately 91 currently recognized species loosely organized
into subgenera (Jordan, 1885). Primarily because of the large number of taxa, coupled with
conserved morphologies, few studies have attempted to tackle the remaining species
allocated to the genus or other orphaned taxa of unknown taxonomic placement (Mayden
et al., 2006; Hollingsworth et al., 2013; Schönhuth et al., 2018). However, even when
necessary taxonomic decisions for species within the genus Notropis were made (sensu
Mayden et al., 2006; Gidmark & Simons, 2014), they have not been widely accepted, and
traditional taxonomic groups have been preferred by some for nomenclatural stability
until a stronger consensus is reached on proposed nomenclatorial changes (Fricke,
Eschmeyer & van der Laan, 2022).

Phylogenetically, most previous studies on shiners and relatives have focused on
resolving relationships within purported monophyletic subgenera (for example Snelson,
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1972; Buth, 1979; Raley, Wood & McEachran, 2001; Cashner, Piller & Bart, 2011) with
varied results, and without investigation into relationships among the subgenera or to
genera that have been segregated from Notropis. Mayden et al. (2006) attempted a
comprehensive study of the so-called Notropin clade (the clade name does not refer to a
taxonomic rank) to resolve relationships using cytb (mitochondrial marker) and revealed a
nonmonophyletic Notropis as reported in prior studies either based on morphological or
molecular data (Mayden, 1989; Simons, Berendzen & Mayden, 2003). The former study, in
addition to corroborating monophyly of genera synonymized with Notropis as Cyprinella,
Erycymba, Hybognathus, Hybopsis, Lythrurus, also identified a more restricted Notropis by
recognizing the additional genera Alburnops, Aztecula,Graodus,Hudsonius,Miniellus, and
Yuriria. These authors could not resolve Hydrophlox, Luxilus and Pteronotropis as
monophyletic, and identified a ‘Notropis’ longirostris clade that included seven species of
Notropis. Despite all these monophyletic groups having available names, their
compositions were not always as initially proposed, and relocation of some species were
made by Mayden (1989), Coburn & Cavender (1992), and Mayden et al. (2006). However,
following this alternative phylogenetic classification of Notropin shiners, many species
remained relegated to ‘Notropis’ (in single quotes) because of their uncertain placement
due to weak support in analyses, and relationships among the genera listed above remained
unclear. While these additional genera from within a nonmonophyletic Notropis were
recognized and elevated, most subsequent studies reverted back to a larger encompassing
Notropis, with perhaps recognition of some of these genera as subgenera or species groups
(Bird & Hernandez, 2007; Rüber et al., 2007; Zhang et al., 2008; Chen & Mayden, 2009;
Fang et al., 2009; Gaubert, Denys & Oberdorff, 2009; Scott et al., 2009; Bufalino & Mayden,
2010; Houston, Shiozawa & Riddle, 2010; Cashner, Piller & Bart, 2011; Wang et al., 2012;
Hollingsworth et al., 2013; Imoto et al., 2013; Fricke, Eschmeyer & van der Laan, 2022).

Hollingsworth et al. (2013) expanded upon the cytb study by adding the RAG1 (nuclear)
molecular marker for a phylogenetic reconstruction to test for a correlation between a shift
from benthic to pelagic lifestyles and increased diversification rates. Unsurprisingly, this
analysis also resulted in a relatively poorly resolved overall phylogeny with moderate
support for non-monophyly of Notropis, but again illustrated the importance of
understanding relationships to better inform our understanding of ecological and
evolutionary processes.

To promote further study into this group, Gidmark & Simons (2014) amassed much of
the knowledge reported for the shiners (distributions, histories, ecologies, etc.) and
proposed using the designations made byMayden et al. (2006) with the understanding that
the relationships among them still remain unclear, despite support for the Shiner Clade as
a whole (Simons, Berendzen & Mayden, 2003;Mayden et al., 2006; Schönhuth et al., 2008).
Recently, a classification of the Holarctic family Leuciscidae based on nuclear and
mitochondrial genes was proposed, where the Shiner Clade was a well-supported group
within the Pogonichthyinae (Schönhuth et al., 2018). Despite the increase in both taxon
and character sampling, Notropis was not resolved as monophyletic, as species of this
genus were found in different parts of the Shiner Clade, and some of the genera formerly
included in Notropis were not supported as monophyletic (Alburnops, Notropis s.s.,
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Hudsonius), or their composition differed slightly (i.e. Miniellus, Hydrophlox) from that
previously proposed (Coburn, 1982; Mayden et al., 2006; Cashner, Piller & Bart, 2011).

Recent advances in sequencing technologies have provided the opportunity to
re-examine the shiner clade using phylogenomic markers. Most phylogenomic-scale
studies thus far have focused on higher taxonomic levels (Lemmon, Emme & Lemmon,
2012; Bond et al., 2014; Eytan et al., 2015; Prum et al., 2015; Hamilton et al., 2016), but
decreases in costs and the establishment of universal loci specific to fishes (Betancur-R
et al., 2013; Arcila et al., 2017; Hughes et al., 2018, 2021) have helped overcome the hurdles
associated with applying a phylogenomic approach to the shiner clade. In this study, we
employ the probes developed by Arcila et al. (2017) in an attempt to tackle the systematic
problems ofNotropis and related genera, and follow the taxonomy discussed inGidmark &
Simons (2014). We also examined two specimens of three species from different geographic
locations to test the utility of the markers on a smaller geographic scale. Previous research
(Rincon-Sandoval, Betancur-R & Maldonado-Ocampo, 2019) had shown good utility at
population-level scales, but wih the shiners, we wanted to determine if the markers could
lead to a stong phylogenetic hypothesis for a group with very rapid divergence
(Hollingsworth et al., 2013; Burress et al., 2017).

MATERIALS AND METHODS
Taxon selection, tissue preparation, and sequencing
Every effort was made to acquire broad representation across the shiner genera. For the
present study we included 88 ingroup taxa from 16 genera currently included in the Shiner
Clade as proposed by Schönhuth et al. (2018) as well as outgroup taxa from five different
genera (Notemigonus, Chrosomus, Erimystax, Phoxinus and Semolitus; Table S1 shows
genera with number of recognized species, type species, and species sampled). Six genera
from the Shiner Clade were not available for this study including Tampichthys (six
species), Yuriria (three species), Algansea (seven species), Aztecula (two species), Agosia
(one species), and Erimonax (one species). Except for Agosia and Erimonax all other
unsampled genera are endemic to Mexico. To test the utility of the markers at an even
smaller taxonomic scale, we include two specimens each of Notropis atherinoides,
Ericymba amplamala, and Pimephales vigilax.

DNA was extracted from specimens using the Omegabiotek E.Z.N.A. animal tissue
extraction kit (product #D3396-02) following manufacturer protocols. Extracted DNA was
checked for quality using electrophoresis and quantity using nanodrop. After ensuring
high molecular weight and a minimum of 2 µg total DNA, samples were sent for library
preparation and Illumina sequencing to MYcroarray (now Arbor Biosciences, arborbiosci.
com). Probes developed by Arcila et al. (2017) were used to target 1,060 loci. GenBank
project number is PRJNA842507; aligment (File S1) and partition file (File S2) are
provided.

Bioinformatics and tree reconstruction
FASTQ files were uploaded to the Alabama Supercomputer Center (ASC) for preliminary
quality control processing. Trimmomatic (Bolger, Lohse & Usadel, 2014) was used to
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remove adapters and remove leading and trailing low quality bases in the paired end reads,
as well as to remove reads with a length less than 36 base pairs. Resulting reads were then
imported into Geneious v 6.1.8 (www.geneious.com), set as paired reads, and assembled
using the zebrafish (Danio rerio) reference for the concatenated loci using five iterations
and trimmed to each reference locus. The loci for each species were then concatenated and
all concatenations were aligned in Geneious v 6.1.8 with the native alignment tool (www.
geneious.com). Tree reconstruction was performed on the Center for Advanced Science
Innovation and Commerce (CASIC) computer cluster at Auburn University, Auburn, AL,
USA. RAxML (Randomized Axelerated Maximum Likelihood, v. 8.0.24, Stamatakis, 2014)
was implemented using GTR + G model of evolution on the partitioned loci (partitioned
per Arcila et al., 2017) and the resulting tree then subjected to 500 bootstrap replicates (BS
is percent of trees showing this result). Species tree reconstruction was conducted using
ASTRAL-II (Mirarab & Warnow, 2015) on individual RAxML gene trees that were
subjected to 100 bootstrap replicates. Approximately-unbiased (AU) tests were conducted
using CONSEL v.0.20 (Shimodaira, 2002) to specifically test the unconstrained maximum
likelihood best tree topology against trees that were constrained to force monophyly for
three genera: Cyprinella, Hudsonius, and Luxilus. Number of phylogenetically informative
sites was calculated in R (v. 4.0.2; R Core Team, 2020) using the pis command in the ips
package (Interfaces to Phylogenetic Software in R; Heibl, Cusimano & Krah, 2014).

RESULTS
The final alignment yielded 1,004 loci, 286,455 base pairs, and only 0.42% missing data.
Of those sites, 32,349 (11.29%) were phylogenetically informative. The range of locus size
was 196–1,748 bp, with an average bp length of 285 (Fig. 1). In the resulting concatenated
ML tree, 78% of nodes are 100% bootstrap supported with only six nodes collapsing below
the 70% bootstrap threshold (Fig. 2). Species tree analysis produced highly congruent
results, particularly at the genus level (Fig. 3). At deeper nodes there is less support in the
species tree for the placement of a few clades (i.e. Hudsonius hudsonius + H. altipinnis;
‘Notropis’ atrocaudalis + ‘N.’ bifrenatus + ‘N.’ heterolepis), resulting in remaining
uncertainty as to the relationships among the genera. Nevertheless, with our focus on
resolving within-genera relationships, both concatenation and species tree approaches
resolve the same patterns with strong support.

Species that are currently placed in Notropis are not resolved as monophyletic (Figs. 2
and 3). Notropis jemezanus, N. amabilis, N. micropteryx, N. rubellus, and N. amoenus form
a clade with the type species, N. atherinoides, and a second clade included N. buchanani,
N. wickliffi, N. volucellus, and N. spectrunculus. Species designated as ‘Notropis’ byMayden
et al. (2006) are found throughout the tree. The genera Hudsonius, Luxilus, and Alburnops
were not monophyletic. Cyprinella forms a monophyletic group that excludes C. callistia,
which forms a trichotomy with Opsopoeodus + Pimephales and the clade containing the
remaining members of Cyprinella + Codoma. The results of the AU test were all significant
(Cyprinella constrained, p = 3e−06; Hudsonius constrained, p = 6e−08; Luxilus
constrained, p = 2e−18), indicating that all of the constrained topologies can be rejected as
alternative tree hypotheses. For comparison, a summary of the four-gene phylogeny of
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Schönhuth et al. (2018) for the shiner clade is presented including the taxonomic changes
proposed herein (Fig. 4). A list of all species, genera, and proposed taxonomic changes
discussed below are given in Table S2.

DISCUSSION
Alternative taxonomic and systematic classifications have been proposed for species
included within the controversial genus Notropis and various purported relatives in several
studies based on different characters (Swift, 1970; Coburn, 1982; Mayden, 1989; Bielawski
& Gold, 2001; Mayden et al., 2006; Gidmark & Simons, 2014; Schönhuth et al., 2018).
However, while several genera have been elevated from synonymy with Notropis and are
monophyletic groups, consensus regarding number and composition of some of the
different clades and groups of the genus Notropis has remained elusive, and classifications
were considered provisional until a more comprehensive study including sufficient taxon
and character sampling can produce a well supported analysis of relationships (Cashner,
Piller & Bart, 2011; Gidmark & Simons, 2014; Schönhuth et al., 2018). This study provides
the results on which to make some, but not all of the remaining taxonomic considerations
(Table S2). In general, we made taxonomic changes if this study and that of Schönhuth
et al. (2018) concur and if there was high support values in Figs. 2 and 3 (>93% bootstrap
and/or a local posterior probability of 1 in the ASTRAL-II tree). Taxonomic discussion
roughly follows Fig. 2. Boostrap support (BS, Fig. 2) and local posterior probability (PP,
Fig. 3) are indicated in the discussion of clades.

All phylogenomic analyses (based on concatenation and species tree approaches)
resolved the same patterns with strong support. The 42 species analyzed previously
included in Notropis were not resolved as monophyletic; however, analyses resolved these

Figure 1 Histogram showing lengths of loci in base pairs. The range of locus size was 196–1,748 bp,
with an average bp length of 285. Full-size DOI: 10.7717/peerj.14072/fig-1
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species in several well-supported clades, and nine other well-recognized genera, together
providing an alternative classification for this controversial group of shiners. This
revisionary classification for Notropis supported the recognition of the five genera
previously synonymized with Notropis (Alburnops, Hudsonius, Hydrophlox,Miniellus and
Paranotropis) and re-allocated some species within these groups with other genera within

Figure 2 ML tree based on concatenated alignment.Numbers of nodes represent bootstrap support, with nodes less than 70% supported collapsed.
Scale bar represents number of substitutions per site. Full-size DOI: 10.7717/peerj.14072/fig-2
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Figure 3 Species tree using ASTRAL-II. Internal branch lengths are in coalescent units and branches that lead to tips are not calculated by
ASTRAL-II but instead arbitrarily displayed. Branch support values indicate the support for a quadripartition (instead of bipartitions).

Full-size DOI: 10.7717/peerj.14072/fig-3
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Figure 4 Major monophyletic groups and genera within the Shiner Clade based on two nuclear and two mitochondrial genes (modified from
Schönhuth et al., 2018). Black boxes with white text represent name changes. Circles at nodes represent >75% bootstrap values (BS, black top) and
>95% Baysian posterior probability (PP, black bottom). Full-size DOI: 10.7717/peerj.14072/fig-4
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the Shiner Clade that differed from prior studies (Mayden, 1989; Mayden et al., 2006;
Gidmark & Simons, 2014). This study also highlights some interesting relationships with
other closely related genera within the Shiner Clade.

Pteronotropis and Hudsonius
All three species of Hudsonius were included in the analysis but were not recovered as
monophyletic, with H. cummingsae grouping within Pteronotropis. The range for all three
species of Hudsonius overlaps with that of Pteronotropis across the southeastern states of
North and South Carolina, Georgia, Alabama, and Florida, but only H. hudsonius extends
northward up through the Great Lakes and across much of Canada. Mayden et al. (2006)
found support for a monophyletic Hudsonius, despite individuals of H. altipinnis not
forming a lineage, suggesting cryptic speciation. Hollingsworth et al. (2013) found
Hudsonius as monophyletic in concatenated analyses and with cytochrome b, but within
Pteronotropis with just the nuclear gene Rag1. In our analysis, Hudsonius cummingsae is
part of Pteronotropis (BS 100, PP 1), while H. altipinnis (collected in South Carolina) and
H. hudsonius (collected in Wisconsin) were found as sister species (BS 100, PP 1),
congruent with Schönhuth et al. (2018; Fig. 4). Given that mitochondrial markers are
suggesting the monophyly of Hudsonius and nuclear markers are suggesting that
H. cummingsae is within Pteronotropis, it is possible that there has been mitochondrial
introgression between H. cummingsae and H. altipinnis; however, this will need further
examination. Because H. hudsonius is the type species, we propose removing Hudsonius
cummingsae from Hudsonius and transferring it to Pteronotropis to maintain monophyly
of both genera Pteronotropis and Hudsonius. Pteronotropis is, in part, diagnosed by a wide,
dark stripe on the body, a character that P. cummingsae shares.

Mayden (1989) and Simons, Knott & Mayden (2000) did not find Pteronotropis to be
monophyletic; however the genus was monophyletic here (BS 100, PP 1) as well as in
Mayden & Allen (2015) and Schönhuth et al. (2018). There are two deeply divergent clades,
that of P. harperi + P. hubbsi + P. cummingsae + P. welaka, and that of P. euryzonus +
P. grandipinnis + P. hypelopterus + P. merlini + P. metallicus + P. signipinnis + P. stonei,
and it could be argued that these two clades deserve separate genus status. This deep
divergence may have led to nonmonophyly in earlier studies without either enough
characters and/or taxa in the analyses. In Schönhuth et al. (2018), the monophyly of
Pteronotropis was supported only under Bayesian inference and not Maximum Likelihood
(Fig. 4).

Luxilus
Our analysis includes seven of the nine recognized species of Luxilus and recovers two
distinct clades. Luxilus chrysocephalus (type species) forms a clade (BS 100, PP 1) with
L. zonatus, L. pilsbryi, L. albeolus, and L. cornutus that is sister to Ericymba + ‘Notropis’
dorsalis. Two other species, Luxilus coccogenis and L. zonistius, are resolved as a clade (BS
100, PP 1) distant to other members of Luxilus and instead sister to Hybopsis. Mayden
(1989) removed Luxilus from Notropis, considering it sister to Cyprinella (including
Codoma ornata) and monophyletic based on three morphological characters, while
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Coburn & Cavender (1992) considered Luxilus sister to a clade comprised of Lythrurus,
Cyprinella, Pimephales, and Opsopoeodus, and they noted Luxilus could be an unnatural
assemblage. Morphological and molecular studies primarily focused on members within
Luxilus have assumed the monophyly of the genus, rather than including other genera, and
have consistently found a sister relationship between L. coccogenis + L. zonistius,
supporting our findings (Gilbert, 1964; Menzel, 1976; Dowling et al., 1992; Dowling &
Naylor, 1997; Mayden et al., 2006); although an allozyme analysis found L. coccogenis and
L. zonistius to be sister to L. cerasinus (Buth, 1979). Other studies that included Luxilus and
a variety of other shiner taxa have argued that Luxilus is not monophyletic (Simons,
Berendzen & Mayden, 2003; Mayden et al., 2006; Schönhuth & Mayden, 2010;
Hollingsworth et al., 2013). We support that L. coccogenis + L. zonistius should no longer be
included in Luxilus, and propose elevating the genus Coccotis Jordan 1882 (Coccotis
coccogenis Jordan 1882 as the type species) for these taxa. These results are also in
agreement with Schönhuth et al. (2018; Fig. 4) where Luxilus was resolved as
nonmonophyletic.

Lythrurus
Lythrurus has long been considered monophyletic (Snelson, 1972; Schmidt, Bielawski &
Gold, 1998; Mayden et al., 2006; Pramuk et al., 2007), and our study also supports the
monophyly of this group (BS 100, PP 1). What has been more problematic, however, is
determining the clade’s relationship to other genera. Formerly considered sister to a
Luxilus + Cyprinella clade (Mayden, 1989), it was later poorly resolved by Mayden et al.
(2006) in a clade with various ‘Notropis’ species. Coburn & Cavender (1992) determined
Lythrurus was sister to a clade comprised of Cyprinella, Pimephales, and Opsopoeodus, and
more recently it has been weakly resolved as the sister group to all other species of the
Shiner Clade excluding Algansea-Agosia, and Hudsonius (Schönhuth et al., 2018). We find
moderate support (BS 90, PP 0.66) for Lythrurus as sister to true Notropis (the clade
containingNotropis atherinoides, the type species ofNotropis; more discussion on Notropis
below).

Cyprinella
Although Gibbs (1957) and Mayden (1989) found Cyprinella callistia as nested within
Cyprinella, Broughton & Gold (2000) found the species to be sister to the remaining species
of Cyprinella (Codoma and Tampichthys were not included). One of the most extensive
and recent molecular studies of Cyprinella and relatives (Schönhuth & Mayden, 2010)
failed to resolve the genus as monophyletic, relative to C. callistia. The remainder of
Cyprinella was monophyletic, and was sister to Codoma + Tampichthys; however,
Cyprinella callistia was either sister to the clade of Cyprinella + Codoma + Tampichthys or
as sister to that clade plus Pimephales +Opsopoeodus. We did not include Tampichthys, but
we also resolved Codomamore closely related to all other representatives of Cyprinella (BS
100, PP 1) than Cyprinella callistia. As in previous analyses, we could not resolve the node
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leading to Cyprinella callistia, Opsopoeodus + Pimephales, and Codoma + Cyprinella
(BS < 70, PP 0.49), but we clearly show (based on topology and the AU test) that Cyprinella
callistia should not be included in Cyprinella (Schönhuth & Mayden, 2010; Schönhuth
et al., 2018). Cyprinella callistia was originally described as Photogenis callistius (Jordan
1877), but this genus does not apply to C. callistia. We did not include the type of the
genus, Photogenis photogenis (Notropis photogenis), in our analysis, but N. photogenis
has been resolved within the clade including the true Notropis, and was not closely
related to C. callistia (Schönhuth et al., 2018). With no name available for the species, we
refer to it as ‘Cyprinella’ callistia until such time that a broader analysis can be completed.
This name will reflect that this species is clearly divergent from other Cyprinella, both
morphologically (Mayden, 1989) and genetically (Schönhuth & Mayden, 2010; Schönhuth
et al., 2018; this study).

We did not examine Notropis maculatus; however, Schönhuth et al. (2018) found it
to be sister to Cyprinella. Notropis maculatus is found in muddy coastal streams,
backwaters, and oxbows along the Gulf and Atlantic coasts. Like Cyprinella, it has instense
pigmentation in nuptial males and has broad scales outlined in black. In Schönhuth et al.
(2018), its position in the phylogeny was well supported only under Bayesian analysis, and
further research is needed to determine its position, and we recognize it as ‘Notropis’
maculatus.

Alburnops and Hydrophlox
Gidmark & Simons (2014) resurrected Alburnops based on the monophyly recovered by
Mayden et al. (2006). We do not recover monophyly of the Alburnops species here
analyzed, and instead find primarily two non-sister clades. The type species, Alburnops
blennius, is recovered in a clade with A. baileyi, A. chalybaeus, A. petersoni, A. potteri,
A. texanus, and A. xaenocephalus (BS 100, PP 1), and thus these should retain the genus
name. Schönhuth et al. (2018; Fig. 4) also recovered this well supported clade including
these seven species plus A. asperifrons, A. braytoni, and A. simus pecosesis. Additionally,
A. bairdi, A. buccula, A. candidus, A. edwardraneyi, A. girardi, A. hypsilepis, and
A. shumardi should be included in Alburnops (Mayden, 1989; Mayden et al., 2006;
Gidmark & Simons, 2014). Notropis aguirrepequenoi was described from out of A. braytoni
and is included here in Alburnops (Miller, Minckley & Norris, 2005). Notropis orca is likely
extinct, but similar to A. simus and is included in Alburnops (Chernoff & Miller, 1986;
Mayden, 1989), but this will need to be confirmed.

The other clade (BS 100, PP 1) composed of species included within Alburnops by
Gidmark & Simons (2014) includes A. chiliticus, A. chlorocephalus, A. chrosomus,
A. lutipinnis, and A. rubricroceus, the five species recognized as Hydrophlox by Cashner,
Piller & Bart (2011; type species Hybopsis rubricroceus Cope). This clade is here more
closely related to species currently recognized under Notropis, ‘Notropis’, and Miniellus
than to the Alburnops clade. Our results agreed with recent phylogenetic analyses by
Schönhuth et al. (2018; Fig. 4) that also differentiated this clade of five species, and we
recognize Hydrophlox as valid.
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Miniellus + some ‘Notropis’
Miniellus is currently recognized as containing four species: Miniellus procne (type
species), M. heterodon, M. stramineus, and M. topeka (Mayden et al., 2006; Gidmark &
Simons, 2014). While our analyses did not include M. procne or M. topeka, M. stramineus
was not resolved sister toM. heterodon. Instead, several ‘Notropis’ species were found to be
more closely related to these two species. Five of these ‘Notropis’ were considered by
Mayden et al. (2006) as belonging to a ‘Notropis’ longirostris clade. Schönhuth et al. (2018;
Fig. 4) found strong support for a monophyleticMiniellus including the four initial species
(Miniellus procne, M. heterodon, M. stramineus, and M. topeka) sister to ‘N.’ alborus (not
analyzed here). Both studies also included in this clade ‘N.’ sabinae, ‘N.’ longirostris, ‘N.’
ammophilus, ‘N.’ chihuahua, ‘N.’ nubilus and ‘N.’ scabriceps with Schönhuth et al. (2018)
also including ‘N.’ ortenburgeri, and ‘N.’ boops, and the present study also including ‘N.’
greenei and ‘N.’ melanostomus. However, while both studies analyzed ‘N.’ atrocaudalis, in
Schönhuth et al. (2018) this species was collapsed with ‘N.’ scabriceps as sister to the rest of
species in this clade; and in the present study ‘N.’ atrocaudalis was not resolved within this
clade but in a clade with ‘N.’ bifrenatus and ‘N.’ heterolepis. Given strong support in the
present study for the clade (BS 93, PP 0.82) that includes Miniellus, the ‘N.’ longirostris
clade, and these other species of ‘Notropis’, we expand the genus Miniellus to include
‘Notropis’ greenei, ‘N.’ scabriceps, ‘N.’ sabinae, ‘N.’ longirostris, ‘N.’ ammophilus, ‘N.’
chihuahua, ‘N.’ melanostomus, and ‘N.’ nubilus, plus three species not included in the
present analysis (‘N.’ alborus, ‘N.’ ortenburgeri, and ‘N.’ boops) that were also resolved
within this clade (Schönhuth et al., 2018). Additionally, ‘N.’ mekistocholas and ‘N.’
rafinesquei, should be considered within this extended Miniellus, based on original
descriptions (Snelson, 1971; Suttkus, 1991) and their strongly supported position as part of
the ‘Notropis’ longirostris clade (Suttkus & Boschung, 1990;Mayden et al., 2006). ‘Notropis’
albizonatus and ‘N.’ uranoscopus are included in Miniellus per Warren, Burr & Grady
(1994). Notropis perpallidus was found in Hollingsworth et al. (2013) to be sister to
Miniellus sensu stricto and N. anogenus was sister to N. ortenburgeri, so both are included
in Miniellus here. We note that further investigation needs to be done to resolve
relationships within this clade.

‘Notropis’

Besides the species listed above that group with Miniellus, several other ‘Notropis’ are
found throughout our phylogeny. ‘Notropis’ scepticus is found sister to Hudsonius in the
concatenated analysis (BS 97) but sister to Ericymba + Luxilus in the species tree (PP 0.88).
Sister relationship of this divergent species was also unresolved within the Shiner Clade in
Schönhuth et al. (2018). The phylogenetic position of ‘N.’ scepticus varies in different
studies, and despite the fact that we retain it under ‘Notropis’, the best solution nay be to
describe a separate genus for this species.

We do not recover the ‘Notropis’ dorsalis group (Mayden, 1989; Raley, Wood &
McEachran, 2001) as monophyletic. This group was composed of ‘Notropis’ dorsalis, ‘N.’
ammophilus, ‘N.’ longirostris, ‘N.’ rafinesquei, and ‘N.’ sabinae. Instead we find ‘N.’
ammophilus, ‘N.’ longirostris, and ‘N.’ sabinae grouping with Miniellus (see above), while

Stout et al. (2022), PeerJ, DOI 10.7717/peerj.14072 13/23

http://dx.doi.org/10.7717/peerj.14072
https://peerj.com/


‘N.’ dorsalis was strongly supported as sister to Ericymba (BS 100, PP 1), as in Schönhuth
et al. (2018). Currently, Ericymba is diagnosed by the presence of enlarged infraorbital
canal scales (Pera & Armbruster, 2006), which are not found in ‘N.’ dorsalis; however, ‘N.’
dorsalis is otherwise very similar in morphology to the species of Ericymba, having a large
mouth and ventrally flattened body. Given that ‘N.’ dorsalis is strongly resolved sister to
Ericymba we are recognizing the species as Ericymba dorsalis; however, the species should
be examined in greater detail to detemine if it requires a separate genus.

A clade of ‘Notropis’ heterolepis, ‘N.’ bifrenatus, and ‘N.’ atrocaudalis was strongly
supported (BS 100, PP 0.99) with the clade sister to Ericymba + Luxilus in the concatenated
analysis (BS 76) and Coccotis, Hybopsis, Opsopoeodus, Pimephales, ‘Cyprinella’ callistia,
Codoma, Cyprinella, Hybognathus, Alburnops, Paranotropis, Hydrophlox, andMiniellus in
the species tree (PP 0.70). These relationships differ signficantly with those of Schönhuth
et al. (2018) where ‘N.’ heterolepis was resolved sister to ‘N.’ rupestris (a morphologically
similar species not analyzed here) in a well supported and divergent clade with undefined
relationships, ‘N.’ atrocaudalis was sister to the remaining extendedMiniellus clade minus
‘N.’ scabriceps, and ‘N.’ bifrenatus was not examined. Recognizing the differences between
the studies, we retain the following species as ‘Notropis’: ‘N.’ atrocaudalis, ‘N.’ bifrenatus,
‘N.’ heterolepis, and ‘N.’ rupestris.

The relationships of two small species from northeastern Mexico, ‘Notropis’ saladonis
‘N.’ tropicus have not been examined. ‘Notropis’ saladonis is currently considered to be
extinct (Mercado Silva, 2019).

Notropis sensu stricto and Paranotropis

We find two clades that include species regarded as true Notropis (Mayden et al., 2006;
Gidmark & Simons, 2014). The type species, Notropis atherinoides, is found in a clade (BS
100, PP 1) that is sister to Lythrurus (BS 90, PP 0.66) and containsN. amabilis,N. amoenus,
N. jemezanus, N. micropteryx, and N. rubellus. Whithin this clade, Schönhuth et al. (2018)
also included N. percobromus, N. photogenis, and N. stilbius andHollingsworth et al. (2013)
also included N. oxyrhynchus and N. suttkusi. Notropis should be limited to just these
species. Schönhuth et al. (2018) weakly supported the clade of N. ariommus and
N. telescopus to Notropis sensu stricto, and these relationships should be further studied,
thus we refer to the species as ‘N.’ ariommus and ‘N.’ telescopus as well as the likely relative
‘N.’ semperasper (Coburn, 1982).

The other clade includes N. buchanani, N. wickliffi, N. volucellus, and N. spectrunculus
(BS 100, PP 1), and here this clade forms a polytomy with the Hydrophlox and Miniellus
clades in the concatenated analysis (BS 100, PP 1) and poorly supported as the sister to
Hydrophlox in the species tree analysis (pp 0.49). Schönhuth et al. (2018) also included
N. leuciodus, N. ozarcanus and N. shumardi, within this well supported clade. These
species were either originally described as Notropis, or have been moved to Notropis from
Alburnops, Hybognathus, or Hybopsis. Notropis leucidous is the type species of
Paranotropis Fowler 1904, and its placement within the clade is well supported (Simons,
Berendzen & Mayden, 2003; Schönhuth et al., 2018); thus, we propose these species be
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considered as Paranotropis. Also included is N. cahabae per the original description
(Mayden & Kuhajda, 1989).

Central and southern Mexican Notropis
There were several species, mostly from Mexico, that were not examined in this study that
were recognized within a clade called “Central and southern Mexican Notropis” (CSMN
clade) in Schönhuth et al. (2018: 788). The CSMN clade contains species that have been
placed into three genera: Aztecula, Graodus, and Yuriria. Of the species in the CSMN
clade, we only examined G. moralesi.

Schönhuth et al. (2018) examined four species of Aztecula (listed as N. sallaei - type
species, N. calientis, N. grandis, and N. marhabatiensis), three Graodus (listed as
N. boucardi, N. imeldae, and N. moralesi), and one Yuriria (Y. alta). Aztecula was not
monophyletic with A. sallaei sister to the species of Graodus; however, in previous studies
(Schönhuth & Doadrio, 2003; Schönhuth, Doadrio & Mayden, 2006; Schönhuth et al., 2008;
Hollingsworth et al., 2013), Aztecula and Graodus were both monophyletic.

Aztecula sallaei has a complex taxonomic history that includes many synonyms,
movement between many genera, and a temporary change in spelling of its specific epithet
to sallei (Chernoff & Miller, 1981). Aztecula additionally includes species that were
described from out of N. calientis: N. amecae, N aulidion, N. calabazas, N. grandis, and
N. marhabatiensis (Chernoff & Miller, 1986; Lyons & Mercado-Silva, 2004; Domínguez-
Domínguez et al., 2009). The type species of Graodus is G. nigrotaeniatus Günther, 1868,
which is believed to be a synonym of G. boucardi (Miller, Minckley & Norris, 2005).
Graodus additionally includes N. cumingii, which is considered by some to be a senior
synonym of G. imeldae (Gilbert, 1998; Miller, Minckley & Norris, 2005; Page et al., 2013)
and an undescribed species in Oaxaca (referred as Notropis sp. 1 in Schönhuth, Doadrio &
Mayden, 2006; Schönhuth et al., 2008). The species of Graodus and Aztecula (with the
exception of A. sallaei) were considered to be in the genus Hybopsis (Miller, Minckley &
Norris, 2005); however, they are not closely related to Hybopsis in any phylogenetic study.
Yuriria was considered valid with the additional species Y. chaplalae (Miller, Minckley &
Norris, 2005). A third species, Y. amatlana, has been described (Domínguez-Domínguez,
Pompa-Domínguez & Doadrio, 2007). The species and genera of the CSMN clade will need
further review and morphological examination, but given the strong support for these
clades in previous studies (Schönhuth, Doadrio & Mayden, 2006; Schönhuth et al., 2008,
2018), we retain the taxonomy per Gidmark & Simons (2014) in three genera (Graodus,
Aztecula and Yuriria) with some additional species placed as above.

Differences with Schönhuth et al. (2018)
Certain species/clades within the Shiner Clade have inconsistent phylogenetic placement
between the present and Schönhuth et al. (2018) analyses, or were not resolved within any
of these groups in either of these studies. These species include ‘Cyprinella’ callistia,
‘Notropis’ scepticus, ‘N.’ heterolepis + ‘N.’ rupestris, ‘N.’ bifrenatus, ‘N. ariomus’, ‘N.’
telescopus, ‘N.’ nazas, and ‘N.’ maculatus. In Schönhuth et al. (2018) Notropis nazas was
strongly resolved sister to Hybognathus, and we suggest it to be considered as
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‘Hybognathus’ until it can be further validated as a species of Hybognathus or as a separate
genus. All these other taxa should be futher examined with genomic and morphological
data with taxon sampling equal to or greater than that of Schönhuth et al. (2018); until that
time descriptions of new genera or elevations of old genera for these species is premature.

Intraspecies utility of Arcila et al. (2017) markers
This study included two specimens of three species: Notropis atherinoides, Ericymba
amplamala, and Pimephales vigilax. Notropis atherinoides specimens, one fromWisconsin
and the other from Arkansas (both Mississippi River drainage), exhibited 99.6% sequence
similarity with a pairwise distance of 0.003 and a total of 1,086 nucleotide differences
across the entire 286,455 bp alignment. The specimens of E. amplamala were from
Alabama (Mobile River Drainage) and Mississippi (Pascagoula River drainage),
populations that were not found to be morphologically distinguishable in a detailed
analysis (Pera & Armbruster, 2006), and had 99.5% sequence similarity, a pairwise distance
of 0.005, and 1,424 differences. Our samples of Pimephales vigilax were collected from
Paint Rock River (Tennessee River Drainage) and Uphapee Creek (Mobile River Drainage)
and had 99.7% sequence similarity, a pairwise distance of 0.002, and 845 nucleotide
differences. These results suggest two things: there may be cryptic diversity within shiner
clade species, and the Arcila et al. (2017)markers are likely of utility at the population level,
despite their initial development for use across a very broad taxonomic scale. Rincon-
Sandoval, Betancur-R & Maldonado-Ocampo (2019) also found the markers useful for
elucidating phylogeographic patterns within species in the neotropics and that they may
have better utility than nuclear markers developed from a RADseq approach.

One of the targeted sequences was COI, a popular mitochondrial marker that is often
used to delineate fish species and that can provide a comparison with the phylogenomic
markers as a whole. We find a wide range of infraspecific differences in the 703 bp of the
partial COI sequences examined. Notropis atherinoides, despite distant collection sites, has
only a 2 bp difference (0.4% divergence). Pimephales vigilax from the neighboring
Tennessee and Mobile River systems had a 16 bp difference (2.3% divergence). Ericymba
amplamala, however, had a 54 bp difference (7.7% divergence), a degree of difference often
associated with species-level differentiation, and there needs to be further investigation
into the genetic structure of the species. COI alone may be suitable for identification of
cryptic diversity for shiners, but the full phylogenomic dataset adds a considerable number
of characters for elucidating population structure.

CONCLUSIONS
This study provides an important first step in using phylogenomics to resolve the
relationships and taxonomy of the problematic leuciscid minnows. By employing a
publicly available probe set (Arcila et al., 2017), future research can include more
specimens that were not sampled in this study and easily be combined with our dataset.
Our phylogenies help in understanding why this group has been difficult to resolve. A
phylogenomic approach provides far more characters that can break the polytomies at the
base of the shiner clade that are the likely result of rapid divergence. Not only has the group
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been described as morphologically conserved (Gidmark & Simons, 2014), thus hampering
morphological interpretations of relationships, but we would argue that the same is true
genetically. We find over 88% similarity (or uninformativeness) in a dataset comprised of
over 288,000 base pairs. However, we find strong agreement between this study and the
four gene phylogeny provided by Schönhuth et al. (2018), indicating that dense taxonomic
sampling, as done in the latter study, is also a key in resolving closely related taxa.
Problems with elucidating shiner relationships have been exacerbated by studies focusing
only on subsets of the shiner clade due to sampling or cost restrictions. We demonstrate
the utility of the exon capture method of Arcila et al. (2017) to elucidate relationships of
rapidly evolving clades, and demonstrate that the markers may be of use at the population
level as well. This is important as studies utilizing the Arcila et al. (2017) markers have the
potential of resolving deep and shallow relationships within a single analaysis (Hughes
et al., 2021). With the continuing decrease in cost of phylogenomic methods, the
demonstrable utility of the Arcila et al. (2017)markers at many phylogenetic levels, and the
soon to be large number of fish taxa sampled using the Arcila et al. (2017) markers, we
would encourage researchers to add to this dataset. Numerous issues remain in the
taxonomy and systematics of North American leuciscids, and we will continue to add
species to the analysis. This study continues the trend at subtending the shiner clade into
genera, but several important clades still need to be resolved and described.
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